The Time to Begin Plans for COVID-19 Eradication Is Now

Total Page:16

File Type:pdf, Size:1020Kb

The Time to Begin Plans for COVID-19 Eradication Is Now SHORT COMMUNICATION The time to begin plans for COVID-19 eradication is now T Jacob Johna, Dhanya Dharmapalanb a PhD (Virology), FRCP (Paediatrics), Former Professor & Head, Department of Clinical Virology, Christian Medical College, Vellore, India b MBBS, MD, Consultant, Paediatric Infectious Diseases at Apollo Hospitals, Navi Mumbai, India Abstract After the world recovers from the pandemic of SARS-CoV-2, it is most likely to stabilise as endemic and seasonal, deserving/demanding control efforts perpetually in all countries, unless it can be eradicated. The risk of mortality is high among those above 65 years and those with chronic “lifestyle” diseases. Endemic circulation will, therefore, take a heavy toll on life annually. Eradication is an extreme form of control, eliminating the disease permanently and globally. Effective vaccines are expected in the near future. As the pandemic abates, herd immunity will be very high, enabling early eradication by additional build-up of a vaccine-induced herd immunity. Public memory of the pandemic will be fresh, which will assist in social mobilisation and fund raising towards eradication. If time is lost, the infection is likely to become non-eradicable as domestic/farmed animals may become fresh reservoirs. Resolve to eradicate and designing its road-map must be made at the earliest. Key words: COVID-19, pandemics, vaccines, global health “We cannot solve our problems with the globally.1 Risks of severe disease and death are same thinking we used when we created them.” high in those above 65 years and those with chronic (Einstein) non-communicable diseases (co-morbidities).2 Children, adolescents, and young healthy adults The COVID-19 pandemic, a veritable tend to develop asymptomatic infection or only mild symptoms and are at low risk of death. nightmare The mode and speed of the spread of SARS- The pandemic of the Coronavirus disease- CoV-2 resembles that of influenza viruses. The 2019 (COVID-19), caused by an infection with 1918 influenza pandemic (causative virus Severe Acute Respiratory Syndrome Coronavirus identified by paleo-virology as A H1N1) had three type 2 (SARS-CoV-2), has sowed disease, death, successive waves in March, September– and devastation in its path across all countries of November, and early 1919.3 H1N1 virus was the world. By the end of June 2020, it has caused replaced by H2N2 when it became a pandemic in over 9.4 million cases and over 480,000 deaths 1957, which was then replaced by the H3N2 November 2020. Christian Journal for Global Health 7(4) 48 John & Dharmapalan pandemic virus of 1968,4 but the 2009 pandemic everywhere using non-pharmacological H1N1 virus did not replace H3N2, and since then, interventions. both H1N1 and H3N2 are endemic globally. Each To presume it will die out will turn out to be pandemic virus became globally endemic unless a huge risk if it does not. The world will be safer replaced by another influenza virus, and SARS- if we presume the opposite—that it will become CoV-2 will most likely emerge as globally pan-endemic when herd immunity grows endemic.5 We have no reason to expect a less sufficiently high.5 In the medium term, as the virulent beta coronavirus to emerge and replace disease remains endemic with annual seasonal this highly virulent pandemic virus. prevalence, senior citizens and those with co- Two other coronaviruses have emerged as morbidities will have to live in fear of infection and zoonosis first and then human-to-human its consequences, unless effective anti-viral transmission continued: the SARS-CoV-1 and the therapy is developed or at least one safe and MERS-CoV, causing severe acute respiratory effective vaccine becomes available, accessible, syndrome (SARS) and the Middle-Eastern and affordable even in low income countries, or respiratory syndrome, respectively. The former did unless the disease is eradicated. become a pandemic involving 27 countries, resulting in 8,096 cases and 774 deaths.6 By Can COVID-19 be eradicated? diligently case diagnosing, contact tracing, and Disease eradication is defined as permanent quarantining, SARS was eradicated within one reduction to zero of the worldwide incidence of the year without a vaccine or anti-viral drug. causative infection, with deliberate efforts.8 For This approach failed with SARS-CoV-2 COVID-19 eradication, the coronavirus because of greater transmission efficiency and the transmission must be interrupted globally. fact that infected asymptomatic and pre- Three biomedical criteria determine if a symptomatic (during incubation period) disease can be eradicated: i) availability of vaccine individuals transmitted infection, whereas SARS for primary prevention; ii) availability of a virus was transmitted only after a fever developed, diagnostic tool to reliably detect infection; iii) allowing case detection and breaking of absence of extra-human reservoir of the agent.8 transmission chains. Fortunately, it has not re- Although SARS-CoV-2 only recently appeared as zoonosis in the country of origin as jumped species from bats to humans as a zoonosis, precautions were taken. it is now an anthroponosis, meaning efficiently MERS-CoV has appeared several times as a spreading person-to-person, hence theoretically zoonosis, often resulting in limited person-to- eradicable.8 The presumptive parent virus in the person transmission. Further spread could be bat is a millennia old. Its emergence as an interrupted so that it has neither persisted as emerging anthroponosis of zoonotic origin had not anthroponosis nor became a pandemic. However, happened before 2019, so we have to presume it is when imported into the Korean Republic, it caused a one-off event. As an anthroponosis, it is a major epidemic, but once detected and when non- eradicable, in spite of its original reservoir pharmacological interventions were applied, it remaining in nature. However, constant vigilance 7 could be eliminated. SARS-CoV-2 is a highly and escalated surveillance for any new zoonotic to efficient person-to-person transmitter and, within a human introduction is needed. span of 4 months from first recognition in China, it If such re-introductions recur, eradication has reached all United Nations member countries. may have setbacks, but we will know if It is now fully entrenched globally as reintroduction, if any, since surveillance will be of anthroponosis and it would be naive and foolhardy eradication quality. Thus, if we fear reintroduction to expect that its transmission could be interrupted of either the same or another coronavirus capable of easy/rapid spread, we must eradicate the current November 2020. Christian Journal for Global Health 7(4) 49 John & Dharmapalan one, instead of remaining unprepared for such are always possible.10 Although such infections eventualities. have been stray instances of reverse zoonosis Diagnostic tests like reverse transcription (human-to-vertebrate transmission), the natural polymerase chain reaction (RT-PCR) and antibody extension of transmissibility is continued enzootic tests are already available. SARS-CoV-2 is transmission. excreted in the faeces and found in sewage. Non-pharmacological deterrents of Environmental surveillance of sewage for SARS- transmission require social distancing. Humans CoV-2 can, therefore, be used to detect infection if need social interactions from the cradle to the during the eradication programme it silently re- deathbed. Economic reconstruction and emerges in the community. This is a lesson we administrative, health management, recreational, have learned from environmental surveillance of educational, and religious activities require social the polio eradication programme. interactions. However, social interactions will The critical intervention tools are vaccines to promote virus transmission when it is endemic, a build herd immunity sufficient to interrupt potential catch-22. transmission. Currently several vaccine candidates Most important, we must galvanize the world are in the pipeline. We expect more than one to prepare for eradication while the memory of the vaccine to be on the market by 2021. Since nightmare of the pandemic remains fresh in the infection and transmission are based on upper public’s mind and when public cooperation can respiratory mucosal infection, the best vaccine that readily be solicited. Technically, the best offers upper respiratory mucosal protection should opportunity to eradicate the coronavirus will be in be used for eradication. Since basic reproduction the near-term, when herd immunity will be number Ro is below 4, theoretically the herd extremely high as the pandemic peaks and evolves immunity threshold for interruption of as pan-endemic. transmission would be about 75%.9 Vaccination coverage has to top up the existing herd immunity What will it take to develop a global due to natural infection. Vaccine efficacy will agenda for eradication? determine the coverage needed: the higher the Eradication becomes a global agenda only efficacy, the lower the coverage needed. when the World Health Assembly passes a resolution to commit the World Health Why think of eradication when the Organisation and its member nations to join in pandemic is still on? partnership to achieve this goal. For the reasons Wisdom calls for early eradication of the argued above, eradication must be achieved in the virus without providing it time and opportunity to shortest possible time—ideally as short as five better adapt to human hosts and alter behaviour, years or perhaps a little longer, according to
Recommended publications
  • People Can Catch Diseases from Their Pets
    People Can Catch Diseases from Their Pets [Announcer] This program is presented by the Centers for Disease Control and Prevention. [Tracey Hodges] Hello, I’m Tracey Hodges and today I’m talking with Dr. Carol Rubin, Associate Director for Zoonoses and One Health at CDC. Our conversation is based on her article about zoonotic diseases in our pets, which appears in CDC's journal, Emerging Infectious Diseases. Welcome, Dr. Rubin. [Carol Rubin] Thanks, Tracey. I’m pleased to be here. [Tracey Hodges] Dr. Rubin, tell us about One Health. [Carol Rubin] Well, One Health is a concept that takes into account the relationship among human health and animal health and the environment. One Health recognizes that the three sectors, that is, people, animals, and the environment, are closely connected to each other, and that movement of diseases from animals to humans can be influenced by changes in the environment they share. However, because there’s no strict definition for One Health, the phrase ‘One Health’ can mean different things to different people. Some people think of One Health as a return to simpler times when most physicians were generalists rather than specialists, and physicians and veterinarians communicated regularly. However, other people think that the One Health is especially important now because we live in a time when there is an increase in the number of new diseases that affect human health. Diseases that pass between people and animals are called zoonoses. And recently, researchers have determined that more than 70 percent of emerging infectious diseases in people actually come from animals.
    [Show full text]
  • Spillback in the Anthropocene: the Risk of Human-To-Wildlife Pathogen Transmission for Conservation and Public Health
    Spillback in the Anthropocene: the risk of human-to-wildlife pathogen transmission for conservation and public health Anna C. Fagre*1, Lily E. Cohen2, Evan A. Eskew3, Max Farrell4, Emma Glennon5, Maxwell B. Joseph6, Hannah K. Frank7, Sadie Ryan8, 9,10, Colin J Carlson11,12, Gregory F Albery*13 *Corresponding authors: [email protected]; [email protected] 1: Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 2: Icahn School of Medicine at Mount Sinai, New York, NY 10029 3: Department of Biology, Pacific Lutheran University, Tacoma, WA, 98447 USA 4: Department of Ecology & Evolutionary Biology, University of Toronto 5: Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK 6: Earth Lab, University of Colorado Boulder, Boulder, CO 80309 7: Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, 70118 USA 8: Quantitative Disease Ecology and Conservation (QDEC) Lab Group, Department of Geography, University of Florida, Gainesville, FL, 32610 USA 9: Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32610 USA 10: School of Life Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa 11: Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, 20057 USA 12: Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, 20057 USA 13: Department of Biology, Georgetown University, Washington, DC, 20057 USA 1 Abstract The SARS-CoV-2 pandemic has led to increased concern over transmission of pathogens from humans to animals (“spillback”) and its potential to threaten conservation and public health.
    [Show full text]
  • Elephant Tuberculosis As a Reverse Zoonosis Postcolonial Scenes of Compassion, Conservation, and Public Health in Laos and France
    ARTICLES Elephant tuberculosis as a reverse zoonosis Postcolonial scenes of compassion, conservation, and public health in Laos and France Nicolas Lainé Abstract In the last twenty years, a growing number of captive elephants have tested positive for tuberculosis (TB) in various institutions worldwide, causing public health concerns. This article discusses two localities where this concern has produced significant mobilizations to ask about the postcolonial resonances of this global response. The first case focuses on epidemiological studies of elephant TB in Laos launched by international organizations involved in conservation, and on the role of traditional elephant workers (mahouts) in the daily care for elephants. The second describes the finding by veterinarians of two elephants suspected of TB infection in a French zoo and the mobilization of animal rights activists against the euthanasia of the pachyderms. The article shows that while, in the recent past, in France elephants were considered markers of exoticism and in Laos as coworkers in the timber industry, they are now considered to be endangered subjects in need of care, compassion, and conservation. This analysis contributes to the anthropology of relations between humans and elephants through the study of a rare but fascinating zoonosis. Keywords tuberculosis, reverse zoonosis, Laos, France, elephant Medicine Anthropology Theory 5 (3): 157–176; http://doi.org/10.17157/mat.5.3.379. © Nicolas Lainé, 2018. Published under a Creative Commons Attribution 4.0 International license. 158 Elephant tuberculosis as a reverse zoonosis The re-emergence of a reverse zoonosis During the last twenty years, the growing number of captive elephants that have tested positive for tuberculosis (TB) in various institutions worldwide has caused public health concerns.
    [Show full text]
  • Horses As a Crucial Part of One Health
    veterinary sciences Review Horses as a Crucial Part of One Health Nelly Sophie Lönker, Kim Fechner and Ahmed Abd El Wahed * Virology Lab, Division of Microbiology and Animal Hygiene, University of Goettingen, Burckhardtweg 2, 37077 Goettingen, Germany; [email protected] (N.S.L.); [email protected] (K.F.) * Correspondence: [email protected]; Tel.: +49-551-391-3958; Fax: +49-551-393-3912 Received: 3 February 2020; Accepted: 28 February 2020; Published: 29 February 2020 Abstract: One Health (OH) is a crucial concept, where the interference between humans, animals and the environment matters. This review article focusses on the role of horses in maintaining the health of humans and the environment. Horses’ impact on environmental health includes their influence on soil and the biodiversity of animal and plant species. Nevertheless, the effect of horses is not usually linear and several factors like plant–animal coevolutionary history, climate and animal density play significant roles. The long history of the relationship between horses and humans is shaped by the service of horses in wars or even in mines. Moreover, horses were essential in developing the first antidote to cure diphtheria. Nowadays, horses do have an influential role in animal assisted therapy, in supporting livelihoods in low income countries and as a leisure partner. Horses are of relevance in the spillover of zoonotic and emerging diseases from wildlife to human (e.g., Hendra Virus), and in non-communicable diseases (e.g., post-traumatic osteoarthritis in horses and back pain in horse riders). Furthermore, many risk factors—such as climate change and antimicrobial resistance—threaten the health of both horses and humans.
    [Show full text]
  • Potential Zoonotic Origins of SARS-Cov-2 and Insights for Preventing Future Pandemics Through One Health Approach
    Open Access Review Article DOI: 10.7759/cureus.8932 Potential Zoonotic Origins of SARS-CoV-2 and Insights for Preventing Future Pandemics Through One Health Approach Muralikrishna Konda 1 , Balasunder Dodda 2 , Venu Madhav Konala 3, 4 , Srikanth Naramala 5 , Sreedhar Adapa 6 1. Veterinary Sciences, Banfield Pet Hospital, Flower Mound, USA 2. Veterinary Medicine, Holiday Park Animal Hospital, Pittsburgh, USA 3. Hematology and Oncology, Ashland Bellefonte Cancer Center, Ashland, USA 4. Hematology and Oncology, King's Daughters Medical Center, Ashland, USA 5. Rheumatology, Adventist Medical Center, Hanford, USA 6. Nephrology, Kaweah Delta Medical Center, Visalia, USA Corresponding author: Sreedhar Adapa, [email protected] Abstract Coronavirus disease 2019 (COVID-19) is an emerging infectious disease that has resulted in a global pandemic and is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV- 2). Zoonotic diseases are infections that are transmitted from animals to humans. COVID-19 caused by SARS-CoV-2 most likely originated in bats and transmitted to humans through a possible intermediate host. Based on published research so far, pangolins are considered the most likely intermediate hosts. Further studies are needed on different wild animal species, including pangolins that are sold at the same wet market or similar wet markets before concluding pangolins as definitive intermediate hosts. SARS-CoV-2 is capable of reverse zoonosis as well. Additional research is needed to understand the pathogenicity of the virus, especially in companion animals, modes of transmission, incubation period, contagious period, and zoonotic potential. Interdisciplinary one health approach handles these mosaic issues of emerging threats by integrating professionals from multiple disciplines like human medicine, veterinary medicine, environmental health, and social sciences.
    [Show full text]
  • Master Question List for COVID-19 (Caused by SARS-Cov-2) Weekly Report 06 October 2020
    DHS SCIENCE AND TECHNOLOGY Master Question List for COVID-19 (caused by SARS-CoV-2) Weekly Report 06 October 2020 For comments or questions related to the contents of this document, please contact the DHS S&T Hazard Awareness & Characterization Technology Center at [email protected]. DHS Science and Technology Directorate | MOBILIZING INNOVATION FOR A SECURE WORLD CLEARED FOR PUBLIC RELEASE REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19) Updated 10/06/2020 FOREWORD The Department o f Homeland Security (DHS) is payin g close attention tho t e evolvin g Coronavirus Infectious Disease (COVID-19) situation in order to protect ou r nation. DHS is working very closely with the Centers for Disease Control and Prevention (CDC), other federal agencies, and public health officials to implement publi c health control measures related t o travelers and materials crossinu g o r borders from tht e affec ed regions. Based on the response to a similar product generated in 2014 inn respo se to the Ebolavirus outbreak in West Africa, the DHS Science and Technology Directorate (DHS S&T) developed the followin g “master question list” that quickly summarizes what is known, what additional information is needed, and who may be working to address such fundamental questions as, “What is th e infectious dose?” and “How long hdoes t e virus persih st in t e environment?” The Master Question List (MQL) is intended t o quickly present the current state o f available information to government decision makers in the operational response to COVID-19 and allow structured and scientifically guided discussions across the federal government without burdening them with the need to review scientific reports, and to prevent duplication of efforts by highlighting and coordinating research.
    [Show full text]
  • My Father-In-Law
    Cover drawing by Claude Lumen (my father-in-law) and description of the cover by Jacqueline Magis and Eric Thys (my parents): From one shore to another, from one ocean to another, from one discipline to another, My barque of anthropologist, Charged with new experiences between humans, animals and their environment, Docks to join the luminous white house, Meeting place of knowledge and sciences exchanges. Pictures of the page chapters by Séverine Thys taken during fieldworks. Dissertation submitted in fulfillment of the requirements for the degree of Doctor (PhD) in Veterinary Sciences, 2019 Promoters: Prof. Dr. Sarah Gabriël Prof. Dr. Pierre Dorny Prof. Dr. Marleen Boelaert Laboratory of Foodborne Parasitic Zoonoses Department of Veterinary Public Health and Food Safety Faculty of Veterinary Medicine, Ghent University Salisburylaan 133, B-9820 Merelbeke ACKNOWLEDGEMENTS ............................................................................................. 11 ABBREVIATIONS ....................................................................................................... 13 GENERAL INTRODUCTION ......................................................................................... 15 CHAPTER 1 LITERATURE REVIEW: NEGLECTED ZOONOTIC DISEASES IN GENERAL, THE EPIDEMIOLOGY AND CONTROL OF THREE SELECTED NEGLECTED ZOONOTIC DISEASES AND THE ROLE OF ANTHROPOLOGY IN THE CONTROL ............................................... 19 1.1 Neglected Zoonotic Diseases ..............................................................................
    [Show full text]
  • S41467-021-21508-6.Pdf
    ARTICLE https://doi.org/10.1038/s41467-021-21508-6 OPEN Epigraph hemagglutinin vaccine induces broad cross-reactive immunity against swine H3 influenza virus Brianna L. Bullard 1, Brigette N. Corder1, Jennifer DeBeauchamp2, Adam Rubrum2, Bette Korber3, ✉ Richard J. Webby2 & Eric A. Weaver 1 fl 1234567890():,; In uenza A virus infection in swine impacts the agricultural industry in addition to its zoonotic potential. Here, we utilize epigraph, a computational algorithm, to design a universal swine H3 influenza vaccine. The epigraph hemagglutinin proteins are delivered using an Adenovirus type 5 vector and are compared to a wild type hemagglutinin and the commercial inactivated vaccine, FluSure. In mice, epigraph vaccination leads to significant cross-reactive antibody and T-cell responses against a diverse panel of swH3 isolates. Epigraph vaccination also reduces weight loss and lung viral titers in mice after challenge with three divergent swH3 viruses. Vaccination studies in swine, the target species for this vaccine, show stronger levels of cross-reactive antibodies and T-cell responses after immunization with the epigraph vaccine compared to the wild type and FluSure vaccines. In both murine and swine models, epigraph vaccination shows superior cross-reactive immunity that should be further investigated as a universal swH3 vaccine. 1 School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE, USA. 2 St. Jude Children’s Research Hospital, Memphis, TN, ✉ USA. 3 Los Alamos National Laboratory, Los Alamos, NM, USA. email: [email protected] NATURE COMMUNICATIONS | (2021) 12:1203 | https://doi.org/10.1038/s41467-021-21508-6 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21508-6 nfluenza infection in swine is a highly contagious respiratory development of a vaccine that induces strong levels of broadly Ivirus endemic in pig populations around the world1.Influenza cross-reactive immunity.
    [Show full text]
  • Diagnosis and Epidemiology of Zoonotic Nontuberculous Mycobacteria Among Dromedary Camels and Household Members in Samburu County, Kenya
    DIAGNOSIS AND EPIDEMIOLOGY OF ZOONOTIC NONTUBERCULOUS MYCOBACTERIA AMONG DROMEDARY CAMELS AND HOUSEHOLD MEMBERS IN SAMBURU COUNTY, KENYA LUCAS LUVAI AZAALE ASAAVA (M. Sc.) I84/29435/2014 A THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY (IMMUNOLOGY) IN THE SCHOOL OF PURE AND APPLIED SCIENCES OF KENYATTA UNIVERSITY SEPTEMBER, 2020 ii DECLARATION iii DEDICATION To my parents, family, relatives, and friends. iv ACKNOWLEDGEMENTS I sincerely acknowledge the mentorship, guidance and support from my supervisors Professor Michael M. Gicheru, Kenyatta University and, Dr. Willie A. Githui, Head, Tuberculosis Research laboratory, CRDR, KEMRI. My gratitude goes to the both of them for their guidance in shaping this study through their technical input from conception, fieldwork, laboratory analysis and preparation of this thesis. I wish to thank Kenyatta University for the tutorial fellowship and am greatly indebted to NACOSTI and NRF for the PhD research grant received without which this study would not have been possible. Special thanks to Dr. Willie Githui for accepting to host me at the TB Research Laboratory, CRDR, KEMRI and for material support without which this study would have been impossible. My sincere gratitude goes to Ernest Juma and Ruth Moraa, for guiding me through TB laboratory diagnostic techniques. Special thanks to Kenneth Waititu and Rose Kahurai of Institute of Primate Research- National Museums of Kenya, pathology laboratory for guiding me through histopathology. Special thanks to my field assistants Benedict Lesimir, Adan Halakhe, Leon Lesikoyo as well as the Samburu County veterinary team who were very resourceful. Special thanks to Moses Mwangi and Edwin Mwangi for guiding me through study design, data management and statistical analysis of my data.
    [Show full text]
  • COVID-19 Routes of Transmission – What We Know So
    SYNTHESIS 06/30/2021 Additional Routes of COVID-19 Transmission – What We Know So Far Introduction Public Health Ontario (PHO) is actively monitoring, reviewing and assessing relevant information related to Coronavirus Disease 2019 (COVID-19). “What We Know So Far” documents provide a rapid review of the evidence on a specific aspect or emerging issue related to COVID-19. Updates in Latest Version This updated version replaces the December 1, 2020 version COVID-19 Routes of Transmission – What We Know So Far.1 The update version focuses on evidence from systematic reviews and meta-analyses, as the body of evidence for each mode of transmission has increased since the last version. This version does not include transmission through respiratory droplets or aerosols, as PHO has recently published COVID-19 Transmission through Large Respiratory Droplets and Aerosols…What We Know So Far (May 21, 2021).2 Key Findings Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted primarily at short range through respiratory particles that range in size from large droplets to smaller droplets (aerosols);2 however, other transmission routes are possible: SARS-CoV-2 can survive on a variety of surfaces, potentially leading to transmission via fomites; however, epidemiological evidence supporting fomite transmission is limited. Transmission through the ocular surface is a possible route of transmission of SARS-CoV-2 based on the detection of viral RNA in ocular samples and limited epidemiological evidence that eye protection decreases the risk of infection. There is evidence for vertical intrauterine transmission of SARS-CoV-2 from mother to child; however, intrauterine transmission is uncommon.
    [Show full text]
  • Mitigating Zoonotic Disease Transmission Among Youth Participating in Agricultural Exhibitions
    Mitigating zoonotic disease transmission among youth participating in agricultural exhibitions DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Jacqueline M. Nolting Graduate Program in Agricultural and Extension Education The Ohio State University 2018 Dissertation Committee: Dr. Scott Scheer - Advisor Dr. Armando Hoet Dr. Jeffrey King Dr. M. Susie Whittington Copyrighted by Jacqueline Michele Nolting 2018 Abstract Educating youth regarding the risk of zoonotic disease is an important animal and public health concern as nearly three out five new human illnesses are zoonotic. In addition, disease prevention was determined to be the life skill least represented in 4-H youth development programming, making this an important addition to youth programs. Justification for increased diligence in this area is highlighted by the continual cases of reported zoonotic transmission of influenza A viruses between pigs and people, which has received considerable publicity following the H3N2 variant influenza A virus (H3N2v) outbreaks of 2011-2017. Most cases of H3N2v reported have been in youth swine exhibitors associated with agricultural fairs. Building a repertoire of mitigation strategies based on scientific evidence is a key component to the development of sustainable educational programming because it provides a means by which exhibitors can be a part of the solution. Leading transitions is impossible without evidence to support the proposed behavioral changes; therefore data collected from the studies conducted at The Ohio State University have been used to develop a multi-faceted educational program to educate youth on the risk associated with zoonotic disease.
    [Show full text]
  • Research Priorities for the Environment, Agriculture and Infectious Diseases of Poverty
    976 WHO Technical Report Series 976 Environment, Environment, Environment, Agriculture and Infectious Diseases of Poverty Agriculture and Infectious Diseases of Poverty Agriculture This report reviews the connections between environmental change, modern agricultural practices and the occurrence of Research Priorities infectious diseases — especially those of poverty; proposes a multi-criteria decision analysis approach to determining the key research priorities; and explores the benefits and limitations for the Environment, of a more systems-based approach to conceptualizing and investigating the problem. The report is the output of the Agriculture and Thematic Reference Group on Environment, Agriculture and Infectious Diseases of Poverty (TRG 4), part of an independent think tank of international experts, established and funded by Infectious Diseases the Special Programme for Research and Training in Tropical Diseases (TDR) to identify key research priorities through review of research evidence and input from stakeholder of Poverty consultations. The report concludes that mitigating the outcomes on human health will require far-reaching strategies — spanning the environment, climate, agriculture, social-ecological, microbial Technical Report of the TDR Thematic Reference Group on Environment, and public-health sectors; as well as inter-disciplinary research Agriculture and Infectious Diseases of Poverty and intersectoral action. People will also need to modify their way of thinking and engage beyond their own specialities, since the challenges are systemic and are amplified by the increasing inter-connectedness of human populations. WHO Thisis one of a series of disease and thematic reference group reports that have come out of the TDR Think Tank, all of Report Series Technical which have contributed to the development of the Global Report for Research on Infectious Diseases of Poverty, available at: www.who.int/tdr/capacity/global_report.
    [Show full text]