Cellular Reprogramming in Pursuit of Immortality

Total Page:16

File Type:pdf, Size:1020Kb

Cellular Reprogramming in Pursuit of Immortality View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Cell Stem Cell Forum Cellular Reprogramming in Pursuit of Immortality M. Azim Surani1,2,* 1Wellcome Trust Cancer Research UK Gurdon Institute 2Wellcome Trust Medical Research Council Stem Cell Institute University of Cambridge, Cambridge CB2 1QN, UK *Correspondence: [email protected] http://dx.doi.org/10.1016/j.stem.2012.11.014 The discovery that phenotypic diversity among differentiated cells results from epigenetic and not genetic differences, and can be reset to restore pluripotency, promises revolutionary advances in medicine. I discuss how this and related seminal discoveries have brought us to an exciting future. Immortality comes in many forms. For endeavor in the field also seeks to explore indeed be reprogrammed when trans- example, the creators of great works of and answer fundamental questions in planted into oocytes and acquire totipo- art that become ingrained in human con- biology, such as how cells acquire and tency (Campbell et al., 1996). Numerous sciousness achieve immortality through maintain their different states. If we can mammalian species such as pigs and collective appreciation. John Gurdon understand this regulation, and as a result cows have now been cloned, including and Shinya Yamanaka, who received the manipulate cellular states experimentally, and famously a ‘‘copy cat,’’ aptly called 2012 Nobel Prize for Physiology or Medi- we could unlock the potential to provide Cc (for carbon copy). This work clearly cine for their groundbreaking work on great advances in human medicine. showed that cellular differentiation in- ‘‘the discovery that mature cells can be Aldous Huxley’s 1932 science fiction volves epigenetic rather than genetic reprogrammed to become pluripotent,’’ book Brave New World depicts a future modifications to generate the myriad of have deservedly achieved immortality for with human clones of different classes differentiated cells that emerge from a another reason—their research—and the occupying diverse societal niches in totipotent zygote. The term ‘‘epigenetic’’ work they have been engaged in is a hierarchical order. Nearly 30 years later, has come into vogue more recently, nothing less than an attempt to turn the John Gurdon’s work on cloning in although Conrad Waddington used it developmental clock back to the time Xenopus brought reality a little closer to initially in 1954 in his famous and fre- when we start our individual journeys science fiction when he showed that, quently invoked ‘‘epigenetic landscape.’’ from a single cell. when transplanted into a Xenopus egg Importantly, epigenetic modifications, Development is unidirectional; indi- devoid of its own genetic material, a unlike genetic changes, can be erased, vidual cells do not return to the point differentiated intestinal cell nucleus can manipulated, and reinitiated, and logi- from where they start; instead they differ- acquire totipotency and develop into cally, therefore, one cell type could be entiate to terminal states and then ulti- a living individual. Using this approach, converted to another cell type. mately succumb to aging and disease. it is possible to generate an endless Why did it take so long to clone Throughout this complex process, cells number of genetically identical animals. a mammal? The difficulty was partly tech- by and large retain the same genetic infor- This simple but elegant experiment is nical, owing to the necessity of microma- mation they had at the start. This state- notable because it clarified an issue that nipulation of small and fragile mammalian ment sounds so obvious now, but this others, including Briggs and King in early oocytes, but another important compo- was not clear in 1962 when John Gurdon 1950s, were exploring, which was to nent, as in all things to do with develop- published his findings (Gurdon, 1962) establish whether cells as they differen- ment, was a matter of getting the timing and established the principle that cells tiate retain the complete genetic infor- right. The study on cloned sheep provided do not lose genetic information when mation they were endowed with at the the much needed impetus to pursue they differentiate. He showed that indi- beginning. the mechanism of reprogramming, which vidual cells can be reprogrammed back It was clear at the time that this funda- became the focus of intense interest and to the point from where they can recapitu- mental discovery in Xenopus should activity especially after Yanagimachi late their developmental history. This in theory apply to mammals, so it is established cloning in the experimentally founding principle was important for the surprising that despite strenuous efforts more tractable mice in 1998, which inspired work of Yamanaka in 2006, by many groups, including that of Steen generated many new ideas through the whose simple and elegant approach has Willadsen and Davor Solter, it took work of Jaenisch and others. Nonethe- made it possible to convert any adult another 35 years to move from theory to less, the mechanism of reprogramming mammalian cell into an induced pluripo- reality. It was not until 1996 that we had of somatic nuclei still remains to be fully tent stem cell (iPSC) (Takahashi and an unequivocal demonstration that the elucidated. Yamanaka, 2006), and has revolutionized same principle applies in mammals, Cloning in mammals induced some and accelerated research on stem cells in when Ian Wilmut, Keith Campbell, and strong reactions, as it raised the pros- a way that we could not have foreseen just their colleagues showed with Dolly the pect of human cloning and, for some, a few short years ago. The combined sheep that adult mammalian cells could an opportunity to seek ‘‘immortality’’ for 748 Cell Stem Cell 11, December 7, 2012 ª2012 Elsevier Inc. Cell Stem Cell Forum themselves. To stem growing public have unexpected origins, and can be the and moved to center stage, with concerns, a nonbinding United Nations foundation of entire and important new increasing efforts being directed toward Declaration called for the ban of all forms fields of research. defining specific culture conditions, and of human cloning in 2005. So, is this the Despite the germ cell origin of at least identifying transcription factors, such as end of the matter? There was a time, some apparently pluripotent ECCs, Oct4, Sox2, and Nanog, that are essential unimaginable now, that the pursuit of ECCs themselves were never unequivo- for pluripotency. human in vitro fertilization (IVF) and IVF cally shown to give rise to germ cells. The work on cloning and ESCs babies, for which Robert Edward received However, the work on ECCs concen- occurred alongside other advances, a Nobel Prize in 2010, was viewed with trated attention on important questions, among which was the work of Hal intense hostility both by the public and and helped to establish basic approaches Weintraub and colleagues, who in 1987 by some prominent scientists because of and culture conditions that became demonstrated that expression of a single concerns that the procedure could result critical for the quest toward alternative transcription factor, MyoD, in fibroblasts in the birth of deformed babies. Yet, since ways of isolating pluripotent stem cells. could elicit a program of myogenesis the birth of Louise Brown, the first ‘‘test The work on ECCs in many ways set the and convert them into muscle cells (Davis tube baby’’ in 1978 (Steptoe and Ed- scene for what followed, which were et al., 1987). Different cell types re- wards, 1978), there are now 5 million IVF attempts to derive pluripotent stem cells sponded in this way to a greater or lesser babies worldwide. It is important to note by another route. extent, and MyoD was dubbed a ‘‘master that the derivation of human pluripotent The work of Martin Evans and Matt regulator.’’ This demonstration estab- stem cells was also helped by IVF, which Kaufmann in Cambridge, and Gail Martin lished the important principle that tran- was the source of blastocysts used for at UCSF in California, built on insights scription factors can force the conversion this work, and that IVF has also led to from the ECC studies. These researchers of one cell type into another. Preceding the great advances in prenatal genetic independently reported the derivation the work on MyoD was the demonstration diagnosis. Recent work has also raised of embryonic stem cells (ESCs) from by Peter Jones that treatment of 10T1/2 the possibility of dealing with the devas- the inner cell mass of blastocysts in cells with a DNA demethylating agent tating consequences of inheritance of 1981(Evans and Kaufman, 1981; Martin, called 5-azacytidine caused them to defective mitochondria by using cloning 1981). The cells they established showed differentiate into adipogenic, myogenic, techniques to transplant pronuclei from the properties of self-renewal and the and chondrogenic cells. This experiment patients with defective zygotes into potential to differentiate into all cell types, suggested the importance of epigenetic normal enucleated donor oocytes with including germ cells. The transmission of mechanisms in regulating cell fates, and normal mitochondria. A new program ESCs through the germline became the was important for the identification of along these lines funded by the Wellcome focus of major attention because they MyoD. The concept of transcription factor Trust at Newcastle University may poten- provided an important tool for gene master regulators was also taking hold tially eradicate defective mitochondria targeting, gene traps, and for generating through the work of Walter Gehring, who permanently from afflicted families. reporters, and thus for major advances showed in 1995 that the mammalian Parallel but unrelated studies that were in mammalian developmental biology Pax6 gene, which specifies eye develop- crucial building blocks for this year’s and, ultimately, to the creation of mouse ment, could also induce eye development Nobel Prize had unexpected and unusual models for human diseases.
Recommended publications
  • Strategies and Experiences to Improve Research Uptake: the Royal Society and UK Science Funding
    Strategies and experiences to improve research uptake: The Royal Society and UK science funding Wider context Credit crunch UK Government Deficit New government Spending cuts The Royal Society Advisory Group Sir Martin Taylor FRS (Chair), Former Vice-President and Physical Secretary, The Royal Society Professor Glynis Breakwell, Vice-Chancellor, University of Bath Professor Ann Dowling DBE CBE FRS FREng, Professor of Engineering, University of Cambridge Sir Martin Evans FRS, Director, Cardiff School of Biosciences Sir Richard Friend FRS. Professor of Physics, University of Cambridge Professor Rachel Griffith FBA, Deputy Research Director, Institute for Fiscal Studies Professor Wendy Hall DBE FREng FRS, Professor of Computer Science, University of Southampton Dr Emily Holmes, Department of Psychiatry, University of Oxford Professor Richard Jones FRS, Professor of Physics, Sheffield University Professor Ben Martin, Science and Technology Policy Research Unit (SPRU) Paul Mountford, President, Emerging Markets, Cisco Professor Helga Nowotny, Vice-President, European Research Council Sir Paul Nurse FRS, President, Rockefeller University, New York City Dr David Roblin, Vice-President Global R&D, Pfizer Lord Sainsbury of Turville FRS, Gatsby Charitable Foundation Lord Waldegrave of North Hill, Provost, Eton College Sir Mark Walport, Director of the Wellcome Trust Sir Alan Wilson FRS FBA, Chairman, Arts and Humanities Research Council 7 Engagement across the political spectrum Lord Sainsbury of Turville FRS, Lord Waldegrave of North Hill, Conservative Labour Public R&D expenditure, 1970-2007 The UK punches above its weight The Cambridge phenomenon People in and outside science Global competition Average annual growth in R&D budgets, 1997-2007 ‘By the end of 2020…China will join the ranks of the world’s most innovative countries’ President Hu Jintao, Jan 2006 Investing in the downturn 0.60% 0.50% 0.40% Green technology R&D 0.30% GDP 0.20% 0.10% 0.00% Finland Norway Canada Portugal Germany Sweden USA Recommendations 1.
    [Show full text]
  • Biochemistry, Genetics, Molecular and Cell Biology) Hit the Newspaper Headlines on a Weekly Basis
    The Tenovus-Scotland Symposia and Medal Lectures Today medical advances as a result of discoveries in the Life Sciences (Biochemistry, Genetics, Molecular and Cell Biology) hit the newspaper headlines on a weekly basis. This was not the case at the time of the first Tenovus-Scotland Symposium nearly 35 years ago. Since the discovery of the structure of DNA twenty years earlier, great advances had been made in understanding, at the level of molecules, how genes work in the cell. From study of simple bacteria and viruses, it was known that the information for making all the different proteins in the cell was encoded in the sequence of nucleotides, the individual chemical units of DNA, but study of higher organisms seemed impossibly complex. The chromosomes in each human cell have about 23,000 genes in their DNA that contains a total of about three thousand million nucleotides - how would it be possible to study these genes individually? Three staff from the Biochemistry Department and the Beatson Institute planned a two day meeting at Glasgow University in 1974 to bring together scientists to discuss and learn about the new discoveries that were beginning to provide answers to that fundamental question. Sir Charles Illingworth, who had recently founded Tenovus- Scotland, saw the importance of these studies and their potential future application in medicine and agreed a grant towards the cost of the meeting, which we called the Tenovus-Scotland Symposium although the First Meeting was also jointly sponsored by the Nucleotide Group of the
    [Show full text]
  • Michael S. Brown, MD
    DISTINGUISHED PHYSICIANS AND Michael S. Brown, M.D. Sir Richard Roberts, Ph.D. Winner, 1985 Nobel Prize in Physiology or Medicine Winner, 1993 Nobel Prize in Physiology or Medicine MEDICAL SCIENTISTS MENTORING Winner, 1988 Presidential National Medal of Science A globally prominent biochemist and molecular biologist, DELEGATES HAVE INCLUDED... Dr. Brown received the world’s most prestigious medical Dr. Roberts was awarded the Nobel Prize for his prize for his work describing the regulation of the groundbreaking contribution to discovering RNA splicing. cholesterol metabolism. His work laid the foundation for Dr. Roberts is dedicating his future research to GMO crops the class of drugs now called statins taken daily by more than 20 million and food sources, and demonstrating the effect they have on humanity. — GRANDg MASTERS — people worldwide. Ferid Murad, M.D., Ph.D. Mario Capecchi, Ph.D. Boris D. Lushniak, M.D., M.P.H Winner, 1998 Nobel Prize in Physiology or Medicine Academy Science Director The Surgeon General of the United States (acting, 2013-2014) Winner, 2007 Nobel Prize in Physiology or Medicine A world-renowned pioneer in biochemistry, Dr. Murad’s Winner, 2001 National Medal of Science Rear Admiral Lushniak, M.D., M.P.H., was the United award-winning research demonstrated that nitroglycerin Winner, 2001 Lasker Award States’ leading spokesperson on matters of public health, and related drugs help patients with heart conditions by Winner, 2003 Wolf Prize in Medicine overseeing the operations of the U.S. Public Health Service releasing nitric oxide into the body, thus relaxing smooth Mario Capecchi, Ph.D., a biophysicist, is a Distinguished Commissioned Corps, which consists of approximately muscles by elevating intracellular cyclic GMP, leading to vasodilation and Professor of Human Genetics at the University of Utah School of Medicine.
    [Show full text]
  • Cambridge's 92 Nobel Prize Winners Part 4 - 1996 to 2015: from Stem Cell Breakthrough to IVF
    Cambridge's 92 Nobel Prize winners part 4 - 1996 to 2015: from stem cell breakthrough to IVF By Cambridge News | Posted: February 01, 2016 Some of Cambridge's most recent Nobel winners Over the last four weeks the News has been rounding up all of Cambridge's 92 Nobel Laureates, which this week comes right up to the present day. From the early giants of physics like JJ Thomson and Ernest Rutherford to the modern-day biochemists unlocking the secrets of our genome, we've covered the length and breadth of scientific discovery, as well as hugely influential figures in economics, literature and politics. What has stood out is the importance of collaboration; while outstanding individuals have always shone, Cambridge has consistently achieved where experts have come together to bounce their ideas off each other. Key figures like Max Perutz, Alan Hodgkin and Fred Sanger have not only won their own Nobels, but are regularly cited by future winners as their inspiration, as their students went on to push at the boundaries they established. In the final part of our feature we cover the last 20 years, when Cambridge has won an average of a Nobel Prize a year, and shows no sign of slowing down, with ground-breaking research still taking place in our midst today. The Gender Pay Gap Sale! Shop Online to get 13.9% off From 8 - 11 March, get 13.9% off 1,000s of items, it highlights the pay gap between men & women in the UK. Shop the Gender Pay Gap Sale – now. Promoted by Oxfam 1.1996 James Mirrlees, Trinity College: Prize in Economics, for studying behaviour in the absence of complete information As a schoolboy in Galloway, Scotland, Mirrlees was in line for a Cambridge scholarship, but was forced to change his plans when on the weekend of his interview he was rushed to hospital with peritonitis.
    [Show full text]
  • The Nobel Prize in Physiology Or Medicine 2007
    PRESS RELEASE 2007-10-08 The Nobel Assembly at Karolinska Institutet has today decided to award The Nobel Prize in Physiology or Medicine 2007 jointly to Mario R. Capecchi, Martin J. Evans and Oliver Smithies for their discoveries of “principles for introducing specific gene modifications in mice by the use of embryonic stem cells” SUMMARY This year’s Nobel Laureates have made a series of ground-breaking discoveries concerning embryonic stem cells and DNA recombination in mammals. Their discoveries led to the creation of an immensely powerful technology referred to as gene targeting in mice. It is now being applied to virtually all areas of biomedicine – from basic research to the development of new therapies. Gene targeting is often used to inactivate single genes. Such gene “knockout” experiments have elucidated the roles of numerous genes in embryonic development, adult physiology, aging and disease. To date, more than ten thousand mouse genes (approximately half of the genes in the mammalian genome) have been knocked out. Ongoing international efforts will make “knockout mice” for all genes available within the near future. With gene targeting it is now possible to produce almost any type of DNA modification in the mouse genome, allowing scientists to establish the roles of individual genes in health and disease. Gene targeting has already produced more than five hundred different mouse models of human disorders, including cardiovascular and neuro-degenerative diseases, diabetes and cancer. Modification of genes by homologous recombination Information about the development and function of our bodies throughout life is carried within the DNA. Our DNA is packaged in chromosomes, which occur in pairs – one inherited from the father and one from the mother.
    [Show full text]
  • ILAE Historical Wall02.Indd 10 6/12/09 12:04:44 PM
    2000–2009 2001 2002 2003 2005 2006 2007 2008 Tim Hunt Robert Horvitz Sir Peter Mansfi eld Barry Marshall Craig Mello Oliver Smithies Luc Montagnier 2000 2000 2001 2002 2004 2005 2007 2008 Arvid Carlsson Eric Kandel Sir Paul Nurse John Sulston Richard Axel Robin Warren Mario Capecchi Harald zur Hauser Nobel Prizes 2000000 2001001 2002002 2003003 200404 2006006 2007007 2008008 Paul Greengard Leland Hartwell Sydney Brenner Paul Lauterbur Linda Buck Andrew Fire Sir Martin Evans Françoise Barré-Sinoussi in Medicine and Physiology 2000 1st Congress of the Latin American Region – in Santiago 2005 ILAE archives moved to Zurich to become publicly available 2000 Zonismide licensed for epilepsy in the US and indexed 2001 Epilepsia changes publishers – to Blackwell 2005 26th International Epilepsy Congress – 2001 Epilepsia introduces on–line submission and reviewing in Paris with 5060 delegates 2001 24th International Epilepsy Congress – in Buenos Aires 2005 Bangladesh, China, Costa Rica, Cyprus, Kazakhstan, Nicaragua, Pakistan, 2001 Launch of phase 2 of the Global Campaign Against Epilepsy Singapore and the United Arab Emirates join the ILAE in Geneva 2005 Epilepsy Atlas published under the auspices of the Global 2001 Albania, Armenia, Arzerbaijan, Estonia, Honduras, Jamaica, Campaign Against Epilepsy Kyrgyzstan, Iraq, Lebanon, Malta, Malaysia, Nepal , Paraguay, Philippines, Qatar, Senegal, Syria, South Korea and Zimbabwe 2006 1st regional vice–president is elected – from the Asian and join the ILAE, making a total of 81 chapters Oceanian Region
    [Show full text]
  • Embryo Tanulmányozási Módszerek
    Methods in developmental biology Dr. Nandor Nagy Developmental model organisms Often used model organisms in developmental biology include the following: Vertebrates Zebrafish Danio rario Medakafish Oryzias latipes Fugu (pufferfish) Takifugu rubripes Frog Xenopus laevis, Xenopus tropicalis Chicken Gallus gallus Mouse Mus musculus (Mammalian embryogenesis) Invertebrates Lancelet Branchiostoma lanceolatum Ascidian Ciona intestinalis Sea urchin Strongylocentrotus purpuratus Roundworm Caenorhabditis elegans Fruit fly Drosophila melanogaster (Drosophila embryogenesis) Plants (Plant embryogenesis) Arabidopsis thaliana Maize Snapdragon Antirrhinum majus Other Slime mold Dictyostelium discoideum Induction The Nobel Prize in Physiology or Medicine 1935 was awarded to Hans Spemann "for his discovery of the organizer effect in embryonic development". 2002 Nobel prize Psysiology and Medicine: Sydney Brenner, John E. Sulston, H. Robert Horovitz By establishing and using the nematode Caenorhabditis elegans as an experimental model system, possibilities were opened to follow cell division and differentiation from the fertilized egg to the adult. The Laureates have identified key genes regulating organ development and programmed cell death and have shown that corresponding genes exist in higher species, including man. The discoveries are important for medical research and have shed new light on the pathogenesis of many diseases. 2019 Lasker Awards highlight the invaluable role of animal research The Lasker Awards are among the most prestigious prizes
    [Show full text]
  • Professor Oliver Smithies Was Born on June 23, 1925, in Halifax, England, and As a Child Went to a Small School in Copley Village Near to Halifax
    Professor Oliver Smithies was born on June 23, 1925, in Halifax, England, and as a child went to a small school in Copley village near to Halifax. Subsequently he was a student at Heath Grammar School in Halifax until he was awarded a scholarship from Balliol College, Oxford University. At Oxford he received a Bachelor of Arts Degree in Physiology with First Class Honors in 1946. In 1951, he obtained his M.A. and D.Phil. degrees in Biochemistry from Oxford. Professor Smithies then moved to the United States as a Postdoctoral Fellow in Physical Chemistry at the University of Wisconsin. After two years at Wisconsin, Professor Smithies accepted a position at the Connaught Medical Research Laboratories in Toronto and stayed there from 1953 to 1960, first as a Research Assistant and then as a Research Associate. In 1960, Professor Smithies returned to Wisconsin as Assistant Professor of Medical Genetics and Genetics, advancing to Full Professor by 1963. He was named the Leon J. Cole Professor in 1971. In 1988, he joined the Department of Pathology at the University of North Carolina, as the Excellence Professor of Pathology. He is now the Weatherspoon Eminent Distinguished Professor of Pathology and Laboratory Medicine at UNC, and remains an actively engaged scientist working at the bench in the laboratory he shares with his wife, Nobuyo Maeda who is the Robert H. Wagner Distinguished Professor of Pathology and Laboratory Medicine. In the mid-1950s, Professor Smithies described the first high resolution electrophoresis system (starch gel), and with it he discovered that normal humans have unsuspected inherited differences in their proteins.
    [Show full text]
  • Close to the Edge: Co-Authorship Proximity of Nobel Laureates in Physiology Or Medicine, 1991 - 2010, to Cross-Disciplinary Brokers
    Close to the edge: Co-authorship proximity of Nobel laureates in Physiology or Medicine, 1991 - 2010, to cross-disciplinary brokers Chris Fields 528 Zinnia Court Sonoma, CA 95476 USA fi[email protected] January 2, 2015 Abstract Between 1991 and 2010, 45 scientists were honored with Nobel prizes in Physiology or Medicine. It is shown that these 45 Nobel laureates are separated, on average, by at most 2.8 co-authorship steps from at least one cross-disciplinary broker, defined as a researcher who has published co-authored papers both in some biomedical discipline and in some non-biomedical discipline. If Nobel laureates in Physiology or Medicine and their immediate collaborators can be regarded as forming the intuitive “center” of the biomedical sciences, then at least for this 20-year sample of Nobel laureates, the center of the biomedical sciences within the co-authorship graph of all of the sciences is closer to the edges of multiple non-biomedical disciplines than typical biomedical researchers are to each other. Keywords: Biomedicine; Co-authorship graphs; Cross-disciplinary brokerage; Graph cen- trality; Preferential attachment Running head: Proximity of Nobel laureates to cross-disciplinary brokers 1 1 Introduction It is intuitively tempting to visualize scientific disciplines as spheres, with highly produc- tive, well-funded intellectual and political leaders such as Nobel laureates occupying their centers and less productive, less well-funded researchers being increasingly peripheral. As preferential attachment mechanisms as well as the economics of employment tend to give the well-known and well-funded more collaborators than the less well-known and less well- funded (e.g.
    [Show full text]
  • A Scientific History Leading to the 2012 Nobel Prize
    From Stealing Fire to Cellular Reprogramming: A Scientific History Leading to the 2012 Nobel Prize The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Lensch, M. William, and Christine L. Mummery. 2013. “From Stealing Fire to Cellular Reprogramming: A Scientific History Leading to the 2012 Nobel Prize.” Stem Cell Reports 1 (1): 5-17. doi:10.1016/j.stemcr.2013.05.001. http://dx.doi.org/10.1016/ j.stemcr.2013.05.001. Published Version doi:10.1016/j.stemcr.2013.05.001 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11877117 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Stem Cell Reports Review From Stealing Fire to Cellular Reprogramming: A Scientific History Leading to the 2012 Nobel Prize M. William Lensch1,2,3,* and Christine L. Mummery4 1Department of Pediatrics, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA 2Division of Hematology/Oncology, Howard Hughes Medical Institute/Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA 3Harvard Stem Cell Institute, Holyoke Center, Suite 727W, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA 4Department of Anatomy and Embryology, Leiden University Medical Centre, P.O. Box 9600, 2300 RC Leiden, the Netherlands *Correspondence: [email protected] http://dx.doi.org/10.1016/j.stemcr.2013.05.001 This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Hypoxia As a Driving Force of Pluripotent Stem Cell Reprogramming and Differentiation to Endothelial Cells
    biomolecules Review Hypoxia as a Driving Force of Pluripotent Stem Cell Reprogramming and Differentiation to Endothelial Cells 1, 1, 1 Paulina Podkalicka y, Jacek St˛epniewski y, Olga Mucha , Neli Kachamakova-Trojanowska 2 ,Józef Dulak 1 and Agnieszka Łoboda 1,* 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland; [email protected] (P.P.); [email protected] (J.S.); [email protected] (O.M.); [email protected] (J.D.) 2 Malopolska Centre of Biotechnology, Jagiellonian University, 30-837 Kraków, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-12-664-6412 These authors contributed equally to this paper. y Received: 27 October 2020; Accepted: 24 November 2020; Published: 29 November 2020 Abstract: Inadequate supply of oxygen (O2) is a hallmark of many diseases, in particular those related to the cardiovascular system. On the other hand, tissue hypoxia is an important factor regulating (normal) embryogenesis and differentiation of stem cells at the early stages of embryonic development. In culture, hypoxic conditions may facilitate the derivation of embryonic stem cells (ESCs) and the generation of induced pluripotent stem cells (iPSCs), which may serve as a valuable tool for disease modeling. Endothelial cells (ECs), multifunctional components of vascular structures, may be obtained from iPSCs and subsequently used in various (hypoxia-related) disease models to investigate vascular dysfunctions. Although iPSC-ECs demonstrated functionality in vitro and in vivo, ongoing studies are conducted to increase the efficiency of differentiation and to establish the most productive protocols for the application of patient-derived cells in clinics.
    [Show full text]
  • The 2012 Nobel Prize in Physiology Or Medicine John B. Gurdon and Shinya Yamanaka for the Discovery That Mature Cells Can Be
    PRESS RELEASE 2012-10-08 The Nobel Assembly at Karolinska Institutet has today decided to award The 2012 Nobel Prize in Physiology or Medicine jointly to John B. Gurdon and Shinya Yamanaka for the discovery that mature cells can be reprogrammed to become pluripotent SUMMARY The Nobel Prize recognizes two scientists who discovered that mature, specialised cells can be reprogrammed to become immature cells capable of developing into all tissues of the body. Their findings have revolutionised our understanding of how cells and organisms develop. John B. Gurdon discovered in 1962 that the specialisation of cells is reversible. In a classic experiment, he replaced the immature cell nucleus in an egg cell of a frog with the nucleus from a mature intestinal cell. This modified egg cell developed into a normal tadpole. The DNA of the mature cell still had all the information needed to develop all cells in the frog. Shinya Yamanaka discovered more than 40 years later, in 2006, how intact mature cells in mice could be reprogrammed to become immature stem cells. Surprisingly, by introducing only a few genes, he could reprogram mature cells to become pluripotent stem cells, i.e. immature cells that are able to develop into all types of cells in the body. These groundbreaking discoveries have completely changed our view of the development and cellular specialisation. We now understand that the mature cell does not have to be confined forever to its specialised state. Textbooks have been rewritten and new research fields have been established. By reprogramming human cells, scientists have created new opportunities to study diseases and develop methods for diagnosis and therapy.
    [Show full text]