Survey on Textual Notations for the Unified Modeling Language

Total Page:16

File Type:pdf, Size:1020Kb

Survey on Textual Notations for the Unified Modeling Language Survey on Textual Notations for the Unified Modeling Language Stephan Seifermann and Henning Groenda Software Engineering, FZI Research Center for Information Technology, Haid-und-Neu-Str. 10-14, Karlsruhe, Germany Keywords: UML, Textual Notation, Survey, Editing Experience. Abstract: The Unified Modeling Language (UML) has become the lingua franca of software description languages. Textual notations of UML are also accessible for visually impaired people and allow a more developer-oriented and compact presentation. There are many textual notations that largely differ in their syntax, coverage of the UML, user editing experience, and applicability in teams due to the lack of a standardized textual notation. The available surveys do not cover the academic state of the art, the editing experience and applicability in teams. This implies heavy effort for evaluating and selecting notations. This survey identifies textual notations for UML that can be used instead of or in combination with graphical notations, e.g. by collaborating teams or in different contexts. We identified and rated the current state of 16 known notations plus 15 notations that were not covered in previous surveys. 20 categories cover the applicability in engineering teams. No single editable textual notation has full UML coverage. The mean coverage is 2.7 diagram types and editing support varies between none and 7 out of 9 categories. The survey facilitates the otherwise unclear notation selection and can reduce selection effort. 1 INTRODUCTION try at 20 companies in the state of Sao Paolo (Brazil). Both surveys target notations used in practice without The Unified Modeling Language (UML) has become regarding the state of the art described in scientific the lingua franca of software description languages. publications. (Mazanec and Macek, 2012) focuses on The UML specification comes with a graphical no- textual notations in general but is a few years old and tation, which is commonly applied. There is no covers few notations. It does not represent the current standardized textual notation. According to Spinel- development state and available variety of the nota- lis (Spinellis, 2003), textual notations provide an al- tions and modeling environments. The three existing ternative representation. It can be more compact or surveys show that there is a wide range available with more intuitive for certain user groups than the graph- individual advantages and drawbacks. They do not ical representation. An example is the textual repre- analyze the user’s editing experience, which is cru- sentation of an UML activity diagram-like specifica- cial for using a notation in a collaborating engineering tion of a service’s behavior (Erb, 2011). The textual team, and requires heavy analyses effort. The overall version requires significantly less space for the repre- effort reduces the chance for a comprehensive analy- sentation and is more intuitive to developers. sis and can endanger the selections’s quality. There are several tailored textual notations tai- The contribution of this survey is the identifica- lored for specific purposes such as creating documen- tion and classification of textual UML notations in- tation integrated in the code, having a more com- cluding the user experience. Engineering teams can pact representation, or increasing accessibility. They use the classification for identifying appropriate no- largely differ in their syntax, coverage of the UML, tations for their usage scenarios. The classification user editing experience, and applicability in an engi- scheme is tailored to support this selection. This sur- neering teams. vey examines accessibility of notations with respect to The latest surveys covering textual UML notations their syntax, editors, and modeling environment. Us- were performed by Luque, et al. (Luque et al., 2014a; ability in realistic scenarios is determined by covered Luque et al., 2014b). The former (Luque et al., 2014a) diagram types, data format exchanges, and synchro- focuses on the accessibility of UML for blind students nization approaches with other notations. It addition- in classrooms and the latter (Luque et al., 2014b) on ally evaluates whether non-necessary parts of the no- tools for use-case and class diagrams used in indus- tation can be omitted. This sketch support eases low- 28 Seifermann, S. and Groenda, H. Survey on Textual Notations for the Unified Modeling Language. DOI: 10.5220/0005644900280039 In Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2016), pages 28-39 ISBN: 978-989-758-168-7 Copyright c 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved Survey on Textual Notations for the Unified Modeling Language overhead discussion and brainstorming. For instance, ad SLR ad Quality Assurance ad Complement the UML specification allows to omit the types of the class attributes. Identification of Build Reference Identification of The survey identified and rated 31 notations of Research Closure Unpublished which 15 were not covered in previous surveys. 20 Approaches categories allow fine-grained pre-selection and cover the applicability in engineering teams. Study Selection Study Selection The remainder of this survey is structured as fol- Check Availability lows: Section 2 describes the review method of the Study Quality Study Quality survey by defining the objectives and the review pro- Assessment Assessment tocol consisting of three phases. Section 3 describes the classification scheme based on the defined objec- Data Extraction Data Extraction Data Extraction tives. Section 4 presents the analysis results in terms of classified textual notations. Section 5 discusses the validity of the results and the findings. Finally, Sec- Data Synthesis Data Synthesis Data Synthesis tion 6 concludes the paper. Reasoning 2 REVIEW METHOD Figure 1: The three phases of the review conduction process The review process follows the guidelines of Kitchen- used in this survey. ham and Charters (Kitchenham and Charters, 2007). They developed guidelines for structured literature re- Charters, 2007). We extend the SLR with two addi- views (SLR) in software engineering based on the tional phases in order to increase the quality of the re- guidelines in the field of medical research. Their sults and to take notations into account that are mainly guidelines cover the planning, conduction, and writ- used in (industrial) practice: The Quality Assurance ing of reviews. Planning involves defining research phase focuses on incoming and outgoing literature objectives and creating a review protocol describing references as suggested by the Snowballing search the activities in each step during the review conduc- approach (Wohlin, 2014). In contrast to the original tion. proposal, we use Snowballing only to cross-check our The following sections describe our implementa- SLR search strategy. The Complement phase focuses tion of the SLR and mapping to the proposed method. on textual notations that are available in practice but The results of our search activities are documented are not scientifically published. and available for reproducibility at http://cooperate- project.de/modelsward2016. 2.3 Phase 1: SLR 2.1 Objectives The review conduction according to (Kitchenham and Charters, 2007) consists of the five activities marked Our objectives are to determine each notation’s (O1) as SLR in Figure 1. coverage of the UML, (O2) user editing experience The Identification of Research describes the and (O3) applicability in an engineering team. The search strategy for collecting literature. We chose a reasoning requires an analysis of the textual notations keyword-based search approach using the search en- and of the modeling environments. Section 3 presents gines ACM Digital Library, IEEExplorer, CiteSeer, the detailed classification scheme based on the ob- ScienceDirect, SpringerLink and Google Scholar. jectives and instructions on the according information These search engines cover relevant journals and are extraction procedure from literature. suggested by Kitchenham and Charters for the soft- ware engineering domain. We did not include EI 2.2 Review Protocol Compendex and Inspec as we could not query these search engines without subscriptions. Their focus is Figure 1 shows an overview of our review protocol. on high-qualitative entries and metadata and they do We distinguish three phases during the conduction: not belong to a not-covered established publishing classic SLR, Quality Assurance and Complement. authority. We are confident that the selected search The classic SLR follows the guidelines of review engines are sufficient and that no relevant paper is conduction by Kitchenham, et al. (Kitchenham and not selected by our keywords because of insufficient 29 MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development Table 1: Keyword groups used in search queries. erature, implemented prototypes, prototype websites, Group Keywords and source code. We identify prototypes, their web- site, and the source code by: a) following links in the Textual T CTS, textual modeling, textual mod- papers, b) mining the website of the institute or com- elling, text-based modeling, text- pany of the authors, c) and searching for the name of based modelling, textual notation, the notation (full name and abbreviation if used) via text-based notation, textual UML, the Google search engine and on Githuband visit the text-based UML, textual syntax first one hundred
Recommended publications
  • Activity Diagram Inheritance1
    Activity Diagram Inheritance1 Arnd Schnieders, Frank Puhlmann Hasso-Plattner-Institute for IT Systems Engineering at the University of Potsdam {schnieders, puhlmann}@hpi.uni-potsdam.de Abstract This paper outlines the ongoing work on the realization of a flexible inheritance mechanism for Activity Diagrams that assures the maintenance of syntactical correctness for the derived Activity Diagrams. The objective is to support the reuse of process models especially by applying Activity Diagram inheritance as a variability mechanism in the context of product line oriented software development. Keywords: Activity Diagrams, domain engineering, process inheritance, variability mechanism 1. Introduction In industry similar products are frequently developed and produced as product lines. One of the main advantages is a gain of efficiency in development and production since parts, which are common for several product line members, can be reused optimally. This approach has been transferred successfully to software development and is also known by the name domain engineering. Variability mechanisms are thereby important for the effectiveness of domain engineering. A great number of variability mechanisms has already been published [5, 9, 11, 13, 18]. Unfortunately, existing variability mechanisms only refer to the static aspects of a software system’s design while the impact of variability mechanisms on the process view on the system has been strongly neglected. Therefore, the first contribution of this paper is to contribute to closing this gap by making the important variability mechanism inheritance available for process design models in order to derive process model variants. The second contribution of this paper is to show how the defined process inheritance mechanism is realized concretely for UML 2.0 Activity Diagrams.
    [Show full text]
  • Communication Diagram.Pdf
    TU2943: Information Engineering Methodology Lab Notes, 2009-2010, Faculty of Technology and Information Science, Universiti Kebangsaan Malaysia LAB 5: Interaction Diagram - UML Communication Diagram OBJECTIVES To understand the role of dynamic models in requirement analysis by reading and constructing UML Communication Diagram. INTRODUCTION Communication Diagram (a.k.a. Collaboration Diagram) Communication Diagram provides another way to model a scenario. Essentially is a part of Interaction Diagram (just like Sequence Diagram). Each object is represented by an object icon, and links are used to indicate communication paths on which messages are transmitted. Messages presented in the same way as those in sequence diagram. Formerly known as Collaboration Diagram in UML 1.x specification. Communication Diagram represents a combination of information taken from Use Case, Class and Sequence Diagrams describing both the static structure and dynamic behavior of the system. Comparing and Contrasting: Collaboration and Sequence Both diagrams show the same information: Objects/classes Messages Sequence Conditional Repetition Messages to self Sequence Diagram and Communication Diagram are two views of the same scenario. Collaboration diagrams emphasize who-is-talking-to-who. But the time-ordering of the messages who gets obscured. Sequence diagrams emphasize time-ordering. But the who-is-talking-to-who gets obscured. Use the diagram that you are most comfortable with. Structure and Notation of Communication Diagram Objects are named <an object name>:< its class> . Nor Samsiah Binti Sani 1 TU2943: Information Engineering Methodology Lab Notes, 2009-2010, Faculty of Technology and Information Science, Universiti Kebangsaan Malaysia Either <an object name> or <a class name> can be removed. Collaborations / communications are shown by lines between objects.
    [Show full text]
  • OMG Systems Modeling Language (OMG Sysml™) Tutorial 25 June 2007
    OMG Systems Modeling Language (OMG SysML™) Tutorial 25 June 2007 Sanford Friedenthal Alan Moore Rick Steiner (emails included in references at end) Copyright © 2006, 2007 by Object Management Group. Published and used by INCOSE and affiliated societies with permission. Status • Specification status – Adopted by OMG in May ’06 – Finalization Task Force Report in March ’07 – Available Specification v1.0 expected June ‘07 – Revision task force chartered for SysML v1.1 in March ‘07 • This tutorial is based on the OMG SysML adopted specification (ad-06-03-01) and changes proposed by the Finalization Task Force (ptc/07-03-03) • This tutorial, the specifications, papers, and vendor info can be found on the OMG SysML Website at http://www.omgsysml.org/ 7/26/2007 Copyright © 2006,2007 by Object Management Group. 2 Objectives & Intended Audience At the end of this tutorial, you should have an awareness of: • Benefits of model driven approaches for systems engineering • SysML diagrams and language concepts • How to apply SysML as part of a model based SE process • Basic considerations for transitioning to SysML This course is not intended to make you a systems modeler! You must use the language. Intended Audience: • Practicing Systems Engineers interested in system modeling • Software Engineers who want to better understand how to integrate software and system models • Familiarity with UML is not required, but it helps 7/26/2007 Copyright © 2006,2007 by Object Management Group. 3 Topics • Motivation & Background • Diagram Overview and Language Concepts • SysML Modeling as Part of SE Process – Structured Analysis – Distiller Example – OOSEM – Enhanced Security System Example • SysML in a Standards Framework • Transitioning to SysML • Summary 7/26/2007 Copyright © 2006,2007 by Object Management Group.
    [Show full text]
  • Model Based Systems Engineering Approach to Autonomous Driving
    DEGREE PROJECT IN ELECTRICAL ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2018 Model Based Systems Engineering Approach to Autonomous Driving Application of SysML for trajectory planning of autonomous vehicle SARANGI VEERMANI LEKAMANI KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE Author Sarangi Veeramani Lekamani [email protected] School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Place for Project Sodertalje, Sweden AVL MTC AB Examiner Ingo Sander School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Supervisor George Ungureanu School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Industrial Supervisor Hakan Sahin AVL MTC AB Abstract Model Based Systems Engineering (MBSE) approach aims at implementing various processes of Systems Engineering (SE) through diagrams that provide different perspectives of the same underlying system. This approach provides a basis that helps develop a complex system in a systematic manner. Thus, this thesis aims at deriving a system model through this approach for the purpose of autonomous driving, specifically focusing on developing the subsystem responsible for generating a feasible trajectory for a miniature vehicle, called AutoCar, to enable it to move towards a goal. The report provides a background on MBSE and System Modeling Language (SysML) which is used for modelling the system. With this background, an MBSE framework for AutoCar is derived and the overall system design is explained. This report further explains the concepts involved in autonomous trajectory planning followed by an introduction to Robot Operating System (ROS) and its application for trajectory planning of the system. The report concludes with a detailed analysis on the benefits of using this approach for developing a system.
    [Show full text]
  • Unified Modeling Language 2.0 Part 1 - Introduction
    UML 2.0 – Tutorial (v4) 1 Unified Modeling Language 2.0 Part 1 - Introduction Prof. Dr. Harald Störrle Dr. Alexander Knapp University of Innsbruck University of Munich mgm technology partners (c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp UML 2.0 – Tutorial (v4) 2 1 - Introduction History and Predecessors • The UML is the “lingua franca” of software engineering. • It subsumes, integrates and consolidates most predecessors. • Through the network effect, UML has a much broader spread and much better support (tools, books, trainings etc.) than other notations. • The transition from UML 1.x to UML 2.0 has – resolved a great number of issues; – introduced many new concepts and notations (often feebly defined); – overhauled and improved the internal structure completely. • While UML 2.0 still has many problems, current version (“the standard”) it is much better than what we ever had formal/05-07-04 of August ‘05 before. (c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp UML 2.0 – Tutorial (v4) 3 1 - Introduction Usage Scenarios • UML has not been designed for specific, limited usages. • There is currently no consensus on the role of the UML: – Some see UML only as tool for sketching class diagrams representing Java programs. – Some believe that UML is “the prototype of the next generation of programming languages”. • UML is a really a system of languages (“notations”, “diagram types”) each of which may be used in a number of different situations. • UML is applicable for a multitude of purposes, during all phases of the software lifecycle, and for all sizes of systems - to varying degrees.
    [Show full text]
  • Information Technology and Software Development
    Course Title: Information Technology and Software Development NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: CIT 703 COURSE TITLE: Information Technology and Software Development National Open University of Nigeria, Victoria Island, Lagos Page 1 Course Title: Information Technology and Software Development Course Code Course Title Information Technology and Software Development Course Developer/Writer Eze, Festus Chux Department of Computer Science Ebonyi State University Abakaliki Course Editor Programme Leader Course Coordinator National Open University of Nigeria, Victoria Island, Lagos Page 2 Course Title: Information Technology and Software Development Introduction Information Technology and Software Development is a three credit load course for all the students offering Post Graduate Diploma (PGD) in Computer Science, Information Technology and other allied courses. Software Development is a major branch in computing and information Technology. A software development professional oversees the processes of software development, the management of software development project, the maintenance of the installed software in an organisation. For sometime the field has been dominated with what is the definitive process of software development. Furthermore there has been the running battle between professionals and managers on who should control a software development project. There is an attempt to classify it as any other project that an organisation handles hence anybody could manage it. Whereas others see it as a highly professional issue that requires high precision in design, management and implementation. However, software development is all involving. It involves the user (client) whose interest is paramount. The developing organisation and her professionals ( team)are of great importance. Therefore a successful exercise can only take place when all these variegated interests are harmonised.
    [Show full text]
  • Unifying Modeling and Programming with ALF
    SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering Unifying Modeling and Programming with ALF Thomas Buchmann and Alexander Rimer University of Bayreuth Chair of Applied Computer Science I Bayreuth, Germany email: fthomas.buchmann, [email protected] Abstract—Model-driven software engineering has become more The Eclipse Modeling Framework (EMF) [5] has been and more popular during the last decade. While modeling the established as an extensible platform for the development of static structure of a software system is almost state-of-the art MDSE applications. It is based on the Ecore meta-model, nowadays, programming is still required to supply behavior, i.e., which is compatible with the Object Management Group method bodies. Unified Modeling Language (UML) class dia- (OMG) Meta Object Facility (MOF) specification [6]. Ideally, grams constitute the standard in structural modeling. Behavioral software engineers operate only on the level of models such modeling, on the other hand, may be achieved graphically with a set of UML diagrams or with textual languages. Unfortunately, that there is no need to inspect or edit the actual source code, not all UML diagrams come with a precisely defined execution which is generated from the models automatically. However, semantics and thus, code generation is hindered. In this paper, an practical experiences have shown that language-specific adap- implementation of the Action Language for Foundational UML tations to the generated source code are frequently necessary. (Alf) standard is presented, which allows for textual modeling In EMF, for instance, only structure is modeled by means of of software systems.
    [Show full text]
  • Plantuml Language Reference Guide (Version 1.2021.2)
    Drawing UML with PlantUML PlantUML Language Reference Guide (Version 1.2021.2) PlantUML is a component that allows to quickly write : • Sequence diagram • Usecase diagram • Class diagram • Object diagram • Activity diagram • Component diagram • Deployment diagram • State diagram • Timing diagram The following non-UML diagrams are also supported: • JSON Data • YAML Data • Network diagram (nwdiag) • Wireframe graphical interface • Archimate diagram • Specification and Description Language (SDL) • Ditaa diagram • Gantt diagram • MindMap diagram • Work Breakdown Structure diagram • Mathematic with AsciiMath or JLaTeXMath notation • Entity Relationship diagram Diagrams are defined using a simple and intuitive language. 1 SEQUENCE DIAGRAM 1 Sequence Diagram 1.1 Basic examples The sequence -> is used to draw a message between two participants. Participants do not have to be explicitly declared. To have a dotted arrow, you use --> It is also possible to use <- and <--. That does not change the drawing, but may improve readability. Note that this is only true for sequence diagrams, rules are different for the other diagrams. @startuml Alice -> Bob: Authentication Request Bob --> Alice: Authentication Response Alice -> Bob: Another authentication Request Alice <-- Bob: Another authentication Response @enduml 1.2 Declaring participant If the keyword participant is used to declare a participant, more control on that participant is possible. The order of declaration will be the (default) order of display. Using these other keywords to declare participants
    [Show full text]
  • APECS: Polychrony Based End-To-End Embedded System Design and Code Synthesis
    APECS: Polychrony based End-to-End Embedded System Design and Code Synthesis Matthew E. Anderson Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Engineering Sandeep K. Shukla, Chair Lamine Mili Alireza Haghighat Chao Wang Yi Deng April 3, 2015 Blacksburg, Virginia Keywords: AADL, CPS, Model-based code synthesis, correct-by-construction code synthesis, Polychrony, code generators, OSATE, Ocarina Copyright 2015, Matthew E. Anderson APECS: Polychrony based End-to-End Embedded System Design and Code Synthesis Matthew E. Anderson (ABSTRACT) The development of high integrity embedded systems remains an arduous and error-prone task, despite the efforts by researchers in inventing tools and techniques for design automa- tion. Much of the problem arises from the fact that the semantics of the modeling languages for the various tools, are often distinct, and the semantics gaps are often filled manually through the engineer's understanding of one model or an abstraction. This provides an op- portunity for bugs to creep in, other than standardising software engineering errors germane to such complex system engineering. Since embedded systems applications such as avionics, automotive, or industrial automation are safety critical, it is very important to invent tools, and methodologies for safe and reliable system design. Much of the tools, and techniques deal with either the design of embedded platforms (hardware, networking, firmware etc), and software stack separately. The problem of the semantic gap between these two, as well as between models of computation used to capture semantics must be solved in order to design safer embedded systems.
    [Show full text]
  • Sysml Distilled: a Brief Guide to the Systems Modeling Language
    ptg11539604 Praise for SysML Distilled “In keeping with the outstanding tradition of Addison-Wesley’s techni- cal publications, Lenny Delligatti’s SysML Distilled does not disappoint. Lenny has done a masterful job of capturing the spirit of OMG SysML as a practical, standards-based modeling language to help systems engi- neers address growing system complexity. This book is loaded with matter-of-fact insights, starting with basic MBSE concepts to distin- guishing the subtle differences between use cases and scenarios to illu- mination on namespaces and SysML packages, and even speaks to some of the more esoteric SysML semantics such as token flows.” — Jeff Estefan, Principal Engineer, NASA’s Jet Propulsion Laboratory “The power of a modeling language, such as SysML, is that it facilitates communication not only within systems engineering but across disci- plines and across the development life cycle. Many languages have the ptg11539604 potential to increase communication, but without an effective guide, they can fall short of that objective. In SysML Distilled, Lenny Delligatti combines just the right amount of technology with a common-sense approach to utilizing SysML toward achieving that communication. Having worked in systems and software engineering across many do- mains for the last 30 years, and having taught computer languages, UML, and SysML to many organizations and within the college setting, I find Lenny’s book an invaluable resource. He presents the concepts clearly and provides useful and pragmatic examples to get you off the ground quickly and enables you to be an effective modeler.” — Thomas W. Fargnoli, Lead Member of the Engineering Staff, Lockheed Martin “This book provides an excellent introduction to SysML.
    [Show full text]
  • Systems Engineering with Sysml/UML Morgan Kaufmann OMG Press
    Systems Engineering with SysML/UML Morgan Kaufmann OMG Press Morgan Kaufmann Publishers and the Object Management Group™ (OMG) have joined forces to publish a line of books addressing business and technical topics related to OMG’s large suite of software standards. OMG is an international, open membership, not-for-profi t computer industry consortium that was founded in 1989. The OMG creates standards for software used in government and corporate environments to enable interoperability and to forge common development environments that encourage the adoption and evolution of new technology. OMG members and its board of directors consist of representatives from a majority of the organizations that shape enterprise and Internet computing today. OMG’s modeling standards, including the Unifi ed Modeling Language™ (UML®) and Model Driven Architecture® (MDA), enable powerful visual design, execution and maintenance of software, and other processes—for example, IT Systems Modeling and Business Process Management. The middleware standards and profi les of the Object Management Group are based on the Common Object Request Broker Architecture® (CORBA) and support a wide variety of industries. More information about OMG can be found at http://www.omg.org/. Related Morgan Kaufmann OMG Press Titles UML 2 Certifi cation Guide: Fundamental and Intermediate Exams Tim Weilkiens and Bernd Oestereich Real-Life MDA: Solving Business Problems with Model Driven Architecture Michael Guttman and John Parodi Architecture Driven Modernization: A Series of Industry Case Studies Bill Ulrich Systems Engineering with SysML/UML Modeling, Analysis, Design Tim Weilkiens Acquisitions Editor: Tiffany Gasbarrini Publisher: Denise E. M. Penrose Publishing Services Manager: George Morrison Project Manager: Mónica González de Mendoza Assistant Editor: Matt Cater Production Assistant: Lianne Hong Cover Design: Dennis Schaefer Cover Image: © Masterfile (Royalty-Free Division) Morgan Kaufmann Publishers is an imprint of Eslsevier.
    [Show full text]
  • Examples of UML Diagrams
    UML Diagrams Examples Examples by Technology or Application Domain Online shopping UML diagrams Ticket vending machine UML diagrams Bank ATM UML diagrams Hospital management UML diagrams Digital imaging and communications in medicine (DICOM) UML diagrams Java technology UML diagrams Application development for Android UML diagrams Software licensing and protection using SafeNet Sentinel HASP security solution Examples by Types of Diagrams Activity diagram examples Class diagram examples Communication diagram examples Component diagram examples Composite structure diagram examples Deployment diagram examples Information flow diagram example Interaction overview diagram examples Object diagram example Package diagram examples Profile diagram examples http://www.uml-diagrams.org/index-examples.html 1/15/17, 1034 AM Page 1 of 33 Sequence diagram examples State machine diagram examples Timing diagram examples Use case diagram examples Use Case Diagrams Business Use Case Diagrams Airport check-in and security screening business model Restaurant business model System Use Case Diagrams Ticket vending machine http://www.uml-diagrams.org/index-examples.html 1/15/17, 1034 AM Page 2 of 33 Bank ATM UML use case diagrams examples Point of Sales (POS) terminal e-Library online public access catalog (OPAC) http://www.uml-diagrams.org/index-examples.html 1/15/17, 1034 AM Page 3 of 33 Online shopping use case diagrams Credit card processing system Website administration http://www.uml-diagrams.org/index-examples.html 1/15/17, 1034 AM Page 4 of 33 Hospital
    [Show full text]