Downloaded from Brill.Com10/06/2021 06:08:37AM Via Free Access 52 Hyman Et Al

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded from Brill.Com10/06/2021 06:08:37AM Via Free Access 52 Hyman Et Al Contributions to Zoology, 86 (1) 51-95 (2017) Molecular phylogenetics and systematic revision of the south-eastern Australian Helicario- nidae (Gastropoda, Stylommatophora) Isabel T. Hyman1, Irantzu de la Iglesia Lamborena1, Frank Köhler1, 2 1 Australian Museum, 1 William St, Sydney NSW 2010, Australia 2 E-mail: [email protected] Key words: Helicarionoidea, land snail, mitochondrial DNA, morphology, taxonomy Abstract Significance of morphological and mitochondrial characters in species delimitation ....................................... 63 The south-eastern Australian helicarionid clade currently Species distributions ............................................................... 64 comprises six genera of snails and semislugs united by genital Acknowledgements ........................................................................ 64 characters, including an epiphallic flagellum that produces a References ........................................................................................ 64 spiraling, spinose spermatophore, the absence of an epiphallic Appendix .......................................................................................... 67 caecum, and the presence of at most a very short vagina. We comprehensively revise the taxonomy of this group based on comparative analyses of key morphological features and mito- Introduction chondrial markers COI and 16S, revise the placement of several species described recently on the basis of shell morphology The Helicarionidae is a group of land snails in which alone, and describe new taxa. The snail genus Brevisentis is shell reduction, or limacisation, appears to have evolved monophyletic as currently understood, but includes an additional undescribed species from Wollemi National Park, New South repeatedly (Hyman et al., 2007). As a result this group Wales. Mysticarion is shown to contain four arboreal semislugs harbours a wide range of morphological diversity, and with wide, disjunct ranges, including one new species (Mysti- includes snails with a full shell as well as semislugs, carion obscurior sp. nov.). We synonymise Fastosarion staf- animals with a reduced, ear-shaped shell into which fordorum with Mysticarion hyalinus. The semislug Desidarion they cannot fully retract. The shells of all species, both is synonymised with Parmavitrina, and we describe two new species of this genus, P. flavocarinata sp. nov. and P. maculosa snails and semislugs, are thin and glossy with reduced sp. nov. The semi-arboreal semislug Cucullarion is herein in- sculpture. Early species descriptions were primarily cluded in the south-eastern Australian helicarionid clade based based on shells (e.g., Pfeiffer, 1849, 1850, 1852, 1853; on morphological and genetic evidence, despite its more north- Cox, 1864, 1868, 1871, 1873; Brazier, 1875a, 1875b, erly distribution. Two small semislugs so far placed in Pelopa- 1876b), as was the taxonomic framework put together rion do not group together and a new genus, Ubiquitarion gen. nov., is described for Peloparion iridis. All of these genera, to- in a series of papers by Iredale (1933, 1937a, 1937b, gether with the semislug Helicarion (not included here), form a 1941, 1942), which included descriptions of 19 new, monophyletic radiation endemic to southeastern Australia. mostly monotypic genera. Subsequently, a number of small-scale anatomical investigations into single gen- era or species were published (Dartnall and Kershaw, Contents 1978; Kershaw, 1979, 1981, 1982, 1988; Stanisic, 1993a, 1993b; Scott, 1995), but the underlying taxonomy es- Introduction ...................................................................................... 51 sentially remained unchanged. More recently, a more Material and methods .................................................................... 52 comprehensive overview of Australian Helicarionidae Material ...................................................................................... 52 Morphological studies ............................................................ 52 was undertaken by Hyman and co-authors (Hyman, Molecular studies and phylogenetic analyses .................. 53 2007; Hyman et al., 2007; Hyman and Ponder, 2010, Species identification and delineation ................................ 53 2016) utilizing both morphological data and mitochon- Results ............................................................................................... 54 drial DNA sequences. These studies resulted in the Comparative morphology ...................................................... 54 addition of several new species and genera as well as Molecular analyses .................................................................. 56 Discussion ......................................................................................... 61 evidence to support the monophyly of some smaller Phylogenetic relationships and genus-level taxonomy .... 61 subgroups among the Australian Helicarionidae. How- Systematic significance of reproductive characteristics 62 ever, only around a quarter of Australia’s estimated Downloaded from Brill.com10/06/2021 06:08:37AM via free access 52 Hyman et al. – South-eastern Australian Helicarionidae 150 described species was included in these studies, 2010). While the relationships among the Helicarioni- with a high proportion from New South Wales (NSW), dae are in general poorly understood, this southeastern leaving the taxonomic structure of the entire group Australian clade, comprising the genera Helicarion still unclear. Stanisic et al. (2010) documented the Férussac, 1821, Mysticarion Iredale, 1941, Desidarion basic shell morphology and distributions of the NSW Iredale, 1941, Parmavitrina Iredale, 1937, Peloparion and Queensland (Qld) helicarionids and described 47 Iredale, 1937 and Brevisentis Hyman, 2007, groups to- new species and 15 new genera based exclusively on gether with strong support based on both morphology their shell. This has raised the number of described and on mitochondrial phylogeny (Hyman et al., 2007; species in Australia to 102. However, for more than Hyman and Ponder, 2010). The southernmost genus, half of these no anatomical data are known and their Helicarion, is found from Tasmania to central NSW phylogenetic relationships have essentially remained and will be the subject of a future paper. The remaining unresolved. five currently recognized genera and one additional Numerous studies in Australian land snail groups, genus, Cucullarion Stanisic, 1998, including the such as the Camaenidae, have revealed the presence of fourteen species they contain, form the subject of this both widespread conservatism in shell morphology, revision. and in other cases, high levels of convergence (Stan- Anatomical data are available for eight species kowski, 2011; Criscione and Köhler, 2013a; Köhler and (Stanisic, 1998; Hyman, 2007; Hyman and Ponder, Criscione, 2015). Shell characters, such as shape, size 2010); however, the remaining six species, some of and colour, appear to be closely linked to the adapta- which were recently described by Stanisic et al. (2010), tion to different habitat types, and therefore may be are known only by their shell morphology. For several constrained by environment or lifestyle rather than by of these species a single specimen has been sequenced shared ancestry. Hence, these characters cannot reliably previously (COI and 16S; Hyman et al., 2007), for a be used as a sole basis for a phylogenetic classification. phylogenetic study that was not concerned with re- There is evidence that shell reduction has evolved sev- solving the species-level taxonomy. Herein, we com- eral times in the Helicarionidae (Hyman et al., 2007). prehensively revise the taxonomy relationships of these As well as casting further doubt on the reliability of six helicarionid genera from southeastern Australia shell morphology in this group, this convergence in based on comparative examination of the anatomy and shell and body shape suggests that care must also be morphology of all described species and some cur- taken with the examination of anatomical characters, rently undescribed candidate taxa as well as analyses which are usually accepted as more reliable than shell of partial sequences of the mitochondrial genes cy- morphology. During the process of limacisation, the tochrome c oxidase subunit I (COI) and 16S rRNA size of the pallial cavity is reduced and some repro- (16S) that sought to estimate the amounts of mitochon- ductive and digestive organs are moved into the foot. drial differentiation within and between species and to This can lead to convergence in anatomical characters; resolve their phylogenetic relationships. for example, many semislugs have developed an addi- tional oesophageal crop, which is not present in snails (Tillier, 1984; Hyman and Ponder, 2010). The need to Material and methods fit reproductive organs into a reduced space may also lead to convergence in genital morphology. For this Material reason, the use of molecular data, which already under- pins much of modern taxonomy, is crucial to reliably This study is based on the examination of ethanol-pre- resolve the systematic relationships among helicario- served specimens and supplementary dry material nids. from the Australian Museum (AM), the Queensland The majority of Australian species live in rainforest Museum (QM) and Museum Victoria (MV), including habitats along the eastern coast. Although this group’s freshly collected material from eastern NSW and highest
Recommended publications
  • NSW Rainforest Trees Part
    This document has been scanned from hard-copy archives for research and study purposes. Please note not all information may be current. We have tried, in preparing this copy, to make the content accessible to the widest possible audience but in some cases we recognise that the automatic text recognition maybe inadequate and we apologise in advance for any inconvenience this may cause. · RESEARCH NOTE No. 35 ~.I~=1 FORESTRY COMMISSION OF N.S.W. RESEARCH NOTE No. 35 P)JBLISHED 197R N.S.W. RAINFOREST TREES PART VII FAMILIES: PROTEACEAE SANTALACEAE NYCTAGINACEAE GYROSTEMONACEAE ANNONACEAE EUPOMATIACEAE MONIMIACEAE AUTHOR A.G.FLOYD (Research Note No. 35) National Library of Australia card number and ISBN ISBN 0 7240 13997 ISSN 0085-3984 INTRODUCTION This is the seventh in a series ofresearch notes describing the rainforest trees of N.S. W. Previous publications are:- Research Note No. 3 (I 960)-N.S.W. Rainforest Trees. Part I Family LAURACEAE. A. G. Floyd and H. C. Hayes. Research Note No. 7 (1961)-N.S.W. Rainforest Trees. Part II Families Capparidaceae, Escalloniaceae, Pittosporaceae, Cunoniaceae, Davidsoniaceae. A. G. Floyd and H. C. Hayes. Research Note No. 28 (I 973)-N.S.W. Rainforest Trees. Part III Family Myrtaceae. A. G. Floyd. Research Note No. 29 (I 976)-N.S.W. Rainforest Trees. Part IV Family Rutaceae. A. G. Floyd. Research Note No. 32 (I977)-N.S.W. Rainforest Trees. Part V Families Sapindaceae, Akaniaceae. A. G. Floyd. Research Note No. 34 (1977)-N.S.W. Rainforest Trees. Part VI Families Podocarpaceae, Araucariaceae, Cupressaceae, Fagaceae, Ulmaceae, Moraceae, Urticaceae.
    [Show full text]
  • Anyone for Slugs? - Densey Clyne
    Anyone for Slugs? - Densey Clyne No, thank you very much, you will be thinking. Slimy pests with no redeeming features at all - away with them! Well yes, some of them, but others deserve a closer look. If I had not become so thoroughly captivated by six-legged and eight-legged arthropods so early in my life I believe it would have been the slugs and snails that took my fancy. There is something so elegant about a snail gliding along, rather like a ship on a calm sea, and the courtship and mating habits of slugs can be spectacular. But one particular kind of slug has always intrigued me. Over the summer months one of the smooth-barked gumtrees in my Wauchope garden acquires an artistic pattern of meandering squiggles. One rainy night I went out after dark and there was the artist, moving very slowly high up on a branch - my old friend first met in Sydney, the Red Triangle slug, Triboniophorus graeffei. It was my first sighting of the slug in my new garden though I had recognised its squiggles on the gumtree. This year I’ve been excited to find them for the first time on my crepe Triboniophorus graeffei on gumtree myrtle trees, planted 5 years ago. I first got to know these slugs years ago in an overgrown Sydney suburban garden where giant bluegums grew on rich soil and it rained a lot. The slugs had taken a liking to a mature crepe myrtle tree, adding an extra touch to its beautifully patterned trunk. As well as being much bigger - up to 140mm - these slugs were different from any other slugs I knew.
    [Show full text]
  • Molecular and Anatomical Analyses Reveal That Peronia Verruculata (Gastropoda: Onchidiidae) Is a Cryptic Species Complex
    Contributions to Zoology, 87 (3) 149-165 (2018) Molecular and anatomical analyses reveal that Peronia verruculata (Gastropoda: Onchidiidae) is a cryptic species complex Jia Jin Marc Chang1,4, Ywee Chieh Tay2, Hui Ping Ang3, Karenne Phyu Phyu Tun3, Loke Ming Chou2, Rudolf Meier1,2, Danwei Huang1,2 1 Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore 2 Tropical Marine Science Institute, National University of Singapore, Singapore 119227, Singapore 3 National Biodiversity Centre, National Parks Board, Singapore 259569, Singapore 4 E-mail: [email protected] Keywords: DNA barcoding, cytochrome c oxidase subunit I (COI), scanning electron microscopy (SEM), cryptic diversity, integrative taxonomy, Singapore Abstract Introduction Recent years have seen an increase in the number of Species delimitation is the sine qua non for biology. studies that use DNA sequence information in addition to After all, what is defined as species often has material morphological methods, as the latter alone can be inadequate for morphologically similar, cryptic species. Marine onchidiid slugs implications on areas such as biodiversity conservation (Mollusca: Gastropoda: Onchidiidae), which commonly inhabit or invasive species management (Mace, 2004; intertidal environments and have a near-global distribution, Armstrong and Ball, 2005; Bickford et al., 2007; comprise 11 genera and 86 described species. Singapore has Hendrixon et al., 2015). Molecular evidence is becoming 19 recorded species of onchidiids with Peronia verruculata more important for taxonomic work (Hajibabaei et (Cuvier, 1830) being the most abundant. Here we present mitochondrial DNA sequence data from 63 P. verruculata- al., 2007; Kress et al., 2015; Meier et al., 2016). The like specimens to show that they constitute two closely-related technique of DNA barcoding, which is predicated on clades with distinct sequence signatures and a clear barcode gap.
    [Show full text]
  • Barbed Wire Vine
    Insects, beetles, bugs and slugs of Mt Gravatt Conservation Reserve Compiled by: Michael Fox www.megoutlook.org/flora-fauna/ © 2015-17 Creative Commons – free use with attribution to Mt Gravatt Environment Group Ants Dolichoderinae Iridomyrmex sp. Small Meat Ant Attendant “Kropotkin” ants with caterpillar of Imperial Hairstreak butterfly. Ants provide protection in return for sugary fluids secreted by the caterpillar. Note the strong jaws. These ants don’t sting but can give a powerful bite. Kropotkin is a reference to Russian biologist Peter Kropotkin who proposed a concept of evolution based on “mutual aid” helping species from ants to higher mammals survive. 22-Aug-17 Insects Beetles and Bugs - ver 5.4 Page 1 of 51 Mt Gravatt Environment Group – www.megoutlook.wordpress.com Insects, beetles, bugs and slugs of Mt Gravatt Conservation Reserve Formicinae Opisthopsis rufithorax Black-headed Strobe Ant 22-Aug-17 Insects Beetles and Bugs - ver 5.4 Page 2 of 51 Mt Gravatt Environment Group – www.megoutlook.wordpress.com Insects, beetles, bugs and slugs of Mt Gravatt Conservation Reserve Formicinae Camponotus consobrinus Banded Sugar Ant Size 10mm Eggs in rotting log Formicinae Camponotus nigriceps Black-headed Sugar Ant 22-Aug-17 Insects Beetles and Bugs - ver 5.4 Page 3 of 51 Mt Gravatt Environment Group – www.megoutlook.wordpress.com Insects, beetles, bugs and slugs of Mt Gravatt Conservation Reserve 22-Aug-17 Insects Beetles and Bugs - ver 5.4 Page 4 of 51 Mt Gravatt Environment Group – www.megoutlook.wordpress.com Insects, beetles, bugs and slugs of Mt Gravatt Conservation Reserve Formicinae Polyrhachis ammon Golden-tailed Spiny Ant Large spines at rear of thorax Nest 22-Aug-17 Insects Beetles and Bugs - ver 5.4 Page 5 of 51 Mt Gravatt Environment Group – www.megoutlook.wordpress.com Insects, beetles, bugs and slugs of Mt Gravatt Conservation Reserve Formicinae Polyrhachis australis Rattle Ant Black Weaver Ant or Dome-backed Spiny Ant Feeding on sugar secretions produced by Redgum Lerp Psyllid.
    [Show full text]
  • STUDIES on the FAUNA of CURAÇAO and OTHER CARIBBEAN ISLANDS: No
    STUDIES ON THE FAUNA OF CURAÇAO AND OTHER CARIBBEAN ISLANDS: No. 61. Caribbean Land Molluscs: Streptaxidae by L.A.W.C. Venmans The material on which the present paper is based consists of a small number of Streptaxidae collected by Dr. P. WAGENAAR HUMMELINCK during his visits to the Caribbean Islands and the since and further of mainland of Venezuela 1930, some specimens which, at various times, have reached the author through the generosity of Mr. SERGIO ARIAS, Caracas, Dr. G. MARCUZZI, Padova, Professor S. JAECKEL, Berlin, and Mr. TJOA TJIEN MO, Bogor. material I also Besides this investigated some material present in the collections and Natur- following kindly put at my disposal: historisches Museum, Basel; Zoologisches Staatsinstitut und Mu- British Museum American seum, Hamburg; (N.H.), London; Museum of Natural History, New York; United States National Museum, Washington. I have to thank for their kind assistance: Dr. L. FORCART, Basel; Professor G. WEIDNER and Dr. P. KAISER, Hamburg; Dr. W. J. REES and Dr. GALBRAITH, London; Miss t Dr. VENMANS completed the manuscript of this paper only a few weeks before his death 26th December 1959 the of 61. He classics with on at age was a gifted teacher, a social remarkable grasp of modern languages, who became an official concerned with welfare and labour which took of his time in order projects up so much that, to pursue his hobby, malacology, he was forced to sacrifice many hours of the night to it. His friends regret that the great strain of his duties, combined with his hobby, proved so detrimental which tohis health that it was not granted to him to reach retiring age — to he had greatly looked forward because he would then have had the time (as he would have said) "to begin work seriously" on his malacological studies.
    [Show full text]
  • Distribution and Diversity Land Snails in Human Inhabited Landscapes of Trans Nzoia County, Kenya
    South Asian Journal of Parasitology 3(2): 1-6, 2019; Article no.SAJP.53503 Distribution and Diversity Land Snails in Human Inhabited Landscapes of Trans Nzoia County, Kenya Mukhwana Dennis Wafula1* 1Department of Zoology, Maseno University, Kenya. Author’s contribution The sole author designed, analysed, interpreted and prepared the manuscript. Article Information Editor(s): (1) Dr. Somdet Srichairatanakool, Professor, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Thailand. Reviewers: (1) Abdoulaye Dabo, University of Sciences Techniques and technologies, Mali. (2) Tawanda Jonathan Chisango, Chinhoyi University of Technology, Zimbabwe. (3) Stella C. Kirui, Maasai Mara Univeristy, Kenya. Complete Peer review History: http://www.sdiarticle4.com/review-history/53503 Received 18 October 2019 Original Research Article Accepted 24 December 2019 Published 26 December 2019 ABSTRACT The study evaluated the distribution and some ecological aspects of land snails in croplands of Trans Nzoia, Kenya from January to December 2016. Snails were collected monthly during the study period and sampled using a combination of indirect litter sample methods and timed direct search. Snails collected were kept in labeled specimen vials and transported to the National Museums of Kenya for identification using keys and reference collection. In order to understand environmental variables that affect soil snail abundance; canopy, soil pH and temperature was measured per plot while humidity and rainfall data was obtained from the nearest weather stations to the study sites. A total of 2881 snail specimens (29 species from 10 families) were recorded. The families Subulinidae, Charopidae and Urocyclidae were found to be dorminant. The most abundant species was Opeas lamoense (12% of the sample).
    [Show full text]
  • (Calidivitrina) Chyuluensis (Figs 1-3) by a Long
    BASTERIA, 69:147-156, 2005 A new species of Vitrina (Gastropoda, Pulmonata, Vitrinidae) from Kenya with a discussion of the genus in East Africa B. Verdcourt Royal Botanic Gardens, Kew, Richmond,Surrey, TW9 3AB, U.K. Vitrina is described from the It has rather chyuluensis spec. nov. Chyulu Hills, Kenya. a large shell and characterised fine is by a long spermathecal duct, very plicae between distal and is proximal parts of the penis, and a three-ridgedjaw. The description followed by a discussion on the classification ofEast African species of Vitrina and on the variation in characters proba- of taxonomic at level. The is concluded bly significance specific paper by some comments on naming Vitrina from East Africa. Key words: Gastropoda, Pulmonata, Vitrinidae, Vitrina, taxonomy, Kenya, East Africa. INTRODUCTION Quentin Luke during a botanical collecting expedition to the Chyulu Hills, Kajiado District, Kenya (02°39' S, 37°52' E), collected some helicarionoidsnails in montane forest on recent volcanic lava. I at first assumed that the seven specimens in the sample belonged the than the others. showed be to same species, one more mature Dissection it to a Chlamydarion Van Mol, 1970, which I could not match with described species. In order to features dissected further find had different verify certain I a specimen only to it a totally and fact four other anatomy was in a Vitrina as were specimens. One other was a juvenile I been Chlamydarion. have for many years attempting to make some sense of the East African of Vitrina and dissected from the species Draparnaud, 1801, numerous specimens East African highlands.
    [Show full text]
  • Euconulus Alderi Gray a Land Snail
    Euconulus alderi, Page 1 Euconulus alderi Gray A land snail State Distribution Photo by Matthew Barthel and Jeffery C. Nekola Best Survey Period Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Status: State listed as Special Concern are smaller, have a more shiny luster, and a darker shell color. Also, the microscopic spiral lines on the base of Global and state ranks: G3Q/S2 the shell are stronger than the radial striations. This is reversed in E. fulvus (Nekola 1998). For more Family: Helicarionidae information on identifying land snails, see Burch and Jung (1988) pages 155-158 or Burch and Pearce (1990) Synonyms: none pages 211-218. Total range: The global range of Euconulus alderi Best survey time: Surveys for E. alderi are best includes Ireland, Sweden, the United Kingdom, and the performed after rain, when the soil and vegetation are United States. Within the U.S. it has been found in moist. During dry periods, a survey site can appear Iowa, Maine, Massachusetts, Michigan, Minnesota, and completely devoid of snails, while after a rain the same Wisconsin (Frest 1990, NatureServe 2007, Nekola site can be found to contain numerous individuals. 1998). This species was not known from North Temperatures should be warm enough that the ground is America until 1986 when it was discovered in Iowa and not frozen and there is no snow. Dry, hot periods during Wisconsin (Frest 1990, Nekola 1998). mid-summer should be avoided. The best time of day to survey is often in early morning when conditions are State distribution: E.
    [Show full text]
  • Insects and Molluscs, According to the Procedures Outlined Below
    Bush Blitz – ACT Expedition 26 Nov – 6 Dec 2018 ACT Expedition Bush Blitz Hemiptera, Hymenoptera, Lepidoptera, Orthoptera, Terrestrial molluscs 26 Nov – 6 Dec 2018 Submitted: 5 April 2019 Debbie Jennings and Olivia Evangelista Nomenclature and taxonomy used in this report is consistent with: The Australian Faunal Directory (AFD) http://www.environment.gov.au/biodiversity/abrs/online-resources/fauna/afd/home Page 1 of 43 Bush Blitz – ACT Expedition 26 Nov – 6 Dec 2018 Contents Contents .................................................................................................................................. 2 List of contributors ................................................................................................................... 3 Abstract ................................................................................................................................... 4 1. Introduction ...................................................................................................................... 4 2. Methods .......................................................................................................................... 6 2.1 Site selection ............................................................................................................. 6 2.2 Survey techniques ..................................................................................................... 6 2.2.1 Methods used at standard survey sites ................................................................... 7 2.3 Identifying
    [Show full text]
  • Fauna of New Zealand Ko Te Aitanga Pepeke O Aotearoa
    aua o ew eaa Ko te Aiaga eeke o Aoeaoa IEEAE SYSEMAICS AISOY GOU EESEAIES O ACAE ESEAC ema acae eseac ico Agicuue & Sciece Cee P O o 9 ico ew eaa K Cosy a M-C aiièe acae eseac Mou Ae eseac Cee iae ag 917 Aucka ew eaa EESEAIE O UIESIIES M Emeso eame o Eomoogy & Aima Ecoogy PO o ico Uiesiy ew eaa EESEAIE O MUSEUMS M ama aua Eiome eame Museum o ew eaa e aa ogaewa O o 7 Weigo ew eaa EESEAIE O OESEAS ISIUIOS awece CSIO iisio o Eomoogy GO o 17 Caea Ciy AC 1 Ausaia SEIES EIO AUA O EW EAA M C ua (ecease ue 199 acae eseac Mou Ae eseac Cee iae ag 917 Aucka ew eaa Fauna of New Zealand Ko te Aitanga Pepeke o Aotearoa Number / Nama 38 Naturalised terrestrial Stylommatophora (Mousca Gasooa Gay M ake acae eseac iae ag 317 amio ew eaa 4 Maaaki Whenua Ρ Ε S S ico Caeuy ew eaa 1999 Coyig © acae eseac ew eaa 1999 o a o is wok coee y coyig may e eouce o coie i ay om o y ay meas (gaic eecoic o mecaica icuig oocoyig ecoig aig iomaio eiea sysems o oewise wiou e wie emissio o e uise Caaoguig i uicaio AKE G Μ (Gay Micae 195— auase eesia Syommaooa (Mousca Gasooa / G Μ ake — ico Caeuy Maaaki Weua ess 1999 (aua o ew eaa ISS 111-533 ; o 3 IS -7-93-5 I ie 11 Seies UC 593(931 eae o uIicaio y e seies eio (a comee y eo Cosy usig comue-ase e ocessig ayou scaig a iig a acae eseac M Ae eseac Cee iae ag 917 Aucka ew eaa Māoi summay e y aco uaau Cosuas Weigo uise y Maaaki Weua ess acae eseac O o ico Caeuy Wesie //wwwmwessco/ ie y G i Weigo o coe eoceas eicuaum (ue a eigo oaa (owe (IIusao G M ake oucio o e coou Iaes was ue y e ew eaIa oey oa ue oeies eseac
    [Show full text]
  • Turill 1 Core Hole Is Designed to Investigate the Hydrocarbon Potential of PEL 456
    Review of Environmental Factors Core Hole Drilling of Turill No. 1 in PEL 456 - Gunnedah Basin Santos QNT Pty Ltd ABN: 33 083 077 196 Issue date: 04/05/2010 Review of Environmental Factors: Gunnedah Basin Core Hole Drilling: PEL 456 Executive Summary Santos QNT Pty Ltd (Santos) has entered into a Farmin Agreement with the titleholder of PEL 456, Macquarie Energy (Macquarie) to explore for petroleum (in accordance with the Petroleum (Onshore) Act 1991 (NSW)). Santos has been appointed the Operator for and on behalf of the titleholder under the Farmin Agreement. Condition 1.0 of the PEL 456 licence states that prior to carrying out any drilling activities a Review of Environmental Factors (REF) is required to be submitted to the Department of Industry and Investment (DII) to enable a determination to be made under Part 5 of the Environmental Planning and Assessment Act 1979 (NSW). The Turill 1 core hole is designed to investigate the hydrocarbon potential of PEL 456. Discovery of gas resources in this area has the potential to increase the state’s reserves and revenue from coal seam gas and underpin future exploration or production in the region. This REF covers the drilling of Turill 1 core hole only. The Turill No. 1 core hole site is located on privately owned land, zoned General Rural 1(a) under the Merriwa Local Environmental Plan (LEP). The REF provides details of the planning controls for the area and the existing environment. The site proposed for Turill 1 is a privately owned rural property in a gently undulating area, which is presently used for agricultural activities.
    [Show full text]
  • Terrestrial Mollusks of Attu, Aleutian Islands, Alaska BARRY ROTH’ and DAVID R
    ARCTK: VOL. 34, NO. 1 (MARCH 1981), P. 43-47 Terrestrial Mollusks of Attu, Aleutian Islands, Alaska BARRY ROTH’ and DAVID R. LINDBERG’ ABSTRACT. Seven species of land mollusk (2 slugs, 5 snails) were collected on Attu in July 1979. Three are circumboreal species, two are amphi-arctic (Palearctic and Nearctic but not circumboreal), and two are Nearctic. Barring chance survival of mollusks in local refugia, the fauna was assembled overwater since deglaciation, perhaps within the last 10 OOO years. Mollusk faunas from Kamchatka to southeastern Alaska all have a Holarctic component. A Palearctic component present on Kamchatka and the Commander Islands is absent from the Aleutians, which have a Nearctic component that diminishes westward. This pattern is similar to that of other soil-dwelling invertebrate groups. RESUM& Sept espbces de mollusques terrestres (2 limaces et 5 escargots) furent prklevkes sur I’ile d’Attu en juillet 1979. Trois sont des espbces circomborkales, deux amphi-arctiques (Palkarctiques et Nkarctiques mais non circomborkales), et deux Nkarctiques. Si I’on excepte la survivance de mollusques due auhasard dans des refuges locaux, cette faune s’est retrouvke de part et d’autre des eauxdepuis la dkglaciation, peut-&re depuis les derniers 10 OOO ans. Les faunes de mollusques de la pkninsule de Kamchatkajusqu’au sud-est de 1’Alaska on toutes une composante Holarctique. Une composante Palkarctique prksente sur leKamchatka et les iles Commandeur ne se retrouve pas aux Alkoutiennes, oil la composante Nkarctique diminue vers I’ouest. Ce patron est similaire il celui de d’autres groupes d’invertkbrks terrestres . Traduit par Jean-Guy Brossard, Laboratoire d’ArchCologie de I’Universitk du Qukbec il Montrkal.
    [Show full text]