Deep Impact Encounter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Messenger
10th anniversary of VLT First Light The Messenger The ground layer seeing on Paranal HAWK-I Science Verification The emission nebula around Antares No. 132 – June 2008 –June 132 No. The Organisation The Perfect Machine Tim de Zeeuw a groundbased spectroscopic comple thousand each semester, 800 of which (ESO Director General) ment to the Hubble Space Telescope. are for Paranal. The User Portal has Italy and Switzerland had joined ESO in about 4 000 registered users and 1981, enabling the construction of the the archive contains 74 TB of data and This issue of the Messenger marks the 3.5m New Technology Telescope with advanced data products. tenth anniversary of first light of the Very pioneering advances in active optics, Large Telescope. It is an excellent occa crucial for the next step: the construction sion to look at the broader implications of the Very Large Telescope, which Winning strategy of the VLT’s success and to consider the received the green light from Council in next steps. 1987 and was built on Cerro Paranal in The VLT opened for business some five the Atacama desert between Antofagasta years after the Keck telescopes, but the and Taltal in Northern Chile. The 8.1m decision to take the time to build a fully Mission Gemini telescopes and the 8.3m Subaru integrated system, consisting of four telescope were constructed on a similar 8.2m telescopes and providing a dozen ESO’s mission is to enable scientific dis time scale, while the Large Binocular Tele foci for a carefully thoughtout comple coveries by constructing and operating scope and the Gran Telescopio Canarias ment of instruments together with four powerful observational facilities that are now starting operations. -
Planetary Science Division Status Report
Planetary Science Division Status Report Jim Green NASA, Planetary Science Division January 26, 2017 Astronomy and Astrophysics Advisory CommiBee Outline • Planetary Science ObjecFves • Missions and Events Overview • Flight Programs: – Discovery – New FronFers – Mars Programs – Outer Planets • Planetary Defense AcFviFes • R&A Overview • Educaon and Outreach AcFviFes • PSD Budget Overview New Horizons exploresPlanetary Science Pluto and the Kuiper Belt Ascertain the content, origin, and evoluFon of the Solar System and the potenFal for life elsewhere! 01/08/2016 As the highest resolution images continue to beam back from New Horizons, the mission is onto exploring Kuiper Belt Objects with the Long Range Reconnaissance Imager (LORRI) camera from unique viewing angles not visible from Earth. New Horizons is also beginning maneuvers to be able to swing close by a Kuiper Belt Object in the next year. Giant IcebergsObjecve 1.5.1 (water blocks) floatingObjecve 1.5.2 in glaciers of Objecve 1.5.3 Objecve 1.5.4 Objecve 1.5.5 hydrogen, mDemonstrate ethane, and other frozenDemonstrate progress gasses on the Demonstrate Sublimation pitsDemonstrate from the surface ofDemonstrate progress Pluto, potentially surface of Pluto.progress in in exploring and progress in showing a geologicallyprogress in improving active surface.in idenFfying and advancing the observing the objects exploring and understanding of the characterizing objects The Newunderstanding of Horizons missionin the Solar System to and the finding locaons origin and evoluFon in the Solar System explorationhow the chemical of Pluto wereunderstand how they voted the where life could of life on Earth to that pose threats to and physical formed and evolve have existed or guide the search for Earth or offer People’sprocesses in the Choice for Breakthrough of thecould exist today life elsewhere resources for human Year forSolar System 2015 by Science Magazine as exploraon operate, interact well as theand evolve top story of 2015 by Discover Magazine. -
Mars Reconnaissance Orbiter
Chapter 6 Mars Reconnaissance Orbiter Jim Taylor, Dennis K. Lee, and Shervin Shambayati 6.1 Mission Overview The Mars Reconnaissance Orbiter (MRO) [1, 2] has a suite of instruments making observations at Mars, and it provides data-relay services for Mars landers and rovers. MRO was launched on August 12, 2005. The orbiter successfully went into orbit around Mars on March 10, 2006 and began reducing its orbit altitude and circularizing the orbit in preparation for the science mission. The orbit changing was accomplished through a process called aerobraking, in preparation for the “science mission” starting in November 2006, followed by the “relay mission” starting in November 2008. MRO participated in the Mars Science Laboratory touchdown and surface mission that began in August 2012 (Chapter 7). MRO communications has operated in three different frequency bands: 1) Most telecom in both directions has been with the Deep Space Network (DSN) at X-band (~8 GHz), and this band will continue to provide operational commanding, telemetry transmission, and radiometric tracking. 2) During cruise, the functional characteristics of a separate Ka-band (~32 GHz) downlink system were verified in preparation for an operational demonstration during orbit operations. After a Ka-band hardware anomaly in cruise, the project has elected not to initiate the originally planned operational demonstration (with yet-to-be used redundant Ka-band hardware). 201 202 Chapter 6 3) A new-generation ultra-high frequency (UHF) (~400 MHz) system was verified with the Mars Exploration Rovers in preparation for the successful relay communications with the Phoenix lander in 2008 and the later Mars Science Laboratory relay operations. -
Primitive Bodies Panel Planetary Science Decadal Survey Space Studies Board National Research Council
Space Studies Board Mailing Address: 500 Fifth Street, NW Washington, DC 20001 www.nationalacademies.org Primitive Bodies Panel Planetary Science Decadal Survey Space Studies Board National Research Council National Academy of Sciences Building 2101 Constitution Ave. NW, Washington, D.C. (Entrance at 2100 C Street NW) Conference Room 150 FINAL AGENDA1 September 9-11, 2009 Wednesday, September 9, 2009 CLOSED SESSION 7:30 a.m. Room Opens (Breakfast available in the meeting room) 8:30 a.m. Welcome and Agenda Review Joseph Veverka 8:45 a.m. Overview of NRC Study Process Dwayne Day 9:15 a.m. Balance and Composition Discussion Dwayne Day 10:00 a.m. Break OPEN SESSION2 10:15 a.m. Decadal Survey Overview Steven Squyres Cornell University 11:00 a.m. Lessons Learned from the 2003 Decadal Survey Dale Cruikshank NASA Ames Research Center 11:45 a.m. Committee Discussion (Lunch will be served in the meeting room, committee discussion will continue) 12:45 p.m. Charge to the Decadal Survey James Green/Lindley Johnson NASA Headquarters 1 Updated September 8, 2009 2 Webcast at http://nasa-nai.acrobat.com/primitive1/, Audio at 866-606-4717, Access Code 6686308. This meeting is being held to gather information to help the committee conduct its activities. The committee will examine the information and material obtained during open sessions in an effort to inform its work. Although opinions may be stated and lively discussion may ensue, no conclusions are being drawn at this time. Therefore, observers who draw conclusions about the committee's work based on today's discussions will be doing so prematurely. -
Appendix 1: Venus Missions
Appendix 1: Venus Missions Sputnik 7 (USSR) Launch 02/04/1961 First attempted Venus atmosphere craft; upper stage failed to leave Earth orbit Venera 1 (USSR) Launch 02/12/1961 First attempted flyby; contact lost en route Mariner 1 (US) Launch 07/22/1961 Attempted flyby; launch failure Sputnik 19 (USSR) Launch 08/25/1962 Attempted flyby, stranded in Earth orbit Mariner 2 (US) Launch 08/27/1962 First successful Venus flyby Sputnik 20 (USSR) Launch 09/01/1962 Attempted flyby, upper stage failure Sputnik 21 (USSR) Launch 09/12/1962 Attempted flyby, upper stage failure Cosmos 21 (USSR) Launch 11/11/1963 Possible Venera engineering test flight or attempted flyby Venera 1964A (USSR) Launch 02/19/1964 Attempted flyby, launch failure Venera 1964B (USSR) Launch 03/01/1964 Attempted flyby, launch failure Cosmos 27 (USSR) Launch 03/27/1964 Attempted flyby, upper stage failure Zond 1 (USSR) Launch 04/02/1964 Venus flyby, contact lost May 14; flyby July 14 Venera 2 (USSR) Launch 11/12/1965 Venus flyby, contact lost en route Venera 3 (USSR) Launch 11/16/1965 Venus lander, contact lost en route, first Venus impact March 1, 1966 Cosmos 96 (USSR) Launch 11/23/1965 Possible attempted landing, craft fragmented in Earth orbit Venera 1965A (USSR) Launch 11/23/1965 Flyby attempt (launch failure) Venera 4 (USSR) Launch 06/12/1967 Successful atmospheric probe, arrived at Venus 10/18/1967 Mariner 5 (US) Launch 06/14/1967 Successful flyby 10/19/1967 Cosmos 167 (USSR) Launch 06/17/1967 Attempted atmospheric probe, stranded in Earth orbit Venera 5 (USSR) Launch 01/05/1969 Returned atmospheric data for 53 min on 05/16/1969 M. -
Genesis Radiation Environment
https://ntrs.nasa.gov/search.jsp?R=20070014073 2019-08-30T00:44:36+00:00Z 1 Source of Acquisition NASA Marshall Space Flight Center Genesis Radiation Environment Joseph I. Minow* NASA Marshull Space Flight Center, Huntsville, AL 35812 USA Richard L. Altstatt' and William C. Skipworth* Jacobs Engineering, Marshall Space Flight Center Group, Huntsville, AL 35812 USA The Genesis spacecraft launched on 8 August 2001 sampled solar wind environments at L1 from 2001 to 2004. After the Science Capsule door was opened, numerous foils and samples were exposed to the various solar wind environments during periods including slow solar wind from the streamer belts, fast solar wind flows from coronal holes, and coronal mass ejections. The Survey and Examination of Eroded Returned Surfaces (SEERS) program led by NASA's Space Environments and Effects program had initiated access for the space materials community to the remaining Science Capsule hardware after the science samples had been removed for evaluation of materials exposure to the space environment. This presentation will describe the process used to generate a reference radiation Genesis Radiation Environment developed for the SEERS program for use by the materials science community in their analyses of the Genesis hardware. I. Introduction ASA's Space Environments and Effects (SEE) Program initiated the Surveying and Examination of Eroded N Returned Surfaces (SEERS) Initiative in 2003. The goal of the Initiative was to provide leadership in the engineering analysis of returned flight hardware by supporting a comprehensive effort to understand environmental effects due to solar W, ionizing radiation, plasmas, neutral contamination, meteoroids, and other conditions experienced during the mission (not primary science mission objectives). -
Deep Impact As a World Observatory Event Held in Brussels, Belgium, 7–10 August 2006
Other Astronomical News Report on the Workshop on Deep Impact as a World Observatory Event held in Brussels, Belgium, 7–10 August 2006 Hans Ulrich Käufl1 One of the spectacular deconvolved images from the Christiaan Sterken2 Deep Impact Spacecraft High Resolution Imager shown in the conference (courtesy Mike A’Hearn and the Deep Impact Team). This is a colour composite of an infrared, a green and a violet filter forced to av- 1 ESO erage grey. Note the blueish areas on the surface 2 Vrije Universiteit Brussel, Belgium close to the crater-like structure. Those were entirely unexpected. It is highly interesting to find out if those structures can be correlated with the jets which were meticulously monitored from ground-based ob- In the context of NASA’s Deep Impact servers worldwide. This aspect in the picture – en- space mission, Comet 9P/Tempel1 tirely unrelated to the impact plume – illustrates very well how comet research, apart from the impact has been at the focus of an unprece- experiment, will profit from the synergy of spacecraft dented worldwide long-term multi- data and the unprecedented worldwide coordinated wavelength observation campaign. The observing campaign. comet has been studied through its perihelion passage by various spacecraft including the Deep Impact mission it- self, HST, Spitzer, Rosetta, XMM and all To make full use of the global data set, a To inspire new ideas, it was very helpful major ground-based observatories in workshop bringing together observers and interesting to have Roberta Olson basically all wavelength bands used in across the electromagnetic spectrum and from the New York Historical Society, astronomy, i.e. -
The Planetary Report
A Publication of THEPLANETA SOCIETY o o o • o -e o o Board of Directors CARL SAGAN NORMAN R. AUGUSTI NE President Chairman and CEO, Director, Martin Marietta Corporation Laboratory for Planetary Studies, Cornelf University JOHN E. BRYSON Chairman and CEO, BRUCE MURRAY Southern California Edison Vice President Professor of Planetary Science, JOSEPH RYAN California Institute of Technology O'Melveny & Myers LOU IS FRIEDMAN STEVEN SPI ELBERG A WARNING FROM YOUR EDITOR Bringing People Together Through Executive Director director and producer You may soon be getting a phone call Planetary Science-Page 13-Education Board of Advisors from me. No, I won't be asking you for has always been close to the hearts of DIANE ACKERMAN JOHN M. LOGSDON donations or nagging you about a missed Planetary Society members, and we have poet and author Director, Space Policy Institute, George Washington University deadline (a common fear among planetary sponsored many programs to promote sci BUZZ ALDRIN Apollo 11 astronaut HANS MARK scientists). Instead, I will be asking for ence education around the world. We've The University of Texas at Austin RICHARD BERENDZEN your opinion about The Planetary Report. gathered together reports on three projects educator and astrophysicist JAMES MICHENER author JACQUES BLAMONT Each month our computer will randomly now completed and one just beginning. Chief Scientist, Centre MARVIN MINSKY Nationa! d'Etudes Spatia/es, Toshiba Professor of Media Arts select several members whom I will call to A Planetary Readers' Service-Page 16- France and Sciences, Massachusetts Institute of Technology discuss the contents of our latest issue-or For most of its history, the science we call RAY BRADBURY poet and author PHILIP MORRISON any other topic related to our publications. -
The Mars 2001 Odyssey and the "Autogen" Process
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@USU AUTOGEN: The Mars 2001 Odyssey and the "Autogen" Process By Roy Gladden June 6, 2002 Jet Propulsion Laboratory / California Institute of Technology Pasadena, California Abstract In many deep space and interplanetary missions, it is widely recognized that the scheduling of many commands to operate a spacecraft can follow very regular patterns. In these instances, it is greatly desired to convert the knowledge of how commands are scheduled into algorithms in order to automate the development of command sequences. In doing so, it is possible to dramatically reduce the number of people and work-hours that are required to develop a sequence. The development of the "autogen" process for the Mars 2001 Odyssey spacecraft is one implementation of this concept. It combines robust scheduling algorithms with software that is compatible with pre- existing "uplink" software, and literally reduced the duration of some sequence generation processes from weeks to minutes. This paper outlines the "autogen" tools and processes and describes how they have been implemented for the various phases of the Mars 2001 Odyssey mission. What is autogen? manually building the commands for lengthy and well- understood command sequences, efforts were made to The term "autogen" is applied in two different ways. develop software that would automatically schedule the First, "autogen," in its broadest sense, identifies a commands given certain input data. By taking the process that may be used to automatically generate knowledge for how commands were to be scheduled sequences for a spacecraft and, second, it is a Solaris and writing algorithms to replicate that knowledge, it script that has been used to facilitate this process. -
Size of Particles Ejected from an Artificial Impact Crater on Asteroid
A&A 647, A43 (2021) Astronomy https://doi.org/10.1051/0004-6361/202039777 & © K. Wada et al. 2021 Astrophysics Size of particles ejected from an artificial impact crater on asteroid 162173 Ryugu K. Wada1, K. Ishibashi1, H. Kimura1, M. Arakawa2, H. Sawada3, K. Ogawa2,4, K. Shirai2, R. Honda5, Y. Iijima3, T. Kadono6, N. Sakatani7, Y. Mimasu3, T. Toda3, Y. Shimaki3, S. Nakazawa3, H. Hayakawa3, T. Saiki3, Y. Takagi8, H. Imamura3, C. Okamoto2, M. Hayakawa3, N. Hirata9, and H. Yano3 1 Planetary Exploration Research Center, Chiba Institute of Technology, Narashino 275-0016, Japan e-mail: [email protected] 2 Department of Planetology, Kobe University, Kobe 657-8501, Japan 3 Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara 252-5210, Japan 4 JAXA Space Exploration Center, Japan Aerospace Exploration Agency, Sagamihara 252-5210, Japan 5 Department of Science and Technology, Kochi University, Kochi 780-8520, Japan 6 Department of Basic Sciences, University of Occupational and Environmental Health, Kitakyusyu 807-8555, Japan 7 Department of Physics, Rikkyo University, Tokyo 171-8501, Japan 8 Aichi Toho University, Nagoya 465-8515, Japan 9 School of Computer Science and Engineering, The University of Aizu, Aizu-Wakamatsu 965-8580, Japan Received 28 October 2020 / Accepted 26 January 2021 ABSTRACT A projectile accelerated by the Hayabusa2 Small Carry-on Impactor successfully produced an artificial impact crater with a final apparent diameter of 14:5 0:8 m on the surface of the near-Earth asteroid 162173 Ryugu on April 5, 2019. At the time of cratering, Deployable Camera 3 took± clear time-lapse images of the ejecta curtain, an assemblage of ejected particles forming a curtain-like structure emerging from the crater. -
A Ballistics Analysis of the Deep Impact Ejecta Plume: Determining Comet Tempel 1’S Gravity, Mass, and Density
Icarus 190 (2007) 357–390 www.elsevier.com/locate/icarus A ballistics analysis of the Deep Impact ejecta plume: Determining Comet Tempel 1’s gravity, mass, and density James E. Richardson a,∗,H.JayMeloshb, Carey M. Lisse c, Brian Carcich d a Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853, USA b Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721-0092, USA c Planetary Exploration Group, Space Department, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA d Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853, USA Received 31 March 2006; revised 8 August 2007 Available online 15 August 2007 Abstract − In July of 2005, the Deep Impact mission collided a 366 kg impactor with the nucleus of Comet 9P/Tempel 1, at a closing speed of 10.2 km s 1. In this work, we develop a first-order, three-dimensional, forward model of the ejecta plume behavior resulting from this cratering event, and then adjust the model parameters to match the flyby-spacecraft observations of the actual ejecta plume, image by image. This modeling exercise indicates Deep Impact to have been a reasonably “well-behaved” oblique impact, in which the impactor–spacecraft apparently struck a small, westward-facing slope of roughly 1/3–1/2 the size of the final crater produced (determined from initial ejecta plume geometry), and possessing an effective strength of not more than Y¯ = 1–10 kPa. The resulting ejecta plume followed well-established scaling relationships for cratering in a medium-to-high porosity target, consistent with a transient crater of not more than 85–140 m diameter, formed in not more than 250–550 s, for the case of Y¯ = 0 Pa (gravity-dominated cratering); and not less than 22–26 m diameter, formed in not less than 1–3 s, for the case of Y¯ = 10 kPa (strength-dominated cratering). -
Space Sector Brochure
SPACE SPACE REVOLUTIONIZING THE WAY TO SPACE SPACECRAFT TECHNOLOGIES PROPULSION Moog provides components and subsystems for cold gas, chemical, and electric Moog is a proven leader in components, subsystems, and systems propulsion and designs, develops, and manufactures complete chemical propulsion for spacecraft of all sizes, from smallsats to GEO spacecraft. systems, including tanks, to accelerate the spacecraft for orbit-insertion, station Moog has been successfully providing spacecraft controls, in- keeping, or attitude control. Moog makes thrusters from <1N to 500N to support the space propulsion, and major subsystems for science, military, propulsion requirements for small to large spacecraft. and commercial operations for more than 60 years. AVIONICS Moog is a proven provider of high performance and reliable space-rated avionics hardware and software for command and data handling, power distribution, payload processing, memory, GPS receivers, motor controllers, and onboard computing. POWER SYSTEMS Moog leverages its proven spacecraft avionics and high-power control systems to supply hardware for telemetry, as well as solar array and battery power management and switching. Applications include bus line power to valves, motors, torque rods, and other end effectors. Moog has developed products for Power Management and Distribution (PMAD) Systems, such as high power DC converters, switching, and power stabilization. MECHANISMS Moog has produced spacecraft motion control products for more than 50 years, dating back to the historic Apollo and Pioneer programs. Today, we offer rotary, linear, and specialized mechanisms for spacecraft motion control needs. Moog is a world-class manufacturer of solar array drives, propulsion positioning gimbals, electric propulsion gimbals, antenna positioner mechanisms, docking and release mechanisms, and specialty payload positioners.