A Preliminary Analysis of Phylogenetic Relationships and Biogeography Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Medically Important Differences in Snake Venom Composition Are Dictated by Distinct Postgenomic Mechanisms
Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms Nicholas R. Casewella,b,1, Simon C. Wagstaffc, Wolfgang Wüsterb, Darren A. N. Cooka, Fiona M. S. Boltona, Sarah I. Kinga, Davinia Plad, Libia Sanzd, Juan J. Calveted, and Robert A. Harrisona aAlistair Reid Venom Research Unit and cBioinformatics Unit, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom; bMolecular Ecology and Evolution Group, School of Biological Sciences, Bangor University, Bangor LL57 2UW, United Kingdom; and dInstituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, 11 46010 Valencia, Spain Edited by David B. Wake, University of California, Berkeley, CA, and approved May 14, 2014 (received for review March 27, 2014) Variation in venom composition is a ubiquitous phenomenon in few (approximately 5–10) multilocus gene families, with each snakes and occurs both interspecifically and intraspecifically. family capable of producing related isoforms generated by Venom variation can have severe outcomes for snakebite victims gene duplication events occurring over evolutionary time (1, 14, by rendering the specific antibodies found in antivenoms in- 15). The birth and death model of gene evolution (16) is fre- effective against heterologous toxins found in different venoms. quently invoked as the mechanism giving rise to venom gene The rapid evolutionary expansion of different toxin-encoding paralogs, with evidence that natural selection acting on surface gene families in different snake lineages is widely perceived as the exposed residues of the resulting gene duplicates facilitates main cause of venom variation. However, this view is simplistic subfunctionalization/neofunctionalization of the encoded proteins and disregards the understudied influence that processes acting (15, 17–19). -
(Apicomplexa: Adeleorina) from the Blood of Echis Pyramidum: Morphology and SSU Rdna Sequence Hepatozoon Pyramidumi Sp
Original Article ISSN 1984-2961 (Electronic) www.cbpv.org.br/rbpv Hepatozoon pyramidumi sp. n. (Apicomplexa: Adeleorina) from the blood of Echis pyramidum: morphology and SSU rDNA sequence Hepatozoon pyramidumi sp. n. (Apicomplexa: Adeleorina) do sangue de Echis pyramidum: morfologia e sequência de SSU rDNA Lamjed Mansour1,2; Heba Mohamed Abdel-Haleem3; Esam Sharf Al-Malki4; Saleh Al-Quraishy1; Abdel-Azeem Shaban Abdel-Baki3* 1 Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia 2 Unité de Recherche de Biologie Intégrative et Écologie Évolutive et Fonctionnelle des Milieux Aquatiques, Département de Biologie, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunisia 3 Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt 4 Department of Biology, College of Sciences, Majmaah University, Majmaah 11952, Riyadh Region, Saudi Arabia How to cite: Mansour L, Abdel-Haleem HM, Al-Malki ES, Al-Quraishy S, Abdel-Baki AZS. Hepatozoon pyramidumi sp. n. (Apicomplexa: Adeleorina) from the blood of Echis pyramidum: morphology and SSU rDNA sequence. Braz J Vet Parasitol 2020; 29(2): e002420. https://doi.org/10.1590/S1984-29612020019 Abstract Hepatozoon pyramidumi sp. n. is described from the blood of the Egyptian saw-scaled viper, Echis pyramidum, captured from Saudi Arabia. Five out of ten viper specimens examined (50%) were found infected with Hepatozoon pyramidumi sp. n. with parasitaemia level ranged from 20-30%. The infection was restricted only to the erythrocytes. Two morphologically different forms of intraerythrocytic stages were observed; small and mature gamonts. The small ganomt with average size of 10.7 × 3.5 μm. Mature gamont was sausage-shaped with recurved poles measuring 16.3 × 4.2 μm in average size. -
Self-Envenomation in an Egyptian Saw-Scaled Viper Using Region of Interest
The biter bit? Investigation of possible in-ovo self- envenomation in an Egyptian saw-scaled viper using region of interest X-ray microtomography John Mulley, Richard E Johnston Proven examples of self-envenomation by venomous snakes, and especially instances of death as a result of these events, are extremely rare, if not non-existent. Here we use Region of Interest X-ray microtomography to investigate a putative case of fatal in-ovo s t self-envenomation in the Egyptian saw-scaled viper, Echis pyramidum. Our analyses have n i provided unprecedented insight into the skeletal anatomy of a late-stage embryonic snake r P and the disposition of the fangs without disrupting or destroying a unique biological e r specimen. P PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.624v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2014, publ: 19 Nov 2014 1 Title page 2 3 The biter bit? Investigation of possible in-ovo self-envenomation in an Egyptian saw-scaled 4 viper using region of interest X-ray microtomography 5 6 Richard E Johnston1 and John F Mulley2* 7 8 1. College of Engineering, Swansea University, Swansea, SA2 8PP, United Kingdom s 9 2. School of Biological Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, United t n i 10 Kingdom r P 11 e r P 12 *To whom correspondence should be addressed ([email protected]) 13 14 15 16 17 18 19 20 21 22 23 24 25 1 PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.624v1 | CC-BY 4.0 Open Access | rec: 19 Nov 2014, publ: 19 Nov 2014 26 Abstract 27 Proven examples of self-envenomation by venomous snakes, and especially instances of 28 death as a result of these events, are extremely rare, if not non-existent. -
The Knockout Effect of Low Doses of Gamma Radiation on Hepatotoxicity Induced by Echis Coloratus Snake Venom in Rats
bioRxiv preprint doi: https://doi.org/10.1101/705251; this version posted July 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The knockout effect of low doses of gamma radiation on hepatotoxicity induced by Echis Coloratus snake venom in rats Esraa M. Samya,*,1, Esmat A. Shaabana,2, Sanaa A. Kenawyb,3, Walaa H. Salamac,4 and Mai A. Abd El Fattahb,5 a Department of Drug Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt b Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt c Department of Molecular Biology, Genetic engineering and biotechnology research division, National Research Centre, Cairo, Egypt 1 [email protected] 2 [email protected] 3 [email protected] 4 [email protected] 5 [email protected] *Corresponding author: Esraa M. Samy Department of Drug Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt Tel: 01008371542 E-mail address: [email protected] ABSTRACT Echis Coloratus is the most medically important viper in Egypt causing several pathological effects leading to death. Gamma radiation has been used as a venom detoxifying tool in order to extend the lifespan of the immunized animals used in antivenin production process. Thus, the aim of this study is to assess the effects of increasing doses of gamma radiation on Echis Coloratus in vivo through biochemical and histological studies. The results revealed a significant increase in the levels of AST, ALT, ALP and glucose of sera collected from the rats injected with native Echis Coloratus venom compared with the non-envenomed group. -
High Throughput Screening and Identification of Coagulopathic Snake Venom Proteins and 2 Peptides Using Nanofractionation and Proteomics Approaches
bioRxiv preprint doi: https://doi.org/10.1101/780155; this version posted September 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Classified Personnel Information 1 High throughput screening and identification of coagulopathic snake venom proteins and 2 peptides using nanofractionation and proteomics approaches 3 4 Julien Slagbooma,b, Marija Mladićc, Chunfang Xie b, Freek Vonkd, Govert W. Somsenb, Nicholas 5 R. Casewella, Jeroen Koolb 6 aCentre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, 7 Liverpool, UK 8 bDivision of BioAnalytical Chemistry, Amsterdam Institute for Molecules Medicines and Systems, 9 VU University Amsterdam, Amsterdam, The Netherlands 10 cAnimal Sciences and Health, Institute of Biology Leiden, Leiden University, Leiden, The 11 Netherlands 12 dNaturalis Biodiversity Center, Leiden, The Netherlands 13 *Corresponding author [email protected] 14 15 1 bioRxiv preprint doi: https://doi.org/10.1101/780155; this version posted September 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Classified Personnel Information 16 Abstract 17 Snakebite is a neglected tropical disease that results in a variety of systemic and local pathologies in 18 envenomed victims and is responsible for around 138,000 deaths every year. Many snake venoms cause 19 severe coagulopathy that makes victims vulnerable to suffering life-threating haemorrhage. -
Biogeography of the Reptiles of the Central African Republic
African Journal of Herpetology, 2006 55(1): 23-59. ©Herpetological Association of Africa Original article Biogeography of the Reptiles of the Central African Republic LAURENT CHIRIO AND IVAN INEICH Muséum National d’Histoire Naturelle Département de Systématique et Evolution (Reptiles) – USM 602, Case Postale 30, 25, rue Cuvier, F-75005 Paris, France This work is dedicated to the memory of our friend and colleague Jens B. Rasmussen, Curator of Reptiles at the Zoological Museum of Copenhagen, Denmark Abstract.—A large number of reptiles from the Central African Republic (CAR) were collected during recent surveys conducted over six years (October 1990 to June 1996) and deposited at the Paris Natural History Museum (MNHN). This large collection of 4873 specimens comprises 86 terrapins and tortois- es, five crocodiles, 1814 lizards, 38 amphisbaenids and 2930 snakes, totalling 183 species from 78 local- ities within the CAR. A total of 62 taxa were recorded for the first time in the CAR, the occurrence of numerous others was confirmed, and the known distribution of several taxa is greatly extended. Based on this material and an additional six species known to occur in, or immediately adjacent to, the coun- try from other sources, we present a biogeographical analysis of the 189 species of reptiles in the CAR. Key words.—Central African Republic, reptile fauna, biogeography, distribution. he majority of African countries have been improved; known distributions of many species Tthe subject of several reptile studies (see are greatly expanded and distributions of some for example LeBreton 1999 for Cameroon). species are questioned in light of our results. -
Vipera Berus) Neonate Born from a Cryptic Female: Are Black Vipers Born Heavier?
North-Western Journal of Zoology Vol. 5, No. 1, 2009, pp.218-223 P-ISSN: 1584-9074, E-ISSN: 1843-5629 Article No.: 051206 A melanistic adder (Vipera berus) neonate born from a cryptic female: Are black vipers born heavier? Alexandru STRUGARIU* & Ştefan R. ZAMFIRESCU “Alexandru Ioan Cuza” University, Faculty of Biology, Carol I Blvd. No. 20 A, 700506, Iaşi, Romania. * Corresponding author’s e-mail address: [email protected] Abstract. The ecological advantages and disadvantages of melanism in reptiles, especially in the adder (Vipera berus (L. 1758)), have been intensively studied over the years. General consideration would agree that, in most cases, adders which go on to become melanistic, are born cryptic, with a typical zigzag pattern, and darken with age, becoming black in the second or third year of life. In the present note we report the second known case in which a cryptic female adder gave birth to a melanistic neonate. Based on the fact that the observed body mass (7 g) of the melanistic neonate lies beyond the upper 95% confidence zone of the expected body mass (5.74g ± 0.977) calculated using the linear regression model from the cryptic neonates for a snout-vent length of 175 mm, and on the supporting literature, we propose a new hypothesis (which should be tested in future studies) according to which, melanistic adders may benefit of a significant higher fitness since birth. Key words: reptiles, colour polymorphism, reproduction, new hypothesis, body size, fitness advantage The coloration of animals is considered 2003). Although generally rare in reptiles, to be an adaptation to different biotic and melanism has been reported to be locally abiotic environmental factors. -
Venomous Snakes
Venomous Snakes - By Kedar Bhide Kedar Bhide is a snake expert from Mumbai. A postgraduate from Mumbai's Haffkine Institute, his work has resulted into first records of 2 snake species for India, Barta (Kaulback's Pit Viper) from Arunachal Pradesh and the Sind Awl-headed snake from Rajasthan. “ Moments after being bitten, the man feels a live fire germinating in the wound as if red hot tongs contorted his flesh; that which was mortified enlarges to monstrosity, and lividness invades him. The unfortunate victim witnesses his body becoming corpse piece by piece; a chill of death invades all his being, and soon bloody threads fall from his gums; and his eyes, without intending to, will also cry blood, until, beaten by suffering and anguish, he loses the sense of reality. If we then ask the unlucky man something, he may see us through blurred eyes, but we get no response; and perhaps a final sweat of red pearls or a mouthful of blackish blood warns of impending” (This is an introduction of a book written in 1931 by a Costa Rican Biologists and snakebite expert Clodomiro Picado.) INTRODUCTION Human fear of snakes is caused almost entirely by those species that can deliver a venomous bite. It is somewhat ironic that such a minority group, like venomous snakes has endangered the whole kingdom of snakes. Let us start by correcting a frequent misnomer. People often refer to poisonous snakes, and indeed by directory definition, this is not incorrect. But as a student of herpetology we should be more specific in our terminology. -
Daboia (Vipera) Palaestinae Envenomation in 123 Horses: Treatment and Efficacy of Antivenom Administration
toxins Article Daboia (Vipera) palaestinae Envenomation in 123 Horses: Treatment and Efficacy of Antivenom Administration Sharon Tirosh-Levy 1,* , Reut Solomovich-Manor 1, Judith Comte 1, Israel Nissan 2 , Gila A. Sutton 1, Annie Gabay 2, Emanuel Gazit 2 and Amir Steinman 1 1 Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; [email protected] (R.S.-M.); [email protected] (J.C.); [email protected] (G.A.S.); [email protected] (A.S.) 2 Ministry of Health Central Laboratories, Jerusalem 9134302, Israel; [email protected] (I.N.); [email protected] (A.G.); [email protected] (E.G.) * Correspondence: [email protected] Received: 2 February 2019; Accepted: 12 March 2019; Published: 19 March 2019 Abstract: Envenomation by venomous snakes is life threatening for horses. However, the efficacy of available treatments for this occurrence, in horses, has not yet been adequately determined. The aim of this study was to describe the treatments provided in cases of Daboia palaestinae envenomation in horses and to evaluate the safety and efficacy of antivenom administration. Data regarding 123 equine snakebite cases were collected over four years from 25 veterinarians. The majority of horses were treated with procaine-penicillin (92.7%), non-steroidal anti-inflammatory drugs (82.3%), dexamethasone (81.4%), tetanus toxoid (91.1%) and antivenom (65.3%). The time interval between treatment and either cessation or 50% reduction of local swelling was linearly associated with case fatality (p < 0.001). -
Amphibians and Reptiles of the Mediterranean Basin
Chapter 9 Amphibians and Reptiles of the Mediterranean Basin Kerim Çiçek and Oğzukan Cumhuriyet Kerim Çiçek and Oğzukan Cumhuriyet Additional information is available at the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.70357 Abstract The Mediterranean basin is one of the most geologically, biologically, and culturally complex region and the only case of a large sea surrounded by three continents. The chapter is focused on a diversity of Mediterranean amphibians and reptiles, discussing major threats to the species and its conservation status. There are 117 amphibians, of which 80 (68%) are endemic and 398 reptiles, of which 216 (54%) are endemic distributed throughout the Basin. While the species diversity increases in the north and west for amphibians, the reptile diversity increases from north to south and from west to east direction. Amphibians are almost twice as threatened (29%) as reptiles (14%). Habitat loss and degradation, pollution, invasive/alien species, unsustainable use, and persecution are major threats to the species. The important conservation actions should be directed to sustainable management measures and legal protection of endangered species and their habitats, all for the future of Mediterranean biodiversity. Keywords: amphibians, conservation, Mediterranean basin, reptiles, threatened species 1. Introduction The Mediterranean basin is one of the most geologically, biologically, and culturally complex region and the only case of a large sea surrounded by Europe, Asia and Africa. The Basin was shaped by the collision of the northward-moving African-Arabian continental plate with the Eurasian continental plate which occurred on a wide range of scales and time in the course of the past 250 mya [1]. -
Substrate Thermal Properties Influence Ventral Brightness Evolution In
ARTICLE https://doi.org/10.1038/s42003-020-01524-w OPEN Substrate thermal properties influence ventral brightness evolution in ectotherms ✉ Jonathan Goldenberg 1 , Liliana D’Alba 1, Karen Bisschop 2,3, Bram Vanthournout1 & Matthew D. Shawkey 1 1234567890():,; The thermal environment can affect the evolution of morpho-behavioral adaptations of ectotherms. Heat is transferred from substrates to organisms by conduction and reflected radiation. Because brightness influences the degree of heat absorption, substrates could affect the evolution of integumentary optical properties. Here, we show that vipers (Squa- mata:Viperidae) inhabiting hot, highly radiative and superficially conductive substrates have evolved bright ventra for efficient heat transfer. We analyzed the brightness of 4161 publicly available images from 126 species, and we found that substrate type, alongside latitude and body mass, strongly influences ventral brightness. Substrate type also significantly affects dorsal brightness, but this is associated with different selective forces: activity-pattern and altitude. Ancestral estimation analysis suggests that the ancestral ventral condition was likely moderately bright and, following divergence events, some species convergently increased their brightness. Vipers diversified during the Miocene and the enhancement of ventral brightness may have facilitated the exploitation of arid grounds. We provide evidence that integument brightness can impact the behavioral ecology of ectotherms. 1 Evolution and Optics of Nanostructures group, Department -
Molecular Systematics of the Genus Pseudocerastes (Ophidia: Viperidae) Based on the Mitochondrial Cytochrome B Gene
Turkish Journal of Zoology Turk J Zool (2014) 38: 575-581 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1308-25 Molecular systematics of the genus Pseudocerastes (Ophidia: Viperidae) based on the mitochondrial cytochrome b gene 1,2, 1,2 2,3 Behzad FATHINIA *, Nasrullah RASTEGAR-POUYANI , Eskandar RASTEGAR-POUYANI , 4 2,5,6 Fatemeh TOODEH-DEHGHAN , Mehdi RAJABIZADEH 1 Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran 2 Iranian Plateau Herpetology Research Group, Faculty of Science, Razi University, Kermanshah, Iran 3 Department of Biology, Hakim Sabzevari University, Sabzevar, Iran 4 Department of Venomous Animals and Antivenin Production, Razi Vaccine & Serum Research Institute, Karaj, Iran 5 Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium 6 Department of Biodiversity, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran Received: 14.08.2013 Accepted: 21.02.2014 Published Online: 14.07.2014 Printed: 13.08.2014 Abstract: The false horned vipers of the genus Pseudocerastes consist of 3 species; all have been recorded in Iran. These include Pseudocerastes persicus, P. fieldi, and P. urarachnoides. Morphologically, the taxonomic border between P. fieldi and P. persicus is not as clear as that between P. urarachnoides and P. persicus or P. fieldi. Regarding the weak diagnostic characters differentiating P. fieldi from P. persicus and very robust characters separating P. urarachnoides from both, there may arise some uncertainty in the exact taxonomic status of P. urarachnoides and whether it should remain at the current specific level or be elevated to a distinct genus.