Literature Review

Total Page:16

File Type:pdf, Size:1020Kb

Literature Review Molecular Diagnostic Protocols for Bovine Genital Campylobacteriosis using Comparative Genomics and Virulence Studies Léa Indjein B. Sc., B. App. Sc. Hons A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in January 2013 School of Veterinary Science Abstract Bovine genital campylobacteriosis is difficult to identify due to problems with the isolation of its causative agent Campylobacter fetus subspecies venerealis. To optimise isolation methods, three selective culture and three transport and enrichment media (TEMs) were evaluated using a pure C. fetus subsp. venerealis culture, with and without simulated field contamination by Pseudomonas aeruginosa. For optimal C. fetus subsp. venerealis isolation and growth, TEMs should be returned from the field within 48h of collection and plated within 4h onto Campylobacter selective agar plates incubated for 48-72h at 37°C under microaerophilic conditions. Longer transport or TEM incubation resulted in overgrowth of P. aeruginosa limiting C. fetus subsp. venerealis recovery. In order to establish an isolate collection, the parA real-time PCR assay was used to screen bull preputial secretions prior to culturing positive samples. A more sensitive real-time PCR assay was designed from the ISCfe1 insertion element and used to assess additional preputial samples, compared to the parA real-time assay. A proportion of real-time negative samples was also cultured. Two conventional PCR assays, biochemical testing and sequencing of late real-time PCR products were applied to cultures. The parA real-time PCR detected 174 positives out of 717 samples with 44 Campylobacter-like organisms isolated (25.3%). Culture of 94 parA-negative and 40 untested samples yielded 9 Campylobacter-like isolates. ParA and ISCfe1 real-time PCR analysis of a further 266 samples facilitated the isolation of 17 Campylobacter-like cultures from 70 positives (24.3%). Fourteen cultures were obtained from either ISCfe1 (8/43; 18.6%) or parA (6/51; 11.8%) negative samples. ISCfe1 and parA sequences were obtained from isolates not confirmed by conventional methods suggesting that both parA and ISCfe1 may be found in organisms other than C. fetus subsp. venerealis. Molecular testing of cultures (n=84) confirmed the presence of these sequences in isolates identified as other Campylobacter spp. or Arcobacter-like organisms, while they were not always detected in all biochemically confirmed C. fetus subsp. venerealis isolates. The lack of specificity of all methods highlights the need for more reliable C. fetus subsp. venerealis-specific gene targets. The draft genomes of two C. fetus subsp. venerealis biovars aligned to C. fetus subsp. fetus genome provided 26 unique C. fetus subsp. venerealis regions. In order to identify new diagnostic targets, 13 putative conventional and one real-time PCR assays designed from contigs common to both C. fetus subsp. venerealis biovars were developed to screen the Campylobacter-like culture collection (n=84). Isolates biochemically identified as organisms other than C. fetus subsp. venerealis were positive on the new real-time and six conventional PCR assays, indicating that they were not suitable subspecies-specific markers. Seven assays detected isolates phenotyped as C. fetus subsp. venerealis except for two aerotolerant isolates recognized as C. fetus subsp. venerealis by ii other published methods. These seven gene targets could be further investigated for real-time PCR assay development as in silico BLAST analysis confirmed their conservation in the genomes of five of our C. fetus subsp. venerealis isolates. However, further bioinformatics analysis revealed that they were found in several C. fetus subsp. fetus strains, underlining that a pan-genomics study including multiple C. fetus genomes is needed to identify new C. fetus subsp. venerealis-specific core genes. Variation in putative virulence, type IV secretion system (T4S) and pathogenicity island (PAI) genes observed from the C. fetus subsp. venerealis biovars supported the hypothesis that differences in virulence may exist between strains. Nine T4S and PAI conventional PCR assays were used to characterize the Campylobacter-like isolate collection (n=84) and other field cultures (n=21). New putative virulence (n=11) and PAI (n=4) conventional PCR assays were designed from unique C. fetus subsp. venerealis regions, and also assisted in predicting the virulence status of each isolate. In silico analysis of seven T4S gene sequences from C. fetus field and reference strains was performed to investigate if previously reported amino acid consensus sequences were conserved. A range of isolates were positive on different assays, including C. fetus subsp. fetus, other Campylobacter spp. and Arcobacter-like organisms, underlining a shared virulence and PAI gene content between closely related bacteria. Results contributed to the selection of C. fetus subsp. venerealis candidates for testing in a parallel pregnant guinea pig model, but differences in virulence between strains in vivo did not correlate with differences in virulence and PAI gene profiles. Even though T4S consensus sequences were conserved for six of the seven genes examined, observed sequence differences may also influence the amino acid sequence of encoded proteins and thus C. fetus virulence in vivo. Whilst the genes assessed here may be involved in C. fetus subsp. venerealis virulence, other factors and potential interactions as well as differences in expression during animal infection are yet to be examined. A pan-genomic study including C. fetus and Campylobacter-like strains isolated here, in correlation with further animal and virulence experiments, will contribute to improving diagnostic methods for bovine genital campylobacteriosis. iii Declaration by author This thesis is composed of my original work, and contains no material previously published or written by another person except where due reference has been made in the text. I have clearly stated the contribution by others to jointly-authored works that I have included in my thesis. I have clearly stated the contribution of others to my thesis as a whole, including statistical assistance, survey design, data analysis, significant technical procedures, professional editorial advice, and any other original research work used or reported in my thesis. The content of my thesis is the result of work I have carried out since the commencement of my research higher degree candidature and does not include a substantial part of work that has been submitted to qualify for the award of any other degree or diploma in any university or other tertiary institution. I have clearly stated which parts of my thesis, if any, have been submitted to qualify for another award. I acknowledge that an electronic copy of my thesis must be lodged with the University Library and, subject to the General Award Rules of The University of Queensland, immediately made available for research and study in accordance with the Copyright Act 1968. I acknowledge that copyright of all material contained in my thesis resides with the copyright holder(s) of that material. Where appropriate I have obtained copyright permission from the copyright holder to reproduce material in this thesis. iv Publications during candidature No first-author research article has been published during this candidature. Material presented in this thesis in Chapter 7 has been partly included in the following manuscript: Barrero, R. A., Keeble-Gagnère, G., Power, J., Indjein, L., Bellgard, M. I., Lew-Tabor, A.E. (2013), De novo assembly of Campylobacter fetus subsp. venerealis biovar genomes reveals unique pathogenicity islands and glycine intolerance. PLoS ONE, accepted with major revision in May 2012 (PONE-D-12-10146). Refereed conference papers and abstracts published during this candidature are listed below, *indicates presenter: *Indjein, L., Venus, B., Trott, D. and A. E. Lew-Tabor, (2010), Comparison of Molecular and Culture Methods for the Identification of Virulent Campylobacter fetus subspecies venerealis in Australian Cattle, Annual Scientific meeting & Exhibition of the Australian Society for Microbiology, ASM 2010 (Sydney, Australia), Veterinary Microbiology, poster presentation (abstract P03.37). *Indjein, L., Venus, B., Trott, D. and A. E. Lew-Tabor, (2010), Molecular comparisons of Campylobacter fetus venerealis isolates from Australian cattle to Identify Virulent strains, Prato Conference on the Pathogenesis of Bacterial Diseases of Animals, VetPath2010 (Prato, Italy), Genomics and Molecular Epidemiology, oral presentation (abstract 008). *Indjein, L., Venus, B., Barrero, R.A., Keeble-Gagnère, G., Power, J., Trott, D. and A. E. Lew- Tabor, (2011), Evaluation of a new ISCfe1 real-time PCR assay in comparison with known and novel molecular tests to characterise a Campylobacter fetus venerealis isolate collection from Australian cattle, 16th International Workshop on Campylobacter, Helicobacter, and Related Organisms, CHRO2011 (Vancouver, Canada), Detection and surveillance of CHRO, poster presentation (abstract A374). *Lew-Tabor, A.E., Barrero, R.A., Indjein, L., Keeble-Gagnère, G., Power, J., and M. Bellgard, (2011), Preliminary genome studies of Campylobacter fetus subspecies venerealis. Australian Society for Microbiology Annual Scientific Meeting, ASM2011 (Hobart, Australia), poster presentation (abstract 710). *Venus, B., Indjein, L., Ardila, A., and A. E. Lew-Tabor, (2011), Molecular detection and identification of
Recommended publications
  • Abortion Outbreak Caused by Campylobacter Fetus Subspecies Venerealis and Neospora Caninum in a Bovine Dairy Herd
    https://doi.org/10.22319/rmcp.v10i4.5008 Technical note Abortion outbreak caused by Campylobacter fetus subspecies venerealis and Neospora caninum in a bovine dairy herd Melissa Macías-Rioseco a Rubén D. Caffarena a,b Martín Fraga a Caroline Silveira a Federico Giannitti a,c Germán Cantón d Yanina P. Hecker e Alejandra Suanes f Franklin Riet-Correa a* * Corresponding author: [email protected] a Instituto Nacional de Investigación Agropecuaria (INIA). Plataforma de Investigación en Salud Animal. Ruta 50 km 11, 70000, La Estanzuela, Uruguay. b Universidad de la República, Facultad de Veterinaria, Montevideo, Uruguay. c University of Minnesota, Veterinary Population Medicine Department, MN, USA. d Instituto Nacional de Tecnología Agropecuaria. Balcarce, Argentina. e Consejo Nacional de Investigaciones Científicas y Técnicas. Balcarce, Argentina. f Ministerio de Ganadería Agricultura y Pesca. Montevideo. Dirección de Laboratorios Veterinarios, Uruguay. 1054 Rev Mex Cienc Pecu 2019;10(4):1054-1063 Abstract: In November 2015, an abortion outbreak occurred in a commercial dairy herd of 650 Holstein cows in Florida department, Uruguay. Forty-five (45) cows aborted within 3 wk. Five fetuses were subjected to gross and microscopic pathologic examination, and microbiological testing. One fetus had fibrinous epicarditis and peritonitis, and neutrophilic bronchopneumonia. Campylobacter fetus subsp. venerealis was detected by direct immunofluorescence, isolated and identified by PCR and sequencing of the 16S rDNA in the abomasal fluid and/or lung. Histologic examination of two other fetuses revealed non- suppurative necrotizing encephalitis, lymphohistiocytic myositis and myocarditis, and lymphocytic interstitial nephritis. In these fetuses, N. caninum antigen was detected intralesionally by immunohistochemistry, and N. caninum DNA was amplified by PCR on formalin-fixed paraffin-embedded brain.
    [Show full text]
  • Application of a Multiplex PCR Assay for Campylobacter Fetus Detection and Subspecies Differentiation in Uncultured Samples of Aborted Bovine Fetuses
    pISSN 1229-845X, eISSN 1976-555X JOURNAL OF J. Vet. Sci. (2012), 13(4), 371-376 http://dx.doi.org/10.4142/jvs.2012.13.4.371 Veterinary Received: 11 Jul. 2011, Revised: 23 Oct. 2011, Accepted: 16 Mar. 2012 Science Original Article Application of a multiplex PCR assay for Campylobacter fetus detection and subspecies differentiation in uncultured samples of aborted bovine fetuses Gregorio Iraola1, Martín Hernández1, Lucía Calleros1, Fernando Paolicchi4, Silvia Silveyra3, Alejandra Velilla4, Luis Carretto1, Eliana Rodríguez2, Ruben Pérez1,* 1Evolutionary Genetics Section, Department of Animal Biology, Institute of Biology, and 2Practice Laboratories Unit, Faculty of Sciences, University of the Republic, 11400 Montevideo, Uruguay 3Division of Veterinary Laboratories (DILAVE), Montevideo, Uruguay 4Laboratory of Bacteriology, National Institute of Agricultural Technology (INTA), Balcarce, Argentina Campylobacter (C.) fetus (epsilonproteobacteria) is an in wildlife [3]. In particular, the species Campylobacter important veterinary pathogen. This species is currently (C.) fetus is an important veterinary pathogen that can also divided into C. fetus subspecies (subsp.) fetus (Cff) and C. fetus infect humans. This species is currently divided into C. subsp. venerealis (Cfv). Cfv is the causative agent of bovine fetus subspecies (subsp.) fetus (Cff) and C. fetus subsp. genital Campylobacteriosis, an infectious disease that leads to venerealis (Cfv). A phenotypic variant designated as C. severe reproductive problems in cattle worldwide. Cff is a fetus subsp. venerealis biovar intermedius (Cfvi) has also more general pathogen that causes reproductive problems been described [24]. mainly in sheep although cattle can also be affected. Here we Cff causes abortion mainly in sheep [6] and to a lesser describe a multiplex PCR method to detect C.
    [Show full text]
  • Arcobacter, Campylobacter, and Helicobacter in Reptiles
    fmicb-10-01086 May 28, 2019 Time: 15:12 # 1 REVIEW published: 15 May 2019 doi: 10.3389/fmicb.2019.01086 Living in Cold Blood: Arcobacter, Campylobacter, and Helicobacter in Reptiles Maarten J. Gilbert1,2*, Birgitta Duim1,3, Aldert L. Zomer1,3 and Jaap A. Wagenaar1,3,4 1 Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands, 2 Reptile, Amphibian and Fish Conservation Netherlands, Nijmegen, Netherlands, 3 WHO Collaborating Center for Campylobacter/OIE Reference Laboratory for Campylobacteriosis, Utrecht, Netherlands, 4 Wageningen Bioveterinary Research, Lelystad, Netherlands Species of the Epsilonproteobacteria genera Arcobacter, Campylobacter, and Helicobacter are commonly associated with vertebrate hosts and some are considered significant pathogens. Vertebrate-associated Epsilonproteobacteria are often considered to be largely confined to endothermic mammals and birds. Recent studies have shown that ectothermic reptiles display a distinct and largely unique Epsilonproteobacteria community, including taxa which can cause disease in humans. Several Arcobacter taxa are widespread amongst reptiles and often show a broad host range. Reptiles carry a large diversity of unique and novel Helicobacter taxa, which Edited by: John R. Battista, apparently evolved in an ectothermic host. Some species, such as Campylobacter Louisiana State University, fetus, display a distinct intraspecies host dichotomy, with genetically divergent lineages United States occurring either in mammals or reptiles. These taxa can provide valuable insights in Reviewed by: Heriberto Fernandez, host adaptation and co-evolution between symbiont and host. Here, we present an Austral University of Chile, Chile overview of the biodiversity, ecology, epidemiology, and evolution of reptile-associated Zuowei Wu, Epsilonproteobacteria from a broader vertebrate host perspective.
    [Show full text]
  • Pregnancy Loss in Beef Cattle
    Pregnancy Loss in Beef Cattle Guide B-228 John C. Wenzel and Timothy J. Hanosh1 Cooperative Extension Service • College of Agricultural, Consumer and Environmental Sciences This publication is scheduled to be updated and reissued 6/16. Abortion and loss of pregnancy in beef cattle can movement of cattle; origin of new cattle and occur for a variety of reasons. Many times the rea- bulls brought into the herd; results of semen son for the loss is complex and difficult to diagnose. evaluations; and diagnostic test results on bulls. This guide will briefly outline and discuss some of the more common diseases and causes of loss of 5. Keep a reproductive history on your cow herd, pregnancy. If a loss of pregnancy is suspected, con- including conception rate, calving rate, weaning tact your local veterinarian for assistance and advice rate, and dates when bulls are exposed to cows. for diagnosis and control of the causative agent in the pregnancy loss. The following are some helpful steps to take when an abortion is identified. Bovine virus DiarrHea CAUTION: Many diseases that cause abortion Bovine virus diarrhea (BVD) is a viral disease in cattle are caused by pathogens that can cause caused by a pestivirus with many syndromes. For disease in people. Follow good biosecurity measures this guide, only the abortion syndrome will be dis- and use personal protective equipment such as latex cussed. The pregnancy loss associated with BVD is gloves and a mask when handling the aborted fetus dependent on when in gestation the dam is exposed and materials. Use disinfectant soap when washing to the virus.
    [Show full text]
  • Bovine Genital Campylobacteriosis: Main Features and Perspectives for Diagnosis and Control
    Ciência Rural, SantaBovine Maria, genital v.50:3, campylobacteriosis: e20190272, 2020main features and perspectives for http://dx.doi.org/10.1590/0103-8478cr20190272 diagnosis and control. 1 ISSNe 1678-4596 MICROBIOLOGY Bovine genital campylobacteriosis: main features and perspectives for diagnosis and control Cláudia Balzan1* Rosangela Estel Ziech2 Letícia Trevisan Gressler3 Agueda Palmira Castagna de Vargas1 1Programa de Pós-graduação em Medicina Veterinária (PPGMV), Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais (CCR), Universidade Federal de Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brasil. E-mail: [email protected]. *Corresponding author. 2Médica Veterinária, Prefeitura Dois Vizinhos, Dois Vizinhos, PR, Brasil. 3Laboratório de Microbiologia e Doenças Infecciosas, Instituto Federal de Educação, Ciência e Tecnologia Farroupilha (IFFar), Frederico Westphalen, RS, Brasil. ABSTRACT: Bovine genital campylobacteriosis (BGC) is a venereal disease caused by Campylobacter fetus subsp. venerealis. In countries with large cattle herds, such as Brazil, where the use of natural breeding as a reproductive strategy is a common practice, BGC is considered an important cause of reproductive failure and economic losses. In these cases, the bull is the asymptomatic carrier of the bacterium and the infected females can have infertility and even abortions. The techniques for the diagnosis of C. fetus are isolation in culture medium and identification by biochemical tests, immunofluorescence, immunoenzymatic assays and molecular techniques. Disease control is based on vaccination with bacterins. This review described the epidemiology, etiology, pathogenesis, and advances in the diagnosis and control of BGC. Key words: Campylobacter fetus subsp. venerealis, infertility, venereal disease, beef cattle. Campilobacteriose genital bovina: principais características e perspectivas para o diagnóstico e controle RESUMO: A campilobacteriose genital bovina (CGB) é uma importante enfermidade de caráter venéreo causada por Campylobacter fetus subsp.
    [Show full text]
  • A Review of Sexually Transmitted Bovine Trichomoniasis and Campylobacteriosis Affecting Cattle Reproductive Health
    Theriogenology 85 (2016) 781–791 Contents lists available at ScienceDirect Theriogenology journal homepage: www.theriojournal.com Review A review of sexually transmitted bovine trichomoniasis and campylobacteriosis affecting cattle reproductive health Aubrey N. Michi a, Pedro H. Favetto b, John Kastelic a, Eduardo R. Cobo a,* a Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada b Private Veterinarian (Dairy Veterinary Services), Escalon, California, USA article info abstract Article history: The objective is to discuss sexually transmitted diseases caused by Tritrichomonas foetus Received 29 June 2015 (T foetus) and Campylobacter fetus (C fetus) subsp. venerealis, with a focus on prevalence, Accepted 28 October 2015 pathogenesis, and diagnosis in cows and bulls. Diagnosis and control are problematic because these diseases cause severe reproductive losses in cows, but in bulls are clinically Keywords: asymptomatic, which allows the disease to flourish, especially in the absence of legislated Sexually transmitted disease control programs. We review research regarding prophylactic systemic immunization of Tritrichomonas foetus bulls and cows with antigens of T foetus and C fetus venerealis and their efficacy in preventing Campylobacter fetus venerealis Cattle or clearing preexisting infections in the genital tract. Current diagnostic methods of C fetus Vaccine venerealis and T foetus (microbial culture and PCR) should be improved. Review of the latest advances in bovine trichomoniasis and campylobacteriosis should promote knowledge and provide an impetus to pursue further efforts to control bovine sexually transmitted diseases. Crown Copyright Ó 2016 Published by Elsevier Inc. All rights reserved. 1. Introduction artificial insemination (AI) [4,5]. In bulls, T foetus and C fetus venerealis are usually clinically asymptomatic.
    [Show full text]
  • Isolation of Campylobacter Fetus from Recent Cases of Human Vibriosis
    J. Hyg., Camb. (1977), 79, 381 381 With 1 plate Printed in Great Britain Isolation of Campylobacter fetus from recent cases of human vibriosis BY A. F. HALLETT* Department of Microbiology, University of Natal P. L. BOTHA Department of Bacteriology, University of Cape Town AND A. LOGAN Department of Thoracic Surgery, University of Natal (Received 2 May 1977) SUMMARY Campylobacter fetus was isolated from five recent cases of human vibriosis, of which two were adults and three were children. One adult presented with peri- carditis and the other with recurrent pyrexia. Campylobacterfetus subsp. intestinalis which resembled cattle strains serologically, was isolated under C02 or anaerobic conditions from blood cultures of these patients. Two of the three children had kwashiorkor and the third was only 8 days old. Isolates identified as Campylobacter fetus subsp. jejuni were cultured from blood of these patients, two of whom had diarrhoea. Three patients succumbed, despite adequate antibiotic therapy. The epidemiology of the disease is discussed and it is suggested that infection may have been from the patients' own flora. INTRODUCTION Microaerophilic vibrios infect several animal species including Man, and isolates from cattle have been from all parts of the world (Food and Agriculture Organi- zation, 1964; Neitz, 1965). In animals the organism has been cultured from various sites and infections may cause endometritis and placentitis, resulting in infertility, delayed conception and abortion (Gilman, 1960). Since the first authenticated report of a human infection due to Vibrio fetus in France (Vinzent, Dumas & Picard, 1947), cases have been reported from several other countries (Darrell, Farrell & Mulligan, 1967; White, 1967; Raahave, 1969; Bokkenheuser, 1970; Cornere, Robinson & Paykel, 1971; Dolev, Altmann & Padeh, 1971; Park, McDonald, Twohig & Cook, 1973).
    [Show full text]
  • Zoonotic and Public Health Implications of Campylobacter Species and Squamates (Lizards, Snakes and Amphisbaenians)
    pathogens Review Zoonotic and Public Health Implications of Campylobacter Species and Squamates (Lizards, Snakes and Amphisbaenians) Nicodemus M. Masila 1,2 , Kirstin E. Ross 1 , Michael G. Gardner 1,3 and Harriet Whiley 1,* 1 College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia; [email protected] (N.M.M.); Kirstin.ross@flinders.edu.au (K.E.R.); michael.gardner@flinders.edu.au (M.G.G.) 2 Kenya Tsetse and Trypanosomiasis Eradication Council (KENTTEC), P.O. BOX 66290, Westlands, Nairobi 00800, Kenya 3 Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia * Correspondence: harriet.whiley@flinders.edu.au; Tel.: +61-87-2218-580 Received: 26 August 2020; Accepted: 25 September 2020; Published: 28 September 2020 Abstract: Campylobacter spp. is one of the most widespread infectious diseases of veterinary and public health significance. Globally, the incidence of campylobacteriosis has increased over the last decade in both developing and developed countries. Squamates (lizards, snakes and amphisbaenians) are a potential reservoir and source of transmission of campylobacteriosis to humans. This systematic review examined studies from the last 20 years that have reported squamate-associated human campylobacteriosis. It was found that C. fetus subsp. testudinum and C. fetus subsp. fetus were the most common species responsible for human campylobacteriosis from a squamate host. The common squamate hosts identified included bearded dragons (Pogona vitticeps), green iguana (Iguana iguana), western beaked gecko (Rhynchoedura ornate) and blotched blue-tongued skink (Tiliqua nigrolutea). People with underlying chronic illnesses, the immunocompromised and the elderly were identified as the most vulnerable population.
    [Show full text]
  • Campylobacter Fetus Subsp. Fetus GREGORY E
    JOURNAL OF CLINICAL MICROBIOLOGY, June 1994, p. 1608-1609 Vol. 32, No. 6 0095-1137/94/$04.00+0 Copyright © 1994, American Society for Microbiology Septic Abortion with Intact Fetal Membranes Caused by Campylobacter fetus subsp. fetus GREGORY E. STEINKRAUS' AND BRENT D. WRIGHT2,3,4* Department of Pathology and Laboratory Medicine1 and Department of Obstetrics and Gynecology,2 New Hanover Regional Medical Center, and Department of Obstetrics and Gynecology, Coastal Area Health Education Center,3 Wilmington, and Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina4 Received 22 November 1993/Returned for modification 27 January 1994/Accepted 17 March 1994 We report a case of septic abortion with intact fetal membranes caused by Campylobacter fetus subsp.fetus in an 18-year-old woman who was 9 1/2 weeks pregnant. Septic abortion develops in approximately half of 1% of all The patient underwent suction curettage. Prior to surgery, 1 pregnant women. The leading cause of septic abortion in which g of cefoxitin and 100 mg of doxycycline were administered. the fetal membranes are intact is reported to be Listeria The cervical os easily admitted a no. 33 Pratt dilator. A polyp monocytogenes (9). The association of Campylobacter fetus forceps was used to open the internal os. A long spinal needle subsp. fetus with disease in humans has not been frequently was inserted through the intact membranes, and approximately documented. The most common type of infection encountered 2 ml of greenish fluid was obtained and immediately sent for is septicemia in a compromised host (11).
    [Show full text]
  • Redalyc.Campylobacter Fetus Subsp. Fetus Ovine Abortion Outbreak In
    REDVET. Revista Electrónica de Veterinaria E-ISSN: 1695-7504 [email protected] Veterinaria Organización España Fiorentino, María Andrea; Stazionati, Micaela; Hecker, Yanina; Morsella, Claudia; Cantón, Germán; Romero Harry, Hernán; Velilla, Alejandra V.; Gallo Vaulet, Lucía; Rodríguez Fermepin, Marcelo; Bedotti, Daniel O. Campylobacter fetus subsp. fetus ovine abortion outbreak in Argentina REDVET. Revista Electrónica de Veterinaria, vol. 18, núm. 11, noviembre, 2017, pp. 1-11 Veterinaria Organización Málaga, España Available in: http://www.redalyc.org/articulo.oa?id=63653574024 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative REDVET Rev. Electrón. vet. http://www.veterinaria.org/revistas/redvet 2017 Volumen 18 Nº 11 - http://www.veterinaria.org/revistas/redvet/n111117.html REDVET - Revista electrónica de Veterinaria - ISSN 1695-7504 Campylobacter fetus subsp. fetus ovine abortion outbreak in Argentina - Brote de abortos ovinos por Campylobacter fetus fetus en Argentina María Andrea Fiorentino 1*, Micaela Stazionati 2, Yanina Hecker 3, Claudia Morsella 1, Germán Cantón 1, Hernán Romero Harry 2, Alejandra V. Velilla 1, Lucía Gallo Vaulet 4, Marcelo Rodríguez Fermepin 4, Daniel O. Bedotti 2 1- INTA. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce. 7620 Balcarce. Argentina. 2- INTA. Centro Regional La Pampa-San Luis. Estación Experimental Agropecuaria Anguil. 6326 Anguil. Argentina 3- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina 4- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Microbiología Clínica. 1113 Ciudad Autónoma de Buenos Aires.
    [Show full text]
  • Real Time PCR to Detect and Differentiate Campylobacter Fetus Subspecies Fetus and Campylobacter Fetus Subspecies Venerealis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Microbiological Methods 94 (2013) 199–204 Contents lists available at ScienceDirect Journal of Microbiological Methods journal homepage: www.elsevier.com/locate/jmicmeth Real Time PCR to detect and differentiate Campylobacter fetus subspecies fetus and Campylobacter fetus subspecies venerealis A. McGoldrick a,⁎, J. Chanter a, S. Gale b, J. Parr b, M. Toszeghy c, K. Line a a Animal Health and Veterinary Laboratories Agency Starcross, Exeter, United Kingdom b Animal Health and Veterinary Laboratories Agency Winchester, United Kingdom c Animal Health and Veterinary Laboratories Agency, Weybridge, United Kingdom article info abstract Article history: Bovine venereal campylobacter infection, caused by Campylobacter fetus venerealis, is of significant economic Received 8 January 2013 importance to the livestock industry. Unfortunately, the successful detection and discrimination of C. fetus Received in revised form 17 May 2013 venerealis from C. fetus fetus continue to be a limitation throughout the world. There are several publications Accepted 11 June 2013 warning of the problem with biotyping methods as well as with recent molecular based assays. In this study, Available online 25 June 2013 assessed on 1071 isolates, we report on the successful development of two Real Time SYBR® Green PCR assays that will allow for the detection and discrimination of C. fetus fetus and C. fetus venerealis. The sensitivity Keywords: fi Campylobacter reported here for the C. fetus (CampF4/R4) and the C. fetus venerealis (CampF7/R7) speci c PCR assays are 100% fetus fetus and 98.7% respectively.
    [Show full text]
  • Characterization of the Campylobacter Fetus Subsp. Venerealis Adhesion to Bovine Sperm Cells
    Int. J. Morphol., 34(4):1419-1423, 2016. Characterization of the Campylobacter fetus subsp. venerealis Adhesion to Bovine Sperm Cells Caracterización de la Adhesión de Campylobacter fetus subsp. venerealis a Espermatozoides Bovinos María L. Chiapparrone*; Pedro Soto* & María Catena* CHIAPPARRONE, M. L.; SOTO, P. & CATENA, M. Characterization of the Campylobacter fetus subsp. venerealis adhesion to bovine sperm cells. Int. J. Morphol., 34(4):1419-1423, 2016. SUMMARY: Campylobacter fetus is extracellular bacteria of the genital tract of cattle. They cause infertility and abortion, but there is no documented information on the susceptibility of bovine sperm cells to this bacteria. The aim of this present work was to study the effects provoked by Campylobacter fetus subsp. venerealis when in interaction with bovine sperm cells. The bovine spermatozoa were obtained frozen bovine semen pooled from uninfected bulls, and were exposed to living campylobacter over different periods of time. Light microscopy and scanning electron microscopy first revealed a tropism, then a close proximity followed by tight adhesion between these two different cells. A decrease in the spermatozoa motility was observed. Motile bacteria were observed during the next 3 h, this process began with a tight membrane–membrane adhesion. The adhesion between Campylobacter fetus to the sperm cell occurred either by the flagella or by sperm head. Results from this study demonstrated with light microscopy scanning electron microscopy allowed us to characterize some aspects of the interaction of Campylobacter fetus subsp. venerealis and bovine sperm while preserving the cellular and bacterial structure. This ex vivo model might be useful for studies on adhesion and cytopathogenicity of different field strains of Campylobacter fetus.
    [Show full text]