Venus Lithograph
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mission to Jupiter
This book attempts to convey the creativity, Project A History of the Galileo Jupiter: To Mission The Galileo mission to Jupiter explored leadership, and vision that were necessary for the an exciting new frontier, had a major impact mission’s success. It is a book about dedicated people on planetary science, and provided invaluable and their scientific and engineering achievements. lessons for the design of spacecraft. This The Galileo mission faced many significant problems. mission amassed so many scientific firsts and Some of the most brilliant accomplishments and key discoveries that it can truly be called one of “work-arounds” of the Galileo staff occurred the most impressive feats of exploration of the precisely when these challenges arose. Throughout 20th century. In the words of John Casani, the the mission, engineers and scientists found ways to original project manager of the mission, “Galileo keep the spacecraft operational from a distance of was a way of demonstrating . just what U.S. nearly half a billion miles, enabling one of the most technology was capable of doing.” An engineer impressive voyages of scientific discovery. on the Galileo team expressed more personal * * * * * sentiments when she said, “I had never been a Michael Meltzer is an environmental part of something with such great scope . To scientist who has been writing about science know that the whole world was watching and and technology for nearly 30 years. His books hoping with us that this would work. We were and articles have investigated topics that include doing something for all mankind.” designing solar houses, preventing pollution in When Galileo lifted off from Kennedy electroplating shops, catching salmon with sonar and Space Center on 18 October 1989, it began an radar, and developing a sensor for examining Space interplanetary voyage that took it to Venus, to Michael Meltzer Michael Shuttle engines. -
Copyrighted Material
Index Abulfeda crater chain (Moon), 97 Aphrodite Terra (Venus), 142, 143, 144, 145, 146 Acheron Fossae (Mars), 165 Apohele asteroids, 353–354 Achilles asteroids, 351 Apollinaris Patera (Mars), 168 achondrite meteorites, 360 Apollo asteroids, 346, 353, 354, 361, 371 Acidalia Planitia (Mars), 164 Apollo program, 86, 96, 97, 101, 102, 108–109, 110, 361 Adams, John Couch, 298 Apollo 8, 96 Adonis, 371 Apollo 11, 94, 110 Adrastea, 238, 241 Apollo 12, 96, 110 Aegaeon, 263 Apollo 14, 93, 110 Africa, 63, 73, 143 Apollo 15, 100, 103, 104, 110 Akatsuki spacecraft (see Venus Climate Orbiter) Apollo 16, 59, 96, 102, 103, 110 Akna Montes (Venus), 142 Apollo 17, 95, 99, 100, 102, 103, 110 Alabama, 62 Apollodorus crater (Mercury), 127 Alba Patera (Mars), 167 Apollo Lunar Surface Experiments Package (ALSEP), 110 Aldrin, Edwin (Buzz), 94 Apophis, 354, 355 Alexandria, 69 Appalachian mountains (Earth), 74, 270 Alfvén, Hannes, 35 Aqua, 56 Alfvén waves, 35–36, 43, 49 Arabia Terra (Mars), 177, 191, 200 Algeria, 358 arachnoids (see Venus) ALH 84001, 201, 204–205 Archimedes crater (Moon), 93, 106 Allan Hills, 109, 201 Arctic, 62, 67, 84, 186, 229 Allende meteorite, 359, 360 Arden Corona (Miranda), 291 Allen Telescope Array, 409 Arecibo Observatory, 114, 144, 341, 379, 380, 408, 409 Alpha Regio (Venus), 144, 148, 149 Ares Vallis (Mars), 179, 180, 199 Alphonsus crater (Moon), 99, 102 Argentina, 408 Alps (Moon), 93 Argyre Basin (Mars), 161, 162, 163, 166, 186 Amalthea, 236–237, 238, 239, 241 Ariadaeus Rille (Moon), 100, 102 Amazonis Planitia (Mars), 161 COPYRIGHTED -
Geological Timeline
Geological Timeline In this pack you will find information and activities to help your class grasp the concept of geological time, just how old our planet is, and just how young we, as a species, are. Planet Earth is 4,600 million years old. We all know this is very old indeed, but big numbers like this are always difficult to get your head around. The activities in this pack will help your class to make visual representations of the age of the Earth to help them get to grips with the timescales involved. Important EvEnts In thE Earth’s hIstory 4600 mya (million years ago) – Planet Earth formed. Dust left over from the birth of the sun clumped together to form planet Earth. The other planets in our solar system were also formed in this way at about the same time. 4500 mya – Earth’s core and crust formed. Dense metals sank to the centre of the Earth and formed the core, while the outside layer cooled and solidified to form the Earth’s crust. 4400 mya – The Earth’s first oceans formed. Water vapour was released into the Earth’s atmosphere by volcanism. It then cooled, fell back down as rain, and formed the Earth’s first oceans. Some water may also have been brought to Earth by comets and asteroids. 3850 mya – The first life appeared on Earth. It was very simple single-celled organisms. Exactly how life first arose is a mystery. 1500 mya – Oxygen began to accumulate in the Earth’s atmosphere. Oxygen is made by cyanobacteria (blue-green algae) as a product of photosynthesis. -
Round 3 Michael Etzkorn • Brad Fischer • Clare Keenan • Mike Laudermith • Lauren Onel Noah Prince • Jacob Simmons • Kristin Strey • Tyler Vaughan
2017 SCOP MS 8 Round 3 Michael Etzkorn • Brad Fischer • Clare Keenan • Mike Laudermith • Lauren Onel Noah Prince • Jacob Simmons • Kristin Strey • Tyler Vaughan Tossups (1) This astronomical body, which was called Hesperus when it appeared as the Evening Star, has surface features called Maxwell Montes, Lakshmi Planum, and Ishtar Terra that are obscured by a permanent cover of (*) sulfuric acid clouds. A 96% carbon dioxide atmosphere led to a runaway greenhouse effect on, for ten points, what second planet in the Solar System? ANSWER: Venus (2) A holder of this title controversially pushed his people away from polytheism in favor of a solar god worshiped at Amarna. Lord Carnavon funded Howard Carter’s 1922 expedition to discover the burial grounds of one of these people at (*) Luxor, and found a sarcophagus containing a solid gold funerary mask and mummified remains. For ten points, name this title given to Akenhaten, King Tut, and other ancient Egyptian rulers. ANSWER: Egyptian pharaohs (3) A composer from this country wrote about the unlucky servant Ninetta in The Thieving Magpie, and included a “cavalry charge” galop in his (*) William Tell overture. For ten points, name this home country of Gioachino Rossini as well as Giacomo Puccini, who set his opera Tosca in Rome. ANSWER: Italy (accept Italia; accept Italian Republic or Repubblica italiana) (4) The Rydberg formula inspired one model of these objects, and the first sub-parts of these objects were detected by a deflection of cathode rays observed by JJ Thomson. A (*) gold foil experiment determined that these things possess a dense central mass, disproving their “plum pudding” model. -
Venus Aerobot Multisonde Mission
w AIAA Balloon Technology Conference 1999 Venus Aerobot Multisonde Mission By: James A. Cutts ('), Viktor Kerzhanovich o_ j. (Bob) Balaram o), Bruce Campbell (2), Robert Gershman o), Ronald Greeley o), Jeffery L. Hall ('), Jonathan Cameron o), Kenneth Klaasen v) and David M. Hansen o) ABSTRACT requires an orbital relay system that significantly Robotic exploration of Venus presents many increases the overall mission cost. The Venus challenges because of the thick atmosphere and Aerobot Multisonde (VAMuS) Mission concept the high surface temperatures. The Venus (Fig 1 (b) provides many of the scientific Aerobot Multisonde mission concept addresses capabilities of the VGA, with existing these challenges by using a robotic balloon or technology and without requiring an orbital aerobot to deploy a number of short lifetime relay. It uses autonomous floating stations probes or sondes to acquire images of the (aerobots) to deploy multiple dropsondes capable surface. A Venus aerobot is not only a good of operating for less than an hour in the hot lower platform for precision deployment of sondes but atmosphere of Venus. The dropsondes, hereafter is very effective at recovering high rate data. This described simply as sondes, acquire high paper describes the Venus Aerobot Multisonde resolution observations of the Venus surface concept and discusses a proposal to NASA's including imaging from a sufficiently close range Discovery program using the concept for a that atmospheric obscuration is not a major Venus Exploration of Volcanoes and concern and communicate these data to the Atmosphere (VEVA). The status of the balloon floating stations from where they are relayed to deployment and inflation, balloon envelope, Earth. -
Envision Conference
Image credit: JAXA/DART/Damia Bouic NASA/GSFC/U. Arizona http://envisionvenus.eu http:/bit.ly/venus2020 M5/EnVision Project Cosmic Vision mission timeline M3 M1 M2 M5 M4 Image credit: http://envisionvenus.eu ESA Science - adapted from Wikipedia M5/EnVision : timeline Apr. 2016: Release of call for M5 mission Oct. 2016: EnVision proposal submitted Jan. 2017: 1st programmatic evaluation rejected Feb. 2017: EnVision scientific & programmatic evaluation resumes May 2018: ESA selects 3 M5 mission concepts to study Jun. 2018: ESA Science Directorate forms Science Study Team (SST) Nov 2018: CDF study (Phase 0) completed / EnVision Mission Definition Review (MDR) 2019-2020: Industrial phase A study (2 independent ESA contractors) Image credit M5/EnVision Project Mar. 2020 : EnVision Mission Consolidation Review (MCR) Dec. 2020 : EnVision Assessment Study Report (Yellow Book) Feb. 2021 : EnVision Mission Selection Review (MSR) http://envisionvenus.eu Image credit ESA Three very different M5 finalists "A high-energy survey of the early Universe, an infrared observatory to study the formation of stars, planets and galaxies, and a Venus orbiter are to be considered for ESA’s fifth medium class mission in its Cosmic Vision science programme, with a planned launch date in 2032." Spectroscopy from 12 to 230 μ Soft X-ray, X-gamma rays LEO orbit Image credit M5/EnVision Project M5/SPICA Project http://envisionvenus.eu M5/Theseus Project DAY 1 You are warmly invited to join •EnVision mission overview the international conference •Surface to discuss the scientific Magellan heritage investigations of ESA's DAY 2 EnVision mission. •Interior structure (radial : tidal, viscosity, crust, lithosphere structure) The conference will welcome •Activity detection all presentations related to DAY 3 the mission’s payload an its •Atmosphere VEx, Akatsuki Heritage science investigations. -
Appendix 1: Venus Missions
Appendix 1: Venus Missions Sputnik 7 (USSR) Launch 02/04/1961 First attempted Venus atmosphere craft; upper stage failed to leave Earth orbit Venera 1 (USSR) Launch 02/12/1961 First attempted flyby; contact lost en route Mariner 1 (US) Launch 07/22/1961 Attempted flyby; launch failure Sputnik 19 (USSR) Launch 08/25/1962 Attempted flyby, stranded in Earth orbit Mariner 2 (US) Launch 08/27/1962 First successful Venus flyby Sputnik 20 (USSR) Launch 09/01/1962 Attempted flyby, upper stage failure Sputnik 21 (USSR) Launch 09/12/1962 Attempted flyby, upper stage failure Cosmos 21 (USSR) Launch 11/11/1963 Possible Venera engineering test flight or attempted flyby Venera 1964A (USSR) Launch 02/19/1964 Attempted flyby, launch failure Venera 1964B (USSR) Launch 03/01/1964 Attempted flyby, launch failure Cosmos 27 (USSR) Launch 03/27/1964 Attempted flyby, upper stage failure Zond 1 (USSR) Launch 04/02/1964 Venus flyby, contact lost May 14; flyby July 14 Venera 2 (USSR) Launch 11/12/1965 Venus flyby, contact lost en route Venera 3 (USSR) Launch 11/16/1965 Venus lander, contact lost en route, first Venus impact March 1, 1966 Cosmos 96 (USSR) Launch 11/23/1965 Possible attempted landing, craft fragmented in Earth orbit Venera 1965A (USSR) Launch 11/23/1965 Flyby attempt (launch failure) Venera 4 (USSR) Launch 06/12/1967 Successful atmospheric probe, arrived at Venus 10/18/1967 Mariner 5 (US) Launch 06/14/1967 Successful flyby 10/19/1967 Cosmos 167 (USSR) Launch 06/17/1967 Attempted atmospheric probe, stranded in Earth orbit Venera 5 (USSR) Launch 01/05/1969 Returned atmospheric data for 53 min on 05/16/1969 M. -
Winds in the Lower Cloud Level on the Nightside of Venus from VIRTIS-M (Venus Express) 1.74 Μm Images
atmosphere Article Winds in the Lower Cloud Level on the Nightside of Venus from VIRTIS-M (Venus Express) 1.74 µm Images Dmitry A. Gorinov * , Ludmila V. Zasova, Igor V. Khatuntsev, Marina V. Patsaeva and Alexander V. Turin Space Research Institute, Russian Academy of Sciences, 117997 Moscow, Russia; [email protected] (L.V.Z.); [email protected] (I.V.K.); [email protected] (M.V.P.); [email protected] (A.V.T.) * Correspondence: [email protected] Abstract: The horizontal wind velocity vectors at the lower cloud layer were retrieved by tracking the displacement of cloud features using the 1.74 µm images of the full Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS-M) dataset. This layer was found to be in a superrotation mode with a westward mean speed of 60–63 m s−1 in the latitude range of 0–60◦ S, with a 1–5 m s−1 westward deceleration across the nightside. Meridional motion is significantly weaker, at 0–2 m s−1; it is equatorward at latitudes higher than 20◦ S, and changes its direction to poleward in the equatorial region with a simultaneous increase of wind speed. It was assumed that higher levels of the atmosphere are traced in the equatorial region and a fragment of the poleward branch of the direct lower cloud Hadley cell is observed. The fragment of the equatorward branch reveals itself in the middle latitudes. A diurnal variation of the meridional wind speed was found, as east of 21 h local time, the direction changes from equatorward to poleward in latitudes lower than 20◦ S. -
THE LANDSCAPE of COMET HALLEY Hungarian Academy of Sciences CENTRAL RESEARCH INSTITUTE for PHYSICS
KFKI 1939-35/C E. MERÉNYI L. FÖLDY K. SZEGŐ I. TÓTH A. KONDOR THE LANDSCAPE OF COMET HALLEY Hungarian Academy of Sciences CENTRAL RESEARCH INSTITUTE FOR PHYSICS BUDAPEST KFKI-1989-35/C PREPRINT THE LANDSCAPE OF COMET HALLEY E. MERÉNYI, L. FÖLDY, K. SZEGŐ. I. TÓTH', A. KONDOR Central Research Institute for Physics H-1626 Budapest 114, P.O.B. 49 'Konkoly Thege Observatory H-1625 Budapest, P.O.B. 67 Comets in Post Hal ley area Bamberg (FRG). 24 28 April 1989 HU ISSN 0368 6330 E. Merényi, L. Földy. К. Szegő, I. Tóth. A. Kondor: The landscape of cornel Halley KFKM989 35/C ABSTRACT In this paper the three dimensional model of P/Halley's nucleus is constructed based on the results of the imaging experiments It has the following major characteristics: the overai' sizes are 7 2 km, 722 km, 15.3 km, its volume is 365 km3, the ratios of the inertfal momenta are 34:33:1, the longest Inorttal axis is siiyhlly inclined to the geometrical axis of the body. 3 3° in latitude and 1.1° In longitude if the geometrical axis is at zero latitude and longitude The shape is very irregular, it is not close to any regular body e g to a tri axial ellipsoid Several features on the images are interpreted as local slope variations of the nucleus. Э. Мерени; Л. Фёлди, К. Сегё, И. Тот, Л. Кондор: Форма и поверхность ядра кометы Галлея. КГКТ-198<?-35/С АННОТАЦИЯ Описывается трехмерная модель ядра кометы Галлея, основывающаяся на резуль татах телевизионного эксперимента КА "Вега". -
Investigating Mineral Stability Under Venus Conditions: a Focus on the Venus Radar Anomalies Erika Kohler University of Arkansas, Fayetteville
University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2016 Investigating Mineral Stability under Venus Conditions: A Focus on the Venus Radar Anomalies Erika Kohler University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Geochemistry Commons, Mineral Physics Commons, and the The unS and the Solar System Commons Recommended Citation Kohler, Erika, "Investigating Mineral Stability under Venus Conditions: A Focus on the Venus Radar Anomalies" (2016). Theses and Dissertations. 1473. http://scholarworks.uark.edu/etd/1473 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Investigating Mineral Stability under Venus Conditions: A Focus on the Venus Radar Anomalies A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Space and Planetary Sciences by Erika Kohler University of Oklahoma Bachelors of Science in Meteorology, 2010 May 2016 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. ____________________________ Dr. Claud H. Sandberg Lacy Dissertation Director Committee Co-Chair ____________________________ ___________________________ Dr. Vincent Chevrier Dr. Larry Roe Committee Co-chair Committee Member ____________________________ ___________________________ Dr. John Dixon Dr. Richard Ulrich Committee Member Committee Member Abstract Radar studies of the surface of Venus have identified regions with high radar reflectivity concentrated in the Venusian highlands: between 2.5 and 4.75 km above a planetary radius of 6051 km, though it varies with latitude. -
Cleopatra Crater on Venus: Happy Solution of the Volcanic Vs
CLEOPATRA CRATER ON VENUS: HAPPY SOLUTION OF THE VOLCANIC VS. IMPACT CRATER CONTROVERSY; A.T. Basilevsky, A.T. Vernadsky Institute of Geochemistry and Analytical chemistry, Moscow, USSR, and G.G. Schaber, U.S. Geological Survey, Flagstaff AZ 86001 ~ntroduction. Cleopatra is a 100-km-diameter crater on the eastern slope of Maxwell Montes in western Ishtar Terra. For over 12 years, Cleopatra has been the subject of scientific controversy. Discovered during the Pioneer Venus altimetric survey, this feature was initially interpreted as a caldera near the top of a giant volcanic construct, Maxwell Montes [I]. Venera 15/16 data and recent Arecibo radar images show, however, that the Maxwell Montes appear to be more of a tectonic construct, with little or no resemblance to other giant shields known in the Solar System; thus, a nonvolcanic origin of Cleopatra was proposed [2-61. The similarity of the double-ring structure of Cleopatra to those of other multi-ring impact craters of similar size on Venus and the Moon, Mercury, and Mars was more recently given by Basilevsky and Ivanov [7] as the primarily reason to consider this feature an impact crater. At the same time, some characteristics of Cleopatra seemed to contradict an impact origin. For example, Schaber et al. [8], suggestingthat a definitive verification of a volcanic or impact origin would probably require Magellan data, proposed that the evidence from Venera 15/16 and earlier data for a probable volcanic origin for Cleopatra is substantial. They cited, among other points: (1) the absence of a raised rim and highly backscattering ejecta deposits; (2) the crater's association with plains-forming deposits immediately downslope to the east, interpreted as probable lava flows emanating from a distinct breach in the crater's rim; (3) the excessive depth (2.5 km) and depth-to-diameter ratio (0.028) of the crater, (4) the offset of the inner and outer craters; and (5) the crater's position in what was interpreted as a regional tectonic framework. -
Outer Planets: the Ice Giants
Outer Planets: The Ice Giants A. P. Ingersoll, H. B. Hammel, T. R. Spilker, R. E. Young Exploring Uranus and Neptune satisfies NASA’s objectives, “investigation of the Earth, Moon, Mars and beyond with emphasis on understanding the history of the solar system” and “conduct robotic exploration across the solar system for scientific purposes.” The giant planet story is the story of the solar system (*). Earth and the other small objects are leftovers from the feast of giant planet formation. As they formed, the giant planets may have migrated inward or outward, ejecting some objects from the solar system and swallowing others. The giant planets most likely delivered water and other volatiles, in the form of icy planetesimals, to the inner solar system from the region around Neptune. The “gas giants” Jupiter and Saturn are mostly hydrogen and helium. These planets must have swallowed a portion of the solar nebula intact. The “ice giants” Uranus and Neptune are made primarily of heavier stuff, probably the next most abundant elements in the Sun – oxygen, carbon, nitrogen, and sulfur. For each giant planet the core is the “seed” around which it accreted nebular gas. The ice giants may be more seed than gas. Giant planets are laboratories in which to test our theories about geophysics, plasma physics, meteorology, and even oceanography in a larger context. Their bottomless atmospheres, with 1000 mph winds and 100 year-old storms, teach us about weather on Earth. The giant planets’ enormous magnetic fields and intense radiation belts test our theories of terrestrial and solar electromagnetic phenomena.