Sends and Receives the Distress Signal SOS by Flashing Light
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Global Maritime Distress and Safety System (GMDSS) Handbook 2018 I CONTENTS
FOREWORD This handbook has been produced by the Australian Maritime Safety Authority (AMSA), and is intended for use on ships that are: • compulsorily equipped with GMDSS radiocommunication installations in accordance with the requirements of the International Convention for the Safety of Life at Sea Convention 1974 (SOLAS) and Commonwealth or State government marine legislation • voluntarily equipped with GMDSS radiocommunication installations. It is the recommended textbook for candidates wishing to qualify for the Australian GMDSS General Operator’s Certificate of Proficiency. This handbook replaces the tenth edition of the GMDSS Handbook published in September 2013, and has been amended to reflect: • changes to regulations adopted by the International Telecommunication Union (ITU) World Radiocommunications Conference (2015) • changes to Inmarsat services • an updated AMSA distress beacon registration form • changes to various ITU Recommendations • changes to the publications published by the ITU • developments in Man Overboard (MOB) devices • clarification of GMDSS radio log procedures • general editorial updating and improvements. Procedures outlined in the handbook are based on the ITU Radio Regulations, on radio procedures used by Australian Maritime Communications Stations and Satellite Earth Stations in the Inmarsat network. Careful observance of the procedures covered by this handbook is essential for the efficient exchange of communications in the marine radiocommunication service, particularly where safety of life at sea is concerned. Special attention should be given to those sections dealing with distress, urgency, and safety. Operators of radiocommunications equipment on vessels not equipped with GMDSS installations should refer to the Marine Radio Operators Handbook published by the Australian Maritime College, Launceston, Tasmania, Australia. No provision of this handbook or the ITU Radio Regulations prevents the use, by a ship in distress, of any means at its disposal to attract attention, make known its position and obtain help. -
Celebrating the Radio Regulations 05/2016 Online Frequency Portals to Provide Spectrum Transparency
itunews Celebrating the Radio Regulations 05/2016 Online Frequency Portals to Provide Spectrum Transparency LS telcom Offices © istock.com Smart Spectrum Solutions Systems Solutions and Expertise in Spectrum Management, Spectrum Monitoring and Radio Network Planning & Engineering. www.LStelcom.com (Editorial) ITU Radio Regulations — Now more important than ever Houlin Zhao, ITU Secretary‑General uring this month of December we are celebrating the 110 years of existence of the ITU Radio Regulations — the essential international treaty governing the use of the radio-frequency spectrum and satellite orbits for Dubiquitous wireless communications. The ITU Radio Regulations ensure interference-free operations of radiocommunication systems and provide all countries with equitable access to the radio spectrum — a scarce natural resource that does not distinguish national borders and needs to be har- monized globally. In an increasingly “wireless” world, the Radio Regulations ena- ble all radio services to share the spectrum while satisfying their evolving requirements, protecting incumbents, and providing high-quality services to an increasingly growing number of users and applications. Since the early 1900s, the management of the radio-frequency In an spectrum and the regulation of its use have been major functions of ITU. In their role as global spectrum coordinators, ITU Member increasingly States have developed, and are constantly updating, the Radio 1 “wireless” world, Regulations. the Radio The first set of international regulations, drawn up in 1906, mainly Regulations concerned maritime radiotelegraphy. The 1906 Radiotelegraph enable all Convention gathered 30 maritime States on 3 November 1906 in Berlin for the first International Radiotelegraph Conference, and 05/2016 radio services adopted the “International Radiotelegraph Convention” estab- to share the lishing the principle of compulsory intercommunication between vessels at sea and in-land stations. -
Mnlilslffislßl SIGNAL BOOK UNITED STATES ARMY
Uifh '^r MnlilSlffiSlßl SIGNAL BOOK UNITED STATES ARMY v 1916 WASHINGTON GOVERNMENT PRINTING OFFICE 1916 NOV 0 8 1988 WAR DEPARTMENT Document No. 500 Office ofthe Chief Sijnal Officer ADDITIONALCOPIES OF THIS PUBLICATION MAY BE PROCURED FROM THE•SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE "WASHINGTON,D. C. AT 20 CENTS PER COPY V War Department, Office of the Chief of Staff. > Washington, April15, 1916. The followingSignal Book, prepared by the Chief Signal Officer of the Army,is approved and herewith issued for the information and government of the Regular Army and the Organized Militia of the United States. It supersedes Signal Book, United States Army, 1914, and its provisions willbe strictly observed throughout the service. order of the Secretary of War: H.L. Scott, Major General, Chief ofStaff. 3 CONTENTS. Page. Part I. General Instructions for Army Signaling 7 11. The American Morse Code 9 111. The International Morse or General Service Code. \u25a0 12 IV. Visual Signaling ingeneral 15 V. Visual Signaling by Flag, Torch, Hand Lan tern, or Beam of Searchlight (without shut ter) 17 VI. Signaling with Heliograph, Flash Lantern, or Searchlight (with shutter) 18 VII.The Ardois System 19 VIII.Signaling by Two-ArmSemaphore . 21 Stationary Semaphore 21 Hand Flags withTwo-ArmSemaphore Code. 21 IX.Letter Codes: Infantry .' 23 Cavalry. 24 Field Artillery ..... 24 Coast Artillery , 26 X. Conventional and Preconcerted Signals with Rockets, Bombs, Small Arms, Guns, Coston Lights, Very Pistols, etc 2828 XI.Flag Signals by Permanent Hoist. 31 XII.Conventional Telephone Signals 33 XIII.Emergency Signals '.. 34 XIV.Additional and Improvised Codes. 38 XV. -
International Code of Signals
PUB. 102 INTERNATIONAL CODE OF SIGNALS FOR VISUAL, SOUND, AND RADIO COMMUNICATIONS UNITED STATES EDITION 1969 Edition (Revised 2003) NATIONAL IMAGERY AND MAPPING AGENCY PUB. 102 International Code of Signals As adopted by the Fourth Assembly of the Inter-Governmental Maritime Consultative Organization in 1965 For Visual, Sound, and Radio Communications United States Edition, 1969 (Revised 2003) Prepared and published by the NATIONAL IMAGERY AND MAPPING AGENCY Bethesda, Maryland © COPYRIGHT 2003 BY THE UNITED STATES GOVERNMENT NO COPYRIGHT CLAIMED UNDER TITLE 17 U.S.C. For sale by the Superintendant of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512-1800; DC area (202) 512-1800 Fax: (202) 512-2250 Mail Stop: SSOP, Washington, DC 20402-0001 PREFACE Pub 102, the 1969 edition of the International Code of Signals, became effective on 1 April 1969, and at that time superseded H.O. Pubs. 103 and 104, International Code of Signals, Volumes I and II. All signals are contained in a single volume suitable for all methods of communication. The First International Code was drafted in 1855 by a Committee set up by the British Board of Trade. It contained 70,000 signals using eighteen flags and was published by the British Board of Trade in 1857 in two parts; the first containing universal and international signals and the second British signals only. The book was adopted by most seafaring nations. This early edition was revised by a Committee set up in 1887 by the British Board of Trade. The Committee’s proposals were discussed by the principal maritime powers and at the International Conference in Washington in 1889. -
Morse Code and the Information Age Morse Code, Invented by Samuel F. B. Morse in the 1830S, Is a Method of Transmitting Textual
Morse Code and the Information Age Morse code, invented by Samuel F. B. Morse in the 1830s, is a method of transmitting textual information as a series of on-off tones, lights, or clicks that can be directly understood by a skilled listener or observer without special equipment. The International Morse Code encodes the Roman alphabet, the Arabic numerals and a small set of punctuation and procedural signals. The original telegraph system had an apparatus on the receiving end that spat out a string of paper with indentations on it. Short indentations were called “dots” or “dits,” and the longer ones “dashes” or “dahs.” Because many non-English natural languages use more than the 26 Roman letters, extensions to the Morse alphabet exist for those languages. Morse code has been in use for more than 160 years—longer than any other electrical coding system. What is called Morse code today is actually somewhat different from what was originally developed. The Modern International Morse code, or continental code, was created by Friedrich Clemens Gerke in 1848 and initially used for telegraphy between Hamburg and Cuxhaven in Germany. Gerke changed nearly half of the alphabet and all of the numerals resulting substantially in the modern form of the code. After some minor changes, International Morse Code was standardized at the International Telegraphy Congress in 1865 in Paris, and was later made the standard by the International Telecommunication Union (ITU). Samuel Morse's original code specification, largely limited to use in the United States and Canada, became known as American Morse code or railroad code. -
Morse Code Worksheets Morse Code Facts
Morse Code Worksheets Morse Code Facts Morse code is used to send telegraphic information through two signal durations as dots and dashes that correspond to the alphabet, numbers, and punctuation. It transformed how people communicated with each other across long distances. HISTORY AND DEVELOPMENT ★ Samuel F. B. Morse, along with Leonard Gale and Alfred Vail, was able to develop a telegraph with a single circuit. Using this telegraph, the operator key is pushed down, sending an electrical signal to the receiver through a wire. ★ Around 1837, Morse and Vail developed a code that assigned a set of dots and dashes to the alphabet and numbers based on how often they are used in the English language. Samuel Morse, the inventor of Morse code KIDSKONNECT.COM Morse Code Facts ★ Simple codes were assigned to letters that are frequently used and those that are not used as often had more complex and extended codes. For example, the letter E, which is commonly used, is represented by while the letter Q is . ★ On May 24, 1844, Samuel Morse sent the first Morse telegraph from Washington, D.C., to Baltimore, Maryland. ★ In Samuel Morse's telegraph system, a paper tape is indented with a stylus whenever an electric current is received. Due to its mechanical components, the receiver makes a clicking sound whenever the stylus moves to mark the paper tape. A telegraph sounder (left) and key (right) The operators initially translated the message based on the indentations on the tape but soon they realized they could translate these clicks directly into dots (dits) and dashes (dahs) without the need to look at the paper tape. -
Federal Communications Commission § 80.319
Federal Communications Commission § 80.319 § 80.314 Distress communications. as practicable over a period of approxi- (a) The international radiotelephone mately one minute. The purpose of this distress signal consists of the word special signal is to attract the atten- MAYDAY, pronounced as the French tion of the person on watch or to actu- expression ‘‘m’aider’’. ate automatic devices giving the (b) These distress signals indicate alarm. that a mobile station is threatened by § 80.318 Use of alarm signals. grave and imminent danger and re- quests immediate assistance. (a) The radiotelegraph or radio- (c) The radiotelephone distress call telephone alarm signal, as appropriate, consists of: must only be used to announce: (1) The distress signal MAYDAY spo- (1) That a distress call or message is ken three times; about to follow; (2) The words THIS IS; (2) The transmission of an urgent cy- (3) The call sign (or name, if no call clone warning. In this case the alarm sign assigned) of the mobile station in signal may only be used by coast sta- distress, spoken three times; tions authorized by the Commission to (4) Particulars of the station’s posi- do so; or tion; (3) The loss of a person or persons (5) The nature of the distress; overboard. In this case the alarm sig- (6) The kind of assistance desired; nal may only be used when the assist- and ance of other ships is required and can- (7) Any other information which not be satisfactorily obtained by the might facilitate rescue, for example, use of the urgency signal only, but the the length, color, and type of vessel, or alarm signal must not be repeated by number of persons on board. -
Recreational Craft COVERS Layout 1
Recreational_partB_ch6_11_Layout 1 17/10/2017 17:04 Page 107 Chapter 11 Emergency Procedures 107 Recreational_partB_ch6_11_Layout 1 17/10/2017 17:04 Page 108 11 The procedures described in this Chapter do not prevent the use, by any vessel, survival craft or person in distress of any means at their disposal to attract attention, make known their position and obtain help. 11.1 Procedure for making e.g. “Position one mile South of distress or urgency calls Fastnet Lighthouse”) using VHF voice STATE THE NATURE OF 11.1.1 Making a distress DISTRESS. Emergency Procedures transmission using VHF voice (e.g. sinking, man overboard, fire on broadcasting – MAYDAY board, …) In cases where there is grave or imminent danger to either the vessel STATE THE NUMBER OF or persons on board, then a PERSONS ABOARD. MAYDAY should be broadcast on Channel 16 with the VHF unit set to STATE ANY OTHER USEFUL high power in the following format: INFORMATION. “MAYDAY, MAYDAY, MAYDAY, OVER”. This is ‘NAME OF VESSEL’, 11.1.2 Making an urgency ‘NAME OF VESSEL’, ‘NAME OF broadcast using VHF – VESSEL’ PAN-PAN (State the name of the vessel three In circumstances that are times) considered to be grave but do not require immediate assistance and MAYDAY, where there is no imminent danger to the vessel or persons on board, ‘NAME OF VESSEL’, e.g. mechanical failure, loss of propulsion, a “PAN-PAN” Urgency STATE THE POSITION OF THE Broadcast should be made on VHF VESSEL Channel 16 with the unit set to high (If possible give the position from a power in the following format: GPS receiver or bearings from and distance to any known fixed points 108 Recreational_partB_ch6_11_Layout 1 17/10/2017 17:04 Page 109 11 “PAN-PAN, PAN-PAN, PAN-PAN, Modern VHF radios are fitted with a Emergency Procedures Digital Selective Calling (DSC) ALL STATIONS, ALL STATIONS, facility whereby a distress call is ALL STATIONS, activated by pressing a dedicated switch on the radio. -
Q Code & Signals
Rec. ITU-R M.1172 1 RECOMMENDATION ITU-R M.1172* MISCELLANEOUS ABBREVIATIONS AND SIGNALS TO BE USED FOR RADIOCOMMUNICATIONS IN THE MARITIME MOBILE SERVICE (1995) Rec. ITU-R M.1172 The ITU Radiocommunication Assembly, considering a) that there is a need to describe miscellaneous abbreviations and signals to be used in the maritime mobile service, recommends 1 that the use of miscellaneous abbreviations and signals for radiocommunications in the maritime mobile service be in accordance with Annex 1. ANNEX 1 Miscellaneous abbreviations and signals to be used for radiocommunications in the maritime mobile service Section I. Q Code Introduction 1 The series of groups listed in this Annex range from QOA to QUZ. 2 The QOA to QQZ series are reserved for the maritime mobile service. 3 Certain Q code abbreviations may be given an affirmative or negative sense by sending, immediately following the abbreviation, the letter C or the letters NO (in radiotelephony spoken as: CHARLIE or NO). 4 The meanings assigned to Q code abbreviations may be amplified or completed by the appropriate addition of other groups, call signs, place names, figures, numbers, etc. It is optional to fill in the blanks shown in parentheses. Any data which are filled in where blanks appear shall be sent in the same order as shown in the text of the following tables. 5 Q code abbreviations are given the form of a question when followed by a question mark in radiotelegraphy and RQ (ROMEO QUEBEC) in radiotelephony. When an abbreviation is used as a question and is followed by additional or complementary information, the question mark (or RQ) should follow this information. -
CHAPTER VII Distress and Safety Communications1
CHAPTER VII Distress and safety communications1 _______________ 1 C.VII For the purposes of this Chapter, distress and safety communications include distress, urgency and safety calls and messages. RR30-1 ARTICLE 30 General provisions Section I – Introduction 30.1 § 1 This Chapter contains the provisions for the operational use of the global maritime distress and safety system (GMDSS), whose functional requirements, system elements and equipment carriage requirements are set forth in the International Convention for the Safety of Life at Sea (SOLAS), 1974, as amended. This Chapter also contains provisions for initiating distress, urgency and safety communications by means of radiotelephony on the frequency 156.8 MHz (VHF channel 16). (WRC-07) 30.2 § 2 No provision of these Regulations prevents the use by a mobile station or a mobile earth station in distress of any means at its disposal to attract attention, make known its position, and obtain help (see also No. 4.9). 30.3 § 3 No provision of these Regulations prevents the use by stations on board aircraft, ships engaged in search and rescue operations, land stations, or coast earth stations, in exceptional circumstances, of any means at their disposal to assist a mobile station or a mobile earth station in distress (see also Nos. 4.9 and 4.16). Section II – Maritime provisions 30.4 § 4 The provisions specified in this Chapter are obligatory in the maritime mobile service and the maritime mobile-satellite service for all stations using the frequencies and techniques prescribed for the functions set out herein (see also No. 30.5). (WRC-07) 30.5 § 5 The International Convention for the Safety of Life at Sea (SOLAS), 1974 as amended, prescribes which ships and which of their survival craft shall be provided with radio equipment, and which ships shall carry portable radio equipment for use in survival craft. -
The FOC Guide to Morse Code Proficiency by Gary Hinson, Zl2ifb Version 1.4 January 2019
The FOC Guide to Morse Code Proficiency by Gary Hinson, ZL2iFB Version 1.4 January 2019 Contents Introduction Speed Ti ming is ever y thing Pitch Q-codes, abbrev’s, punctuation & prosigns Swings and fists Morse quality metric Hinson tips Sending better CW Copying CW better Conclusion Reader feedback References Bibliography (other useful resources) Introduction Properly-formed Morse code is a delight to hear when strong, and copiable by ear even when signals are quite weak. Despite being monotonic and irregular, good Morse has a curiously musical quality, far from monotonous. However, on the air we typically face QRM, QRN, QSB, weak/marginal signals leading to errors and gaps in the copy, confusion, fatigue and frustration. Throw in badly-sent CW such as mis-sent characters, uncorrected errors, spelling mistakes, stray dits and missing dahs, variable timing with seemingly random spacing, plus off-frequency transmitters, drift, chirp, ringing filters and so on, and making contact may become, let’s say, challenging. Prompted by a lively discussion around W1RM Pete’s sage “One of the goals of every skilled comment ⇒ this guide offers advice on improving proficiency in CW operator is to send well. That Morse code for those already using CW (= Continuous Wave, not means good character formation Can’t Work!) on the amateur bands. After explaining the key and character spacing. It makes issues, you will find tips for both sending and receiving. Both little difference what you use to do aspects are important and can be improved - no matter how good, the sending, be it straight key, bug, we can always do better. -
Unit 37 COMMUNICATIONS ACTION by a SHIP in DISTRESS
Unit 37 COMMUNICATIONS ACTION BY A SHIP IN DISTRESS Transmission of the Distress Message A ship in distress should transmit the appropriate alarm signal followed by the distress call and message on one or both of the international distress frequencies, i.e. 500 kHz (radiotelegraphy) and 2182 kHz (radiotelephony). In certain cases, e.g. in pilotage waters, it may in addition be helpful to transmit the distress call and message on VHF Channel 16 (156.8 MHz). It may also be desirable, in remote ocean areas, to transmit the distress call and message, in addition, on a ship-shore H/F circuit to an RCS. This should be done in all cases where distress calls on 500 kHz, 2182 kHz or Channel 16 are not replied to by other stations. Should there be any doubt concerning the reception of the distress message, it should also be transmitted on any frequency available to which attention might be attracted such as an inter-ship frequency which may be in use in local areas. Before changing frequency, however, adequate time should be allowed for a reply. In the event of failure of the ship's radio station, it may be possible to transmit a message using the portable equipment, provided for use in the survival craft, connected to the ship's main aerial system. The use of an emergency position-indicating radio beacon (EPIRB) may be a further means for alerting ships in the vicinity. Satellite communications (Satcom), such as INMARSAT, enable the users to reach a rescue coordination service (RCS), within seconds.