Epigenetic and Epitranscriptomic Regulation of Viral Replication
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Calcium and Covid-19 1 Conflicts Over Calcium and the Treatment of Covid
Calcium and Covid-19 1 Conflicts over calcium and the treatment of Covid-19 Bernard Crespi 1 and Joe Alcock 2 1 Department of Biological Sciences, 8888 University Drive, Simon Fraser University, Burnaby V5A1S6, British Columbia, Canada 2 Department of Emergency Medicine, University of New Mexico, Albuquerque, New Mexico 87131, USA Word counts: Abstract 147, Main Text 2966 © The Author(s) 2020. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. Calcium and Covid-19 2 Abstract Several recent studies have provided evidence that use of calcium channel blockers, especially amlodipine and nifedipine, can reduce mortality from Covid-19. Moreover, hypocalcemia (a reduced level of serum ionized calcium) has been shown to be strongly positively associated with Covid-19 severity. Both effectiveness of CCBs as antiviral therapy, and positive associations of hypocalcemia with mortality, have been demonstrated for many other viruses as well. We evaluate these findings in the contexts of virus-host evolutionary conflicts over calcium metabolism, and hypocalcemia as either pathology, viral manipulation, or host defence against pathogens. Considerable evidence supports the hypothesis that hypocalcemia represents a host defence. Indeed, hypocalcemia may exert antiviral effects in a similar manner as do CCBs, through interference with calcium metabolism in virus-infected cells. Prospective clinical studies that address the efficacy of CCBs and hypocalcemia should provide novel insights into the pathogenicity and treatment of Covid-19 and other viruses. -
Hemagglutinin Stalk- and Neuraminidase-Specific
crossmark Hemagglutinin Stalk- and Neuraminidase-Specific Monoclonal Antibodies Protect against Lethal H10N8 Influenza Virus Infection in Mice Teddy John Wohlbold,a,b Veronika Chromikova,a Gene S. Tan,a Philip Meade,a,b Fatima Amanat,a Phillip Comella,a,b Ariana Hirsh,a Florian Krammera Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USAa; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USAb ABSTRACT Downloaded from Between November 2013 and February 2014, China reported three human cases of H10N8 influenza virus infection in the Jiangxi province, two of which were fatal. Using hybridoma technology, we isolated a panel of H10- and N8-directed monoclonal anti- bodies (MAbs) and further characterized the binding reactivity of these antibodies (via enzyme-linked immunosorbent assay) to a range of purified virus and recombinant protein substrates. The H10-directed MAbs displayed functional hemagglutination inhibition (HI) and neutralization activity, and the N8-directed antibodies displayed functional neuraminidase inhibition (NI) activity against H10N8. Surprisingly, the HI-reactive H10 antibodies, as well as a previously generated, group 2 hemagglutinin (HA) stalk-reactive antibody, demonstrated NI activity against H10N8 and an H10N7 strain; this phenomenon was absent when virus was treated with detergent, suggesting the anti-HA antibodies inhibited neuraminidase enzymatic activity through steric hindrance. We tested the prophylactic efficacy of one representative H10-reactive, N8-reactive, and group 2 HA stalk-reactive http://jvi.asm.org/ antibody in vivo using a BALB/c challenge model. All three antibodies were protective at a high dose (5 mg/kg). -
Hepatitis B Virus X Protein Inhibits P53 Sequence-Specific DNA Binding
Proc. Nati. Acad. Sci. USA Vol. 91, pp. 2230-2234, March 1994 Medical Sciences Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3 XIN WEI WANG*, KATHLEEN FORRESTER*, HEIDI YEH*, MARK A. FEITELSONt, JEN-REN GUI, AND CURTIS C. HARRIS*§ *Laboratory of Human Carcinogenesis, Division of Cancer Etiology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; tDepartment of Pathology and Cell Biology, Jefferson Medical College, Philadelphia, PA 19107; and tDepartment of Molecular Biology and Biochemistry, Shanghai Cancer Institute, Shanghai, People's Republic of China. Communicated by Bert Vogelstein, December 27, 1993 (receivedfor review December 9, 1993) ABSTRACT Chronic active hepatitis caused by infection about the role of HBX in HCC development. In this report, with hepatitis B virus, a DNA virus, is a major risk factor for we present results consistent with the hypothesis that HBX human hepatocellular carcinoma. Since the oncogenicity of binds to p53 and abrogates its normal cellular functions. several DNA viruses is dependent on the interaction of their viral oncoproteins with cellular tumor-suppressor gene prod- MATERIAL AND METHODS ucts, we investigated the interaction between hepatitis B virus X protein (HBX) and human wild-type p53 protein. HBX Plasmids. Plasmid constructs encoding GST-p53-WT, con- complexes with the wild-type p53 protein and inhibits its taining glutathione S-transferase (GST) fused to human wild- sequence-specific DNA binding in vitro. HBX expresslin also type p53, and GST-p53-135Y, containing GST fused to the inhibits p53-mediated transcrptional activation in vivo and the mutant p53 containing a His -* Tyr mutation at codon 135, in vitro asoition of p53 and ERCC3, a general transcription were provided by Jon Huibregtse (National Cancer Institute) factor involved in nucleotide excision repair. -
The Role of F-Box Proteins During Viral Infection
Int. J. Mol. Sci. 2013, 14, 4030-4049; doi:10.3390/ijms14024030 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review The Role of F-Box Proteins during Viral Infection Régis Lopes Correa 1, Fernanda Prieto Bruckner 2, Renan de Souza Cascardo 1,2 and Poliane Alfenas-Zerbini 2,* 1 Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-970, Brazil; E-Mails: [email protected] (R.L.C.); [email protected] (R.S.C.) 2 Department of Microbiology/BIOAGRO, Federal University of Viçosa, Viçosa, MG 36570-000, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +55-31-3899-2955; Fax: +55-31-3899-2864. Received: 23 October 2012; in revised form: 14 December 2012 / Accepted: 17 January 2013 / Published: 18 February 2013 Abstract: The F-box domain is a protein structural motif of about 50 amino acids that mediates protein–protein interactions. The F-box protein is one of the four components of the SCF (SKp1, Cullin, F-box protein) complex, which mediates ubiquitination of proteins targeted for degradation by the proteasome, playing an essential role in many cellular processes. Several discoveries have been made on the use of the ubiquitin–proteasome system by viruses of several families to complete their infection cycle. On the other hand, F-box proteins can be used in the defense response by the host. This review describes the role of F-box proteins and the use of the ubiquitin–proteasome system in virus–host interactions. -
Modulation of NF-Κb Signalling by Microbial Pathogens
REVIEWS Modulation of NF‑κB signalling by microbial pathogens Masmudur M. Rahman and Grant McFadden Abstract | The nuclear factor-κB (NF‑κB) family of transcription factors plays a central part in the host response to infection by microbial pathogens, by orchestrating the innate and acquired host immune responses. The NF‑κB proteins are activated by diverse signalling pathways that originate from many different cellular receptors and sensors. Many successful pathogens have acquired sophisticated mechanisms to regulate the NF‑κB signalling pathways by deploying subversive proteins or hijacking the host signalling molecules. Here, we describe the mechanisms by which viruses and bacteria micromanage the host NF‑κB signalling circuitry to favour the continued survival of the pathogen. The nuclear factor-κB (NF-κB) family of transcription Signalling targets upstream of NF‑κB factors regulates the expression of hundreds of genes that NF-κB proteins are tightly regulated in both the cyto- are associated with diverse cellular processes, such as pro- plasm and the nucleus6. Under normal physiological liferation, differentiation and death, as well as innate and conditions, NF‑κB complexes remain inactive in the adaptive immune responses. The mammalian NF‑κB cytoplasm through a direct interaction with proteins proteins are members of the Rel domain-containing pro- of the inhibitor of NF-κB (IκB) family, including IκBα, tein family: RELA (also known as p65), RELB, c‑REL, IκBβ and IκBε (also known as NF-κBIα, NF-κBIβ and the NF-κB p105 subunit (also known as NF‑κB1; which NF-κBIε, respectively); IκB proteins mask the nuclear is cleaved into the p50 subunit) and the NF-κB p100 localization domains in the NF‑κB complex, thus subunit (also known as NF‑κB2; which is cleaved into retaining the transcription complex in the cytoplasm. -
The Impact of Epitranscriptomic Marks on Post-Transcriptional Regulation in Plants
Briefings in Functional Genomics, 00(00), 2020, 1–12 doi: 10.1093/bfgp/elaa021 Review Paper Downloaded from https://academic.oup.com/bfg/advance-article/doi/10.1093/bfgp/elaa021/6020141 by University of Pennsylvania Libraries user on 04 December 2020 The impact of epitranscriptomic marks on post-transcriptional regulation in plants Xiang Yu †, Bishwas Sharma† and Brian D. Gregory Corresponding author: Brian D. Gregory, Department of Biology, University of Pennsylvania, 433 S. University Ave., Philadelphia, PA 19104, USA. Tel.: +1 (215) 746-4398; Fax: +1 (215) 898-8780; E-mail: [email protected] Abstract Ribonucleotides within the various RNA molecules in eukaryotes are marked with more than 160 distinct covalent chemical modifications. These modifications include those that occur internally in messenger RNA (mRNA) molecules such as N6-methyladenosine (m6A) and 5-methylcytosine (m5C), as well as those that occur at the ends of the modified RNAs like + the non-canonical 5 end nicotinamide adenine dinucleotide (NAD ) cap modification of specific mRNAs. Recent findings have revealed that covalent RNA modifications can impact the secondary structure, translatability, functionality, stability and degradation of the RNA molecules in which they are included. Many of these covalent RNA additions have also been found to be dynamically added and removed through writer and eraser complexes, respectively, providing a new layer of epitranscriptome-mediated post-transcriptional regulation that regulates RNA quality and quantity in eukaryotic transcriptomes. Thus, it is not surprising that the regulation of RNA fate mediated by these epitranscriptomic marks has been demonstrated to have widespread effects on plant development and the responses of these organisms to abiotic and biotic stresses. -
The Chloroplast Epitranscriptome: Factors, Sites, Regulation, and Detection Methods
G C A T T A C G G C A T genes Review The Chloroplast Epitranscriptome: Factors, Sites, Regulation, and Detection Methods Nikolay Manavski 1,† , Alexandre Vicente 1,†, Wei Chi 2 and Jörg Meurer 1,* 1 Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany; [email protected] (N.M.); [email protected] (A.V.) 2 Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; [email protected] * Correspondence: [email protected]; Tel.: +49-89-218074556 † Both authors contributed equally to this work. Abstract: Modifications in nucleic acids are present in all three domains of life. More than 170 dis- tinct chemical modifications have been reported in cellular RNAs to date. Collectively termed as epitranscriptome, these RNA modifications are often dynamic and involve distinct regulatory pro- teins that install, remove, and interpret these marks in a site-specific manner. Covalent nucleotide modifications-such as methylations at diverse positions in the bases, polyuridylation, and pseu- douridylation and many others impact various events in the lifecycle of an RNA such as folding, localization, processing, stability, ribosome assembly, and translational processes and are thus cru- cial regulators of the RNA metabolism. In plants, the nuclear/cytoplasmic epitranscriptome plays important roles in a wide range of biological processes, such as organ development, viral infection, and physiological means. Notably, recent transcriptome-wide analyses have also revealed novel dynamic modifications not only in plant nuclear/cytoplasmic RNAs related to photosynthesis but Citation: Manavski, N.; Vicente, A.; especially in chloroplast mRNAs, suggesting important and hitherto undefined regulatory steps in Chi, W.; Meurer, J. -
Cyclic Peptide Mimotopes for the Detection of Serum Anti–ATIC Autoantibody Biomarker in Hepato-Cellular Carcinoma
International Journal of Molecular Sciences Article Cyclic Peptide Mimotopes for the Detection of Serum Anti–ATIC Autoantibody Biomarker in Hepato-Cellular Carcinoma Chang-Kyu Heo 1, Hai-Min Hwang 1, Won-Hee Lim 1,2, Hye-Jung Lee 3, Jong-Shin Yoo 4, Kook-Jin Lim 3 and Eun-Wie Cho 1,2,* 1 Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; [email protected] (C.-K.H.); [email protected] (H.-M.H.); [email protected] (W.-H.L.) 2 Department of Functional Genomics, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea 3 ProteomeTech Inc. 401, Yangcheon-ro, Gangseo-gu, Seoul 07528, Korea; [email protected] (H.-J.L.); [email protected] (K.-J.L.) 4 Biomedical Omics Group, Korea Basic Science Institute, 162 YeonGuDanji-Ro, Ochang-eup, Cheongju, Chungbuk 28119, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-42-860-4155 Received: 12 November 2020; Accepted: 16 December 2020; Published: 19 December 2020 Abstract: Tumor-associated (TA) autoantibodies have been identified at the early tumor stage before developing clinical symptoms, which holds hope for early cancer diagnosis. We identified a TA autoantibody from HBx-transgenic (HBx-tg) hepatocellular carcinoma (HCC) model mouse, characterized its target antigen, and examined its relationship to human HCC. The mimotopes corresponding to the antigenic epitope of TA autoantibody were screened from a random cyclic peptide library and used for the detection of serum TA autoantibody. The target antigen of the TA autoantibody was identified as an oncogenic bi-functional purine biosynthesis protein, ATIC. -
Expression of Hbx and COX-2 in Chronic Hepatitis B, Cirrhosis and Hepatocellular Carcinoma: Implication of Hbx in Upregulation of COX-2
Modern Pathology (2004) 17, 1169–1179 & 2004 USCAP, Inc All rights reserved 0893-3952/04 $30.00 www.modernpathology.org Expression of HBx and COX-2 in chronic hepatitis B, cirrhosis and hepatocellular carcinoma: implication of HBx in upregulation of COX-2 Alfred S-L Cheng1, Henry L-Y Chan1, Wai K Leung1,KaFTo2, Minnie Y-Y Go1, John Y-H Chan3, Choong T Liew2 and Joseph J-Y Sung1 1Department of Medicine & Therapeutics; 2Department of Anatomical & Cellular Pathology and 3Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong Hepatitis B virus is a major etiological factor of hepatocellular carcinoma, but the underlying mechanisms remain unclear. We have previously demonstrated that upregulation of cyclooxygenase (COX)-2 in chronic hepatitis B persisted despite successful antiviral therapy. In this study, we investigated the relationship between the transactivator HBx and COX-2 in hepatitis B virus-associated chronic liver diseases. Expressions of HBx and COX-2 in tissue specimens were determined by single and double immunohistochemistry. The effects of HBx on COX-2 and prostaglandin E2 production were studied by transfection. HBx was expressed in 11/11 (100%) of chronic hepatitis B, 23/23 (100%) of cirrhosis, and 18/23 (78%) of hepatocellular carcinoma, whereas no immunoreactivity was found in four nonalcoholic steato-hepatitis controls. COX-2 expression was also detected in all specimens of liver lesions except in only 29% of poorly differentiated hepatocellular carcinoma. Significant correlation between HBx and COX-2 immunoreactivity scores was found in different types of chronic liver diseases (chronic hepatitis B, rs ¼ 0.68; cirrhosis, rs ¼ 0.57; hepatocellular carcinoma, rs ¼ 0.45). -
Influenza Hemagglutinin-Specific Iga Fc-Effector Functionality Is Restricted to Stalk Epitopes
Influenza hemagglutinin-specific IgA Fc-effector functionality is restricted to stalk epitopes Alec W. Freyna,b,1, Julianna Hanc, Jenna J. Guthmillerd, Mark J. Baileya,b, Karlynn Neud, Hannah L. Turnerc, Victoria C. Rosadoa, Veronika Chromikovaa, Min Huangd,e, Shirin Strohmeiera,f, Sean T. H. Liua, Viviana Simona, Florian Krammera, Andrew B. Wardc, Peter Palesea,g,2, Patrick C. Wilsond,e, and Raffael Nachbagauera,1,2 aDepartment of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; bGraduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029; cDepartment of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037; dDepartment of Medicine, Section of Rheumatology, Gwen Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637; eCommittee on Immunology, The University of Chicago, Chicago, IL 60637; fDepartment of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; and gDepartment of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 Edited by Thomas Shenk, Princeton University, Princeton, NJ, and approved December 31, 2020 (received for review August 27, 2020) In this study, we utilized a panel of human immunoglobulin (Ig) IgA (11). Influenza virus-specific IgA antibodies have been shown to monoclonal antibodies isolated from the plasmablasts of eight neutralize similarly to their IgG counterparts, and the ability of donors after 2014/2015 influenza virus vaccination (Fluarix) to study these antibodies to interact with Fc receptors to elicit Fc-mediated the binding and functional specificities of this isotype. In this cohort, effector functions has been examined (12–15). -
Nuku, a Family of Primate Retrogenes Derived from KU70
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.02.408492; this version posted December 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 2 3 4 5 6 Nuku, a family of primate retrogenes derived from KU70 7 8 9 10 Paul A. Rowley1#, Aisha Ellahi2, Kyudong Han3,4, Jagdish Suresh Patel1,5, Sara L. Sawyer6 11 12 1 Department of Biological Sciences, University of Idaho, Moscow, USA, 83843 13 2 Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78751 14 3 Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 15 31116, Republic of Korea 16 4 Center for Bio‑Medical Engineering Core Facility, Dankook University, Cheonan 31116, 17 Republic of Korea 18 5 Center for Modeling Complex Interactions, University of Idaho, Moscow, USA. 19 6 Department of Molecular, Cellular, and Developmental Biology, University of Colorado 20 Boulder, Boulder, CO, USA. 21 22 23 Contact: 24 # Corresponding author. [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.02.408492; this version posted December 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 25 Abstract 26 The ubiquitous DNA repair protein, Ku70p, has undergone extensive copy number expansion 27 during primate evolution. -
1 Smc5/6-Antagonism by Hbx Is an Evolutionary-Conserved Function of Hepatitis B Virus
bioRxiv preprint doi: https://doi.org/10.1101/202671; this version posted December 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Filleton, Abdul, et al. 1 Smc5/6-antagonism by HBx is an evolutionary-conserved function of hepatitis B virus 2 infection in mammals 3 4 Fabien Filleton1*, Fabien Abdul2*, Laetitia Gerossier3, Alexia Paturel3, Janet Hall3, Michel 5 Strubin2, Lucie Etienne1§ 6 7 1 CIRI – International Center for Infectiology Research, Inserm, U1111, Université Claude 8 Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F- 9 69007, Lyon, France ; 2 Department of Microbiology and Molecular Medicine, University 10 Medical Centre (C.M.U.) / University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, 11 Switzerland ; 3 CRCL- UMR Inserm 1052 - CNRS 5286, 151 cours Albert Thomas, 69300 12 Lyon, France. 13 14 * Contributed equally to this work 15 §: Correspondence: Lucie Etienne, CIRI, ENS-Lyon, 46 Allée d’Italie, 69364 Lyon, France. 16 E-mail: [email protected] 17 18 Keywords: Smc5/6 complex, evolution of SMC genes, Hepatitis B virus, HBx, restriction 19 factor, antagonist, positive selection, virus-host interaction, genetic conflict 20 1 bioRxiv preprint doi: https://doi.org/10.1101/202671; this version posted December 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.