Relative Abundance of Nickel in the Earth's Crust

Total Page:16

File Type:pdf, Size:1020Kb

Relative Abundance of Nickel in the Earth's Crust If you no longer need this publication write to the Geological Survey in Washington for an official mailing label to use in returning it UNITED STATES DEPARTMENT OF THE INTERIOR RELATIVE ABUNDANCE OF NICKEL IN THE EARTH'S CRUST GEOLOGICAL SURVEY PROFESSIONAL PAPER 205-A UNITED STATES DEPARTMENT OF THE INTERI6& Harold L. Ickes, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director Professional Paper 205-A RELATIVE ABUNDANCE OF NICKEL IN THE EARTH'S CRUST BY ROGER CLARK WELLS Shorter contributions to general geology, 1943 (Pages 1-21) UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1943 For sale by the Superintendent of Documents, U. S. Government Printing Office, Washington, D. C. Price 10 cents CONTENTS Page Page Abstract ___ ___-_____-_-_-_____-___-__--___---_____ 1 Nickel content of different rocks and minerals — Con. Introduction _____________________________________ 1 Sedimentary rocks__----------__------------- 10 General properties "of nickel. ____________________ 1 Sandstone. _ _ .___-_______-_-.__-__---__- 10 Associations and distribution of nickel_.___ ______ 2 Shale and clay____-__-___-_---_-------__- 10 Methods for the separation and determination of nickel. 2 • Limestone __________________-__-_---___- 11 General considerations __ . _______-_______-._-_-_ 2 Metamorphic rocks _ _____-..___________---____ 11 Basic acetate method._ _ .____'____.____________ 3 Gneiss _ ________________________________ 11 Ordinary procedure ___---___--_-.__________ 3 Schist. __ -,-.-_-- _ _ ____ ___________ 11 Brunk-Funk modification. _________________ 3 11 Mittasch procedure ----____________________ 3 Minerals _ ________-_____-_______-_-___---_-____ 11 Barium carbonate method. ________________ _____ 4 Anthophyllite ______________________________ 11 Blum's method. _.___. _________________________ 4 Chromite_ ________ _________--_-_-_-___-_-_. 11 Ardagh-Broughall method. .___.._____-________ 4 Iron ore minerals ___-___--_-_--_______.___-_- 12 Fairchild's method_ ___________________________ 4 Kryptomelane _ _____________ _______________ 12 Ether method. -__.-_-_-_--________-_______-__ 5 Lignite _____________________________________ 12 Dimethylglyoxime method. _-_-_____-_-_______. 5 Nontronite _ ___ ___________________________ 12 Rollet's method _ ___-___-_-_-_____-_____-_____ 5 Olivine_ ______ _ _-_.___-.__-_-_--__ _ _ _ 12 Sandell-Perlich method. _________________________ 5 Polianite. __ _____-_-__-____-- __ _.._..._. 12 Electrolytic method. __________________________ 6 Pyrite— -_-------------_- .______-_-_-______ 12 Nickel content of different rocks and minerals. _______ 6 Serpentine __________-__-__----____---___--- 12 Igneous rocks _________________________________ 7 Talc. _.__-____-__---___------_--_--------- 13 7 Nickel content of the earth's crust _-----___---________ 13 Granite _ __ 7 Methods of calculation _______ ___________________ 13 Dacite __ __ 7 Results by older methods _-__--___-_--______- 13 Granodiorite 7 Factors influencing new calculations _ ________ 14 Trachyte _-- 7 Density of rocks and nickel content__-____ 14 Syen ite _____ Distribution of different kinds of mate­ Latite ______ rial in the earth's crust ____________ 14 Monzonite_ _ Evidence from earthquake wave3.. 15 Andesite_ _ __ Evidence from isostasy___ _______ 15 Diorite _____ Uncertainties of extrapolation-...,..- 15 Phonolite_ __ 9 Altitude and nickel content. _____________ 16 Shonkinite_ _ 9 Distribution of sedimentary and igneous Basalt _ ___ 9 rocks at different altitudes. _ _...____ 17 Diabase ____ 9 New calculations for the relative abundance of Gabbro _ ._ 10 nickel in the 10-mile crust_________________ 17 Pyroxenite. _ 10 Summary and conclusions_______.________________ 18 Peridotite — 10 Index. _ ________ _ ____.-_--_.__ ____ _ _ _ __ . _ 21 ILLUSTRATIONS Page FIGURE 1. Relation of nickel content to density of rock. ._____________________.-___-._-___-___-____-__-_-_--_-_-___ 14 2. Density-altitude gradients _____ ____.__..__ ._______-__________-_________-_-_-_-_-____-_--__---_--___---_ 15 3. Curve showing increase of nickel content with decrease of altitude, assuming a uniformly increasing density gradient._-.______-___________.__-_.____-_.__-__________. .._-______________I__-___-_____-_-__.-_— 16 4. Curve showing increase of nickel content with decrease of altitude, assuming an S-shaped density gradient-— . 17 n SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY, 1943 RELATIVE ABUNDANCE OF NICKEL IN THE EARTH'S CRUST By KOGEE CLARK WELLS ABSTRACT crust,1 recent advances in the analytical chemistry of Nickel has heretofore been considered to be about the twenty- nickel have cast some doubt on the older figures for the second element in order of abundance in the earth's crust, but percentage of nickel in many of the rocks used in com­ the results of improved analytical methods have raised some puting its relative abundance, so that a revaluation seems doubts about the accuracy of earlier estimates. The excellent method of Sandell and Perlich, using dimethylglyoxime as a appropriate. reagent and solution of the nickel salt in chloroform as an es­ The element nickel is of interest for several reasons. sential step, makes it possible to determine nickel to ten-thou­ Based on analogy to meteorites, the core of the earth is sandths of a percent with a gram or less of material in a rela­ supposedly rich in nickel, yet this element does not seem tively short time. This method compares very well with the to have worked outward as far as the crust to any marked spectrographic method. extent. Even stony meteorites, which are believed to More than 150 new determinations of nickel were made on samples of rocks previously analyzed in the chemical laboratory have contributed to the earth's surface to some extent, of the Geological Survey, and they accordingly supplement the contain far more nickel than the earth's crust. It is previous analyses in respect to nickel, an element that is of therefore evident that the processes that have produced interest as one of the so-called strategic metals. the rocks of the crust have tended to leave nickel behird, Nickel was determined in all the common types of rock, includ­ presumably at depths in the earth. ing the more silicic as well as the highly ferroniagnesian, but it is decidedly more abundant in the ferroniagnesian rocks, the content So far as known nickel consists of a mixture of five being markedly high in dunite, peridotite, and other rocks con­ isotopes whose mass numbers are 58, 60, 61, 62, and f4, taining olivine. It is present in most shales and in many silts giving a mean atomic weight of 58.69. This atomic and clays, including abyssal oceanic red clay. It is also found in weight is slightly less than that of cobalt, 58.94, although sea water, in some peat and petroleum, and in minor quantities in its properties nickel falls in the periodic arrangement in several minerals not generally classified as nickel minerals. The new analyses usually showed the nickel content to be less beyond cobalt. It is the third element in the triad, ircn, than that indicated in the older determinations for the lighter cobalt, and nickel. The atomic number of nickel is 28, rocks but of the same order for the heavier rocks. In general the and accordingly the element is neither very common nor percentage of nickel increases with the density of the rock. very rare. The atomic radius of the nickel ion is 0.78 These new data afford a basis for recalculating the amount of Angstrom units, which is identical with that of mag­ nickel in the crust. The average of all new determinations of nickel in igneous rocks is about 0.008 percent, disregarding the nesium and comparable with 0.83 A. for iron and 1.06 A. probable increase in density of rocks with depth. This figure for calcium. is believed to be a decided minimum. Instead of merely averaging In analytical operations nickel falls in the "ammonium the results, however, the nickel content has been correlated with sulfide group" with cobalt, manganese, and zinc, which density of the rock, and the distribution of ocean, sedimentary for the most part remain in solution after the hydroxides material, and igneous rock in the 10-mile crust has been given consideration. If the density of rocks in the 10-mile crust in­ of aluminum, iron, and several other elements are pre­ creases rapidly with depth, as indicated by Washington, the cipitated by ammonium hydroxide. The failure to ob­ nickel content may possibly be as high as 0.033, although this tain a good separation in such analyses is one reason for figure is believed to be a maximum. It is difficult to make an the present contribution and will be discussed more fully accurate estimate under present limitations of knowledge, but later. 0.016 percent of nickel is considered a reasonable figure for the relative abundance of this element in the whole 10-mile crust. A second doubt as to the correctness of the figures for the relative abundance of nickel now in current use aris?s INTRODUCTION from the fact that estimates have been obtained chiefy by averaging available analyses without giving any -con- GENEEAL PEOPEETIES OF NICKEL Although nickel has been found to be about the twenty- 1 Clarke, F. W., and Washington, H. S., The composition of the earth's crust: U. S. Geol. Survey Prof. Paper 127, p. 34, 1924. Fersman, second element in order of abundance in the earth's A. E., Geokhimiiit, tome 1, p. 145, Leningrad, 1933. SHORTER CONTRIBUTIONS TO GENERAL GEiOLOGY, 1943 sideration to the volumes of the earth's crust occupied by Spain. In New Caledonia a serpentine is capped with the rocks analyzed—that is, to the actual relative abun­ red "clay" containing from 1.64 to 3.14 percent c f nickel dance of nickel.
Recommended publications
  • LOW TEMPERATURE HYDROTHERMAL COPPER, NICKEL, and COBALT ARSENIDE and SULFIDE ORE FORMATION Nicholas Allin
    Montana Tech Library Digital Commons @ Montana Tech Graduate Theses & Non-Theses Student Scholarship Spring 2019 EXPERIMENTAL INVESTIGATION OF THE THERMOCHEMICAL REDUCTION OF ARSENITE AND SULFATE: LOW TEMPERATURE HYDROTHERMAL COPPER, NICKEL, AND COBALT ARSENIDE AND SULFIDE ORE FORMATION Nicholas Allin Follow this and additional works at: https://digitalcommons.mtech.edu/grad_rsch Part of the Geotechnical Engineering Commons EXPERIMENTAL INVESTIGATION OF THE THERMOCHEMICAL REDUCTION OF ARSENITE AND SULFATE: LOW TEMPERATURE HYDROTHERMAL COPPER, NICKEL, AND COBALT ARSENIDE AND SULFIDE ORE FORMATION by Nicholas C. Allin A thesis submitted in partial fulfillment of the requirements for the degree of Masters in Geoscience: Geology Option Montana Technological University 2019 ii Abstract Experiments were conducted to determine the relative rates of reduction of aqueous sulfate and aqueous arsenite (As(OH)3,aq) using foils of copper, nickel, or cobalt as the reductant, at temperatures of 150ºC to 300ºC. At the highest temperature of 300°C, very limited sulfate reduction was observed with cobalt foil, but sulfate was reduced to sulfide by copper foil (precipitation of Cu2S (chalcocite)) and partly reduced by nickel foil (precipitation of NiS2 (vaesite) + NiSO4·xH2O). In the 300ºC arsenite reduction experiments, Cu3As (domeykite), Ni5As2, or CoAs (langisite) formed. In experiments where both sulfate and arsenite were present, some produced minerals were sulfarsenides, which contained both sulfide and arsenide, i.e. cobaltite (CoAsS). These experiments also produced large (~10 µm along longest axis) euhedral crystals of metal-sulfide that were either imbedded or grown upon a matrix of fine-grained metal-arsenides, or, in the case of cobalt, metal-sulfarsenide. Some experimental results did not show clear mineral formation, but instead demonstrated metal-arsenic alloying at the foil edges.
    [Show full text]
  • Polymetallic Mineralization in Ediacaran Sediments in the Żarki-Kotowice Area, Poland
    MINERALOGIA, 43, No 3-4: 199-212 (2012) DOI: 10.2478/v10002-012-0008-0 www.Mineralogia.pl MINERALOGICAL SOCIETY OF POLAND POLSKIE TOWARZYSTWO MINERALOGICZNE __________________________________________________________________________________________________________________________ Original paper Polymetallic mineralization in Ediacaran sediments in the Żarki-Kotowice area, Poland Łukasz KARWOWSKI1*, Marek MARKOWIAK2 1University of Silesia, Faculty of Earth Sciences, ul. Będzińska 60, 41-200 Sosnowiec, Poland; e-mail: [email protected] 2Polish Geological Institute - Research and Development Unit, Upper Silesian Branch, ul. Królowej Jadwigi 1, 41-200 Sosnowiec, Poland; e-mail: [email protected] * Corresponding author Received: September 5, 2012 Received in revised form: February 20, 2013 Accepted: March 17, 2013 Available online: March 30, 2013 Abstract. In one small mineral vein in core from borehole 144-Ż in the Żarki-Kotowice area, almost all of the ore minerals known from related deposits in the vicinity occur. Some of the minerals in the vein described in this paper, namely, nickeline, hessite, native silver and minerals of the cobaltite-gersdorffite group, have not previously been reported from elsewhere in the Kraków-Lubliniec tectonic zone. The identified minerals are chalcopyrite, pyrite, marcasite, sphalerite, Co-rich pyrite, tennantite, tetrahedrite, bornite, galena, magnetite, hematite, cassiterite, pyrrhotite, wolframite (ferberite), scheelite, molybdenite, nickeline, minerals of the cobaltite- gersdorffite group, carrollite, hessite and native silver. Moreover, native bismuth, bismuthinite, a Cu- and Ag-rich sulfosalt of Bi (cuprobismutite) and Ni-rich pyrite also occur in the vein. We suggest that, the ore mineralization from the borehole probably reflects post-magmatic hydrothermal activity related to an unseen granitic intrusion located under the Mesozoic sediments in the Żarki-Pilica area.
    [Show full text]
  • Nickeline Nias C 2001-2005 Mineral Data Publishing, Version 1
    Nickeline NiAs c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Hexagonal. Point Group: 6/m 2/m 2/m. Commonly in granular aggregates, reniform masses with radial structure, and reticulated and arborescent growths. Rarely as distorted, horizontally striated, {1011} terminated crystals, to 1.5 cm. Twinning: On {1011} producing fourlings; possibly on {3141}. Physical Properties: Fracture: Conchoidal. Tenacity: Brittle. Hardness = 5–5.5 VHN = n.d. D(meas.) = 7.784 D(calc.) = 7.834 Optical Properties: Opaque. Color: Pale copper-red, tarnishes gray to blackish; white with strong yellowish pink hue in reflected light. Streak: Pale brownish black. Luster: Metallic. Pleochroism: Strong; whitish, yellow-pink to pale brownish pink. Anisotropism: Very strong, pale greenish yellow to slate-gray in air. R1–R2: (400) 39.2–45.4, (420) 38.0–44.2, (440) 36.8–43.5, (460) 36.2–43.2, (480) 37.2–44.3, (500) 39.6–46.4, (520) 42.3–48.6, (540) 45.3–50.7, (560) 48.2–52.8, (580) 51.0–54.8, (600) 53.7–56.7, (620) 55.9–58.4, (640) 57.8–59.9, (660) 59.4–61.3, (680) 61.0–62.5, (700) 62.2–63.6 Cell Data: Space Group: P 63/mmc. a = 3.621(1) c = 5.042(1) Z = 2 X-ray Powder Pattern: Unknown locality. 2.66 (100), 1.961 (90), 1.811 (80), 1.071 (40), 1.328 (30), 1.033 (30), 0.821 (30) Chemistry: (1) (2) Ni 43.2 43.93 Co 0.4 Fe 0.2 As 55.9 56.07 Sb 0.1 S 0.1 Total 99.9 100.00 (1) J´achymov, Czech Republic; by electron microprobe, corresponds to (Ni0.98Co0.01 Fe0.01)Σ=1.00As1.00.
    [Show full text]
  • The Gersdorffite-Bismuthinite-Native Gold Association and the Skarn
    minerals Article The Gersdorffite-Bismuthinite-Native Gold Association and the Skarn-Porphyry Mineralization in the Kamariza Mining District, Lavrion, Greece † Panagiotis Voudouris 1,* , Constantinos Mavrogonatos 1 , Branko Rieck 2, Uwe Kolitsch 2,3, Paul G. Spry 4 , Christophe Scheffer 5, Alexandre Tarantola 6 , Olivier Vanderhaeghe 7, Emmanouil Galanos 1, Vasilios Melfos 8 , Stefanos Zaimis 9, Konstantinos Soukis 1 and Adonis Photiades 10 1 Department of Geology & Geoenvironment, National and Kapodistrian University of Athens, 15784 Athens, Greece; [email protected] (C.M.); [email protected] (E.G.); [email protected] (K.S.) 2 Institut für Mineralogie und Kristallographie, Universität Wien, 1090 Wien, Austria; [email protected] 3 Mineralogisch-Petrographische Abteilung, Naturhistorisches Museum, 1010 Wien, Austria; [email protected] 4 Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA 50011, USA; [email protected] 5 Département de Géologie et de Génie Géologique, Université Laval, Québec, QC G1V 0A6, Canada; [email protected] 6 Université de Lorraine, CNRS, GeoRessources UMR 7359, Faculté des Sciences et Technologies, F-54506 Vandoeuvre-lès-Nancy, France; [email protected] 7 Université de Toulouse, Géosciences Environnement Toulouse (GET), UMR 5563 CNRS, F-31400 Toulouse, France; [email protected] 8 Department of Mineralogy-Petrology-Economic Geology, Faculty of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; [email protected] 9 Institut für Mineralogie, TU Bergakademie Freiberg, 09599 Freiberg, Germany; [email protected] 10 Institute of Geology and Mineral Exploration (I.G.M.E.), 13677 Acharnae, Greece; [email protected] * Correspondence: [email protected]; Tel.: +30-210-7274129 † The paper is an extended version of our paper published in 1st International Electronic Conference on Mineral Science.
    [Show full text]
  • A Comparative Study of Nickel Sulphide Deposits Within the Area of the Canadian Shield
    Wilfrid Laurier University Scholars Commons @ Laurier Theses and Dissertations (Comprehensive) 1970 A Comparative Study of Nickel Sulphide Deposits Within the Area of the Canadian Shield Robert G. Kreiner Wilfrid Laurier University Follow this and additional works at: https://scholars.wlu.ca/etd Part of the Geology Commons, and the Physical and Environmental Geography Commons Recommended Citation Kreiner, Robert G., "A Comparative Study of Nickel Sulphide Deposits Within the Area of the Canadian Shield" (1970). Theses and Dissertations (Comprehensive). 1528. https://scholars.wlu.ca/etd/1528 This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @ Laurier. For more information, please contact [email protected]. A COMPARATIVE STUDY OF NICKEL SULPHIDE DEPOSITS WITHIN THE AREA OF THE CANADIAN SHIELD BY Robert G. Kreiner Submitted in partial fulfillment of the requirements for theM.A. Degree in Geography Faculty of Graduate Studies Waterloo Lutheran University Waterloo, Ontario 1970 Property ii i,\j Library Waterloo University College UMI Number: EC56498 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent on the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI EC56498 Copyright 2012 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code.
    [Show full text]
  • Article Is Available On- Bearing Mineralising Event Is Not Possible Because of the Line At
    Eur. J. Mineral., 33, 175–187, 2021 https://doi.org/10.5194/ejm-33-175-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Grimmite, NiCo2S4, a new thiospinel from Príbram,ˇ Czech Republic Pavel Škácha1,2, Jiríˇ Sejkora1, Jakub Plášil3, Zdenekˇ Dolnícekˇ 1, and Jana Ulmanová1 1Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, 193 00 Prague 9 – Horní Pocernice,ˇ Czech Republic 2Mining Museum Príbram,ˇ Hynka Klickyˇ place 293, 261 01 Príbramˇ VI, Czech Republic 3Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 182 21 Prague 8, Czech Republic Correspondence: Pavel Škácha ([email protected]) Received: 25 December 2020 – Revised: 2 March 2021 – Accepted: 8 March 2021 – Published: 19 April 2021 Abstract. The new mineral grimmite, NiCo2S4, was found in siderite–sphalerite gangue at the dump of shaft no. 9, one of the mines in the abandoned Príbramˇ uranium and base-metal district, central Bohemia, Czech Republic. The new mineral occurs as rare idiomorphic to hypidiomorphic grains up to 200 µm × 70 µm in size or veinlet aggregates. In reflected light, grimmite is creamy grey with a pinkish tint. Pleochroism, polarising colours and internal reflections were not observed. Reflectance values of grimmite in the air (R %) are 42.5 at 470 nm, 45.9 at 546 nm, 47.7 at 589 nm and 50.2 at 650 nm). The empirical formula for grimmite, based on electron-microprobe analyses (n D 13), is Ni1:01(Co1:99Fe0:06Pb0:01Bi0:01/62:07S3:92. The ideal formula is NiCo2S4; requires Ni 19.26, Co 38.67, and S 42.07; and totals 100.00 wt %.
    [Show full text]
  • Nickel and Nickel Compounds Were Considered by Previous !AC Working Groups, in 1972, 1975, 1979, 1982 and 1987 (IARC, 1973, 1976, 1979, 1982, 1987)
    NICKEL AND NieKEL eOMPOUNDS Nickel and nickel compounds were considered by previous !AC Working Groups, in 1972, 1975, 1979, 1982 and 1987 (IARC, 1973, 1976, 1979, 1982, 1987). Since that time, new data have become available, and these are inc1uded in the pres- ent monograph and have been taken into consideration in the evaluation. 1. ehemical and Physical Data The list of nickel alloys and compounds given in Table 1 is not exhaustive, nor does it necessarily reflect the commercial importance of the various nickel-con tain- ing substances, but it is indicative of the range of nickel alloys and compounds avail- able, including some compounds that are important commercially and those that have been tested in biological systems. A number of intermediary compounds occur in refineries which cannot be characterized and are not listed. 1.1 Synonyms, trade names and molecular formulae of nickel and selected nickel-containing compounds Table 1. Synonyms (Chemical Abstracts Service names are given in bold), trade names and atomic or molecular formulae or compositions of nickel, nickel alloys and selected nickel compounds Chemical Chem. Abstr. SYDoDyms and trade Dames Formula Dame Seiv. Reg. Oxda- Numbera tion stateb Metallc nickel and nickel alloys Nickel 7440-02-0 c.I. 77775; NI; Ni 233; Ni 270; Nickel 270; Ni o (8049-31-8; Nickel element; NP 2 17375-04-1; 39303-46-3; 53527-81-4; 112084-17-0) -- 257 - NICKEL AND NICKEL COMPOUNDS 259 Table i (contd) Chemical Chem. Abstr. Synonym and trade names Formula name Seiv. Reg. Ox- Number4 dation stateb
    [Show full text]
  • Orthorhombic 11C Pyrrhotite from Michałkowa, Góry Sowie Block, the Sudetes, Poland – Preliminary Report
    Contemp.Trends.Geosci.,3,2014,51-58 DOI:10.2478/ctg-2014-0022 Orthorhombic 11C pyrrhotite from Michałkowa, Góry Sowie Block, The Sudetes, Poland – preliminary report Maciej Rybicki Faculty of Earth Sciences, University of Silesia, Będzińska 60 Str., Tomasz Krzykawski 41-200 Sosnowiec, Poland; [email protected], [email protected] Abstract This study provides the preliminary report about first occurrence of orthorhombic 11C pyrrhotite (Fe(1-x)S) from the Sudetes, Poland. Samples of pyrrhotite-containing two-pyroxene gabbro were found in a classic pegmatite locality in Michałkowa near Walim in the Góry Sowie Block. Based on microscopic methods, pyrrhotite is associated with pentlandite, chalcopyrite, chromite, ilmenite, gersdorffite, magnetite, biotite, magnesio- hornblende, clinochlore, lizardite and talc. X-Ray diffraction (XRD) indicate that pyrrhotite has orthorhombic 11C structure and it is characterized by: a = 3.433(9) Å, b = 5.99(2) Å, c = 5.7432(5) Å, β = 90º and d102 = 2.06906 Å. Mössbauer studies confirmed the XRD data. Pyrrhotite has three sextets with hyperfine parameter values 30.8 T for sextet A, 27.9 T and 25.8 T for sextets B and C respectively, indicating orthorhombic structure, the composition near Fe10S11 and x = 0.0909. Key words: orthorhombic pyrrhotite, Polish Sudetes, Góry Sowie Block DOI: 10.2478/ctg-2014-0022 Received: 3rd August, 2014 Accepted: 5th September, 2014 1. Introduction (Evans 1970), the ferrimagnetic 4C pyrrhotite with an ideal composition Fe7S8 and Pyrrhotite is one of the most common sulfide monoclinic crystallography (Powell et al. minerals, widespread in many rocks and is an 2004) and non-magnetic orthorhombic or important component of the sulfide ore monoclinic pyrrhotite formally described as deposits, especially in those that contain Ni, NC pyrrhotite where N represents the number Cu and Pt group elements (De Villiers and of repetitions of the NiAs unit cell along the c- Liles 2010).
    [Show full text]
  • Clarke Jeff a 201709 Mscproj
    THE CHARACTERIZATION OF ARSENIC MINERAL PHASES FROM LEGACY MINE WASTE AND SOIL NEAR COBALT, ONTARIO by Jeff Clarke A research project submitted to the Department of Geological Sciences and Geological Engineering In conformity with the requirements for the degree of Master of Science in Applied Geology Queen’s University Kingston, Ontario, Canada (July, 2017) Copyright © Jeff Clarke, 2017 i ABSTRACT The Cobalt-Coleman silver (Ag) mining camp has a long history of mining dating back to 1903. Silver mineralization is hosted within carbonate veins and occurs in association with Fe-Co-Ni arsenide and sulpharsenide mineral species. The complex mineralogy presented challenges to early mineral processing methods with varying success of Ag recovery and a significant amount of arsenic (As) in waste material which was disposed in the numerous tailings deposits scattered throughout the mining camp, and in many instances disposed of uncontained. The oxidation and dissolution of As-bearing mineral phases in these tailings and legacy waste sites releases As into the local aquatic environment. Determining the distribution of primary and secondary As mineral species in different legacy mine waste materials provides an understanding of the stability of As. Few studies have included detailed advanced mineralogical characterization of As mineral species from legacy mine waste in the Cobalt area. As part of this study, a total of 28 samples were collected from tailings, processed material near mill sites and soils from the legacy Nipissing and Cart Lake mining sites. The samples were analyzed for bulk chemistry to delineate material with strongly elevated As returned from all sample sites. This sampling returned highly elevated As with up to 6.01% As from samples near mill sites, 1.71% As from tailings and 0.10% As from soils.
    [Show full text]
  • Gersdorffite Niass
    Gersdorffite NiAsS c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Cubic. Point Group: 2/m 3. Crystals are octahedral, typically modified by the cube, to 4 cm, or pyritohedral, may be striated as is pyrite; commonly internally zoned. Physical Properties: Cleavage: Perfect on {100}. Fracture: Uneven. Tenacity: Brittle. Hardness = 5.5 VHN = 657–767 (100 g load). D(meas.) = 5.9 D(calc.) = 5.966 Optical Properties: Opaque. Color: Silver-white to steel-gray; may tarnish gray or grayish black; in polished section, white. Streak: Grayish black. Luster: Metallic. R: (400) 50.2, (420) 49.7, (440) 49.1, (460) 48.6, (480) 47.7, (500) 47.0, (520) 46.2, (540) 45.7, (560) 45.3, (580) 45.1, (600) 45.0, (620) 45.1, (640) 45.3, (660) 45.5, (680) 45.9, (700) 46.3 Cell Data: Space Group: Pa3. a = 5.60–5.72, 5.594 (synthetic). Z = 4 X-ray Powder Pattern: Synthetic. 2.545 (100), 2.325 (90), 1.716 (80), 2.848 (60), 2.013 (35), 1.521 (35), 1.096 (20) Chemistry: (1) (2) (3) Ni 34.31 35.7 35.42 Fe 0.2 Co 0.1 As 45.33 44.3 45.23 Sb 1.17 1.6 S 18.50 19.0 19.35 rem. 0.69 Total [100.00] 100.9 100.00 (1) Rhodesia; recalculated to 100% after deduction of gangue; corresponds to Ni1.01 (As1.05Sb0.02)Σ=1.07S1.00. (2) Cochabamba, Bolivia; by electron microprobe, corresponds to (Ni1.03Fe0.01)Σ=1.04(As1.00Sb0.02)Σ=1.02S1.00.
    [Show full text]
  • TEXTURES and COMPOSITIONAL VARIABILITY in GERSDORFFITE from the CRESCENCIA Ni–(Co–U) SHOWING, CENTRAL PYRENEES, SPAIN: PRIMARY DEPOSITION OR RE-EQUILIBRATION?
    1513 The Canadian Mineralogist Vol. 44, pp. 1513-1528 (2006) TEXTURES AND COMPOSITIONAL VARIABILITY IN GERSDORFFITE FROM THE CRESCENCIA Ni–(Co–U) SHOWING, CENTRAL PYRENEES, SPAIN: PRIMARY DEPOSITION OR RE-EQUILIBRATION? ISABEL FANLO§ AND IGNACIO SUBÍAS Cristalografía y Mineralogía, Departamento de Ciencias de la Tierra, Universidad de Zaragoza, C/ Pedro Cerbuna 12, E–50009 Zaragoza, Spain FERNANDO GERVILLA Instituto Andaluz de Ciencias de la Tierra y Departamento de Mineralogía y Petrología, Facultad de Ciencias, C.S.I.C.–Universidad de Granada, E–18002 Granada, Spain JOSE MANUEL Cristalografía y Mineralogía, Departamento de Ciencias de la Tierra, Universidad de Zaragoza, C/ Pedro Cerbuna 12, E–50009 Zaragoza, Spain ABSTRACT At the Crescencia showing in the Pyrenees, Spain, three stages of mineral deposition can be distinguished: stage I: nickeline and pararammelsbergite, stage II: gersdorffi te, and stage III: uraninite. Gersdorffi te has been subdivided into seven groups on the basis of textural and compositional criteria. Some of these groups of gersdorffi te clearly show disequilibrium processes that may have been induced by secondary reactions associated with a re-equilibration of the system during cooling. Formation and subsequent growth of gersdorffi te nuclei on the nickeline (0001) surface, self-organization, or a coupled dissolution-and-repre- cipitation moving interface through pararammelsbergite or nickeline are some of the processes invoked during the re-equilibra- tion. Thus, the compositional variations found in the seven groups of gersdorffi te are likely due to intermediate steps during the bulk of the replacement and re-equilibration processes at low temperature, rather than a direct precipitation from the ore-forming fl uids under different conditions.
    [Show full text]
  • Note on the Crystal Structure of Cobaltite
    NORSK GEOLOGISK TIDSSKRIFT 43 NOTE ON THE CRYSTAL STRUCTURE OF COBALTITE By IVAR OFTEDAL (Institute of Geology, Oslo) Early X-ray studies showed that the crystal structure of cobaltite must be closely related to that of pyrite. The space group of pyrite is Pa3. and the unit cell contains 8S. In cobaltite these must be re­ placed by 4As+4S, and this leads inevitably to the space group P213. MECHLING (1921) realized this, and it was consequently assumed that cobaltite (and gersdorffite) had the same crystal structure as ullman­ nite, whose external crystal form was known to agree with the point group 23. This symmetry could not, however, be taken as finally established for cobaltite and gersdorffite, as the indications of the available X-ray photographs were not conclusive. But it was adopted, more or less tentatively, by W. L. BRAGG (1937) and apparently by most crystallographers. It was abandoned by PEACOCK and HENRY (1948), who proposed a disordered arrangement of the As and S atoms so that a structure of stri et pyrite type res ult ed; they used powder photographs only. Later ONORATO (1957) has studied the cobaltite structure by more refined X-ray methods. He re-established that the structure is not of pyrite type and proposed a particular kind of or­ dering of the As and S atoms which is possible only if the cubic symme­ try is abandoned (see below). The pyrite type structure proposed by Peacock and Henry seems to have been adopted to some extent. Thus in the 1957 edition of Mineralogische Tabellen by H.
    [Show full text]