Kinematics and Dynamics of Giant Stars in the Solar Neighbourhood

Total Page:16

File Type:pdf, Size:1020Kb

Kinematics and Dynamics of Giant Stars in the Solar Neighbourhood UNIVERSITE LIBRE DE BRUXELLES Facult´edes Sciences KINEMATICS AND DYNAMICS OF GIANT STARS IN THE SOLAR NEIGHBOURHOOD by Benoit FAMAEY Ph.D. thesis submitted for the degree of Docteur en Sciences Institut d’Astronomie et d’Astrophysique Academic year 2003-2004 2 Notre savoir consiste en grande partie `acroire savoir, et `acroire que d’autres savent. Paul Val´ery, 1937 (L’Homme et la coquille) For true and false are attributes of speech, not of things. And where speech is not, there is neither truth nor falsehood. Thomas Hobbes, 1651 (Leviathan, chapter 4) 3 4 Acknowledgements Je voudrais avant tout remercier le professeur Marcel Arnould, Directeur de l’Institut d’Astronomie et d’Astrophysique, qui m’a accueilli `al’Institut en tant que math´ematicien et qui m’a permis de passer ces ann´ees de th`esedans des conditions id´ealesen m’accordant une grande confiance et une grande libert´e de travail et en se montrant d’une aide attentive face `ames interrogations et sollicitations. Je remercie ensuite avec beaucoup de gratitude mon directeur de th`ese, le professeur Alain Jorissen, pour sa disponibilit´econstante durant ces ann´ees de doctorat et pour les nombreuses discussions stimulantes que nous avons eues. Au cours de celles-ci j’ai ressenti une v´eritable ´emulation, son esprit scientifique aiguis´een faisant non seulement un chercheur hors pair mais surtout un inter- locuteur extrˆemement int´eressant et motivant. Je le remercie en outre, par del`a ces consid´erations professionnelles, pour ses qualit´eshumaines hors du commun. Je voudrais ´egalement exprimer ma gratitude `atous les autres membres de l’Institut, en particulier `aDimitri et Marc pour leur soutien face aux al´eas de l’informatique, `aCarine et Laurent pour m’avoir fourni quelques r´ef´erences int´eressantes, `aSylvie, Sophie, Ana, Claire et Viviane pour leur sourire et l’agr´eable atmosph`ere de travail qu’elles contribuent `acr´eer `al’Institut, `aYves, Abdel, St´ephane, Lionel et Matthieu pour leur bonne humeur. Merci aussi `aSamir Keroudj pour la r´ealisation de l’animation en trois dimensions qui a permis d’illustrer certains r´esultats de cette th`ese. Il est tr`es important pour moi de remercier ici le professeur Herwig De- jonghe, de l’Universit´ede Gand, v´eritable instigateur de ce projet, sans lequel rien n’aurait ´et´epossible. Ses explications, toujours claires et pr´ecises, m’ont permis de me constituer au fil du temps une expertise en dynamique galactique, domaine qui ´etaitenti`erement neuf pour moi au moment d’aborder ces ann´ees de th`ese. Je remercie aussi Kathrien Van Caelenberg qui avait entam´eune partie de ce travail `al’Universit´ede Gand. Une grande partie des r´esultatspr´esent´es dans cette th`ese d´ependent de donn´eesobtenues grˆace`al’Observatoire de Gen`eve et `ala coop´erationde nom- breux observateurs anonymes que je remercie pour leur importante contribu- tion `ace travail. Je remercie tout particuli`erement le professeur Michel Mayor ainsi que Catherine Turon d’avoir accept´ede me fournir ces donn´ees. Je re- mercie ´egalement St´ephane Udry pour son hospitalit´elors de mon s´ejour `a l’observatoire de Gen`eve et sa collaboration active lors du d´ebroussaillement 5 6 des donn´ees CORAVEL. Je suis ´egalement extrˆemement reconnaissant `aXavier Luri, de l’Universit´e de Barcelone, qui m’a accueilli chaleureusement lors de mon s´ejour dans son service et qui fut toujours d’une aide radicalement efficace et d’une disponibilit´e sans faille dans l’analyse des donn´ees cin´ematiques qui a conduit aux principaux r´esultats de ce travail. Je voudrais aussi remercier mes parents pour leur soutien constant tout au long de mes ´etudes et leurs nombreux conseils judicieux sur le plan humain ou logistique. C’est par ailleurs un plaisir de remercier ici mes amis de longue date Maxime, Benjamin, St´ephane, Bernard, Benoˆıt,Jules, Hugo et Mohamed pour leurs commentaires de non sp´ecialistes de la discipline et leur soutien moral. Merci enfin `ama douce Marie-Laure, merci de m’avoir soutenu et encourag´e,et surtout merci d’ensoleiller ma vie chaque jour. Contents 1 Introduction 17 1.1 Components of the Galaxy . 17 1.1.1 The luminous halo . 17 1.1.2 The dark halo . 18 1.1.3 The bulge . 18 1.1.4 The thin disk . 18 1.1.5 The thick disk . 19 1.2 Stellar dynamics . 19 1.2.1 Relaxation time . 19 1.2.2 Hierarchical formation scenario . 21 1.2.3 Boltzmann and Poisson equations . 21 1.2.4 Integrals of the motion . 22 1.2.5 The third integral . 24 1.2.6 Galactic orbits . 25 1.2.7 Non-axisymmetric perturbations . 28 1.3 The Solar neighbourhood . 36 1.3.1 Galactocentric radius of the Sun . 37 1.3.2 Rotation curve and Oort constants . 37 1.3.3 Local dynamical mass . 39 1.3.4 LSR, Solar motion and velocity ellipsoid . 41 1.3.5 Vertex deviation and substructure of velocity space . 42 1.4 Outline of this thesis . 44 2 Stellar sample 47 2.1 Selection criteria . 49 2.2 Binaries . 50 3 Kinematic analysis 57 3.1 Analysis restricted to stars with the most precise parallaxes . 58 3.2 Monte Carlo simulation . 60 3.3 Bayesian approach . 63 3.3.1 Phenomenological model . 64 3.3.2 Observational selection and errors . 65 3.3.3 Maximum likelihood . 66 7 8 3.3.4 Group assignment . 67 3.3.5 Individual distance estimates . 69 3.3.6 The kinematic groups present in the stellar sample . 69 3.3.7 Physical interpretation of the groups . 82 4 St¨ackel potentials 89 4.1 Coordinate system . 90 4.2 Three-component St¨ackel potentials . 90 4.3 Selection criteria . 93 4.4 The “winding staircase” . 95 4.5 Constraints on the scale height of the thick disk . 95 4.6 The final selection . 97 5 Three-integral distribution functions 107 5.1 Construction of three-integral components . 108 5.2 Moments . 109 5.2.1 The case where a = 0 and m is an even integer . 109 5.2.2 The general case . 116 5.3 Physical properties of the components . 116 5.3.1 The parameter z0 . 117 5.3.2 The parameter α1 . 117 5.3.3 The parameter α2 . 117 5.3.4 The parameter β . 120 5.3.5 The parameter η . 120 5.3.6 The parameter s . 120 5.3.7 The parameter δ . 123 5.4 Modeling . 126 6 Conclusions and perspectives 133 A Contents of the data table 137 List of Figures 1.1 Schematic view of the Galaxy . 16 1.2 Lindblad diagram . 23 1.3 Tightly wound and loosely wound spiral patterns . 28 1.4 The swing-amplification . 31 2.1 Difference between the Hipparcos and Tycho-2 proper-motion moduli . 44 2.2 Crude Hertzsprung-Russell diagram for the Hipparcos M stars with positive parallaxes. 47 2.3 Crude Hertzsprung-Russell diagram for the Hipparcos K stars with a relative error on the parallax less than 20%. 48 2.4 The concept of line-width parameter . 49 2.5 The (Sb, σ0(vr0)) diagram . 50 2.6 Distribution of the sample on the sky . 52 3.1 Density of stars with precise parallaxes (σπ/π ≤ 20%) in the UV -plane . 57 3.2 Comparison of the distances obtained from a simple inversion of the parallax and the maximum-likelihood distances . 66 3.3 All the stars plotted in the UV -plane with their values of U and V deduced from the LM method . 67 3.4 HR diagram of group Y . 68 3.5 HR diagram of group HV . 70 3.6 HR diagram of group HyPl . 72 3.7 HR diagram of group Si . 74 3.8 HR diagram of group He . 75 3.9 Histogram of the metallicity in groups B, HyPl and Si for the stars present in the analysis of McWilliam (1990) . 76 3.10 HR diagram of group B. 77 4.1 Integral space . 87 4.2 Parameter space . 92 4.3 Profile of the logarithm of vertical density at R = 8 kpc for Kuzmin-Kutuzov potentials with different axis ratios . 94 9 10 4.4 Mass isodensity curves in a meridional plane for the five potentials of Table 4.5 . 99 4.5 The effective bulge . 100 4.6 The rotation curves of the five selected potentials of Table 4.5 . 101 5.1 Integration area in the (E, I3)-plane . 107 5.2 Integration area in the (x, y)-plane . 109 5.3 Integration limits in Lz . 111 5.4 Contour plots of the mass density in a meridional plane, for com- ponents with z0 equal to 4 kpc and 2 kpc . 113 5.5 Logarithm of the galactic plane mass density of different compo- nents for varying α1 . 114 5.6 Logarithm of the configuration space density of different compo- nents for varying α2. 115 5.7 Contour plots of the configuration space density in a meridional plane, for components with varying β . 116 5.8 Values of a component distribution function as a function of E for varying η .............................118 5.9 Contour plots of the configuration space density in a meridional plane, for components with varying s . 119 5.10 The ratio σz of several components for varying s. 120 σR 5.11 Logarithm of the configuration space density as a function of the height above the Galactic plane at R = 1 kpc for varying δ. 121 5.12 Fit of a van der Kruit disk .
Recommended publications
  • Report by the ESA-ESO Working Group on Galactic Populations, Chemistry and Dynamics
    Report by the ESA-ESO Working Group on Galactic populations, chemistry and dynamics Abstract Between the early 40s, when Baade showed the first evidence for the existence of two distinct stellar populations, and today, with our Galaxy surprising us with new substructures discovered almost on a monthly basis, it is clear that a remarkable progress has been achieved in our understanding of the Galaxy, of its structure and stellar populations, and of its chemical and dynamical signatures. Yet, some questions have remained open and have proven to be very challenging. The main task of this Working Group has been to review the state-of-the- art knowledge of the Milky Way galaxy, to identify the future challenges, and to propose which tools (in terms of facilities, infrastructures, instruments, science policies) would be needed to successfully tackle and solve the remaining open questions. Considering the leadership position that Europe has reached in the field of Galactic astronomy (thanks to the Hipparcos mission and the Very Large Telescope) and looking at the (near-)future major initiatives it has undertaken (VISTA and VST survey telescopes, Gaia mission), this work clearly has been very timely. It is of uttermost importance for European astronomy to keep and further consolidate its leading position. This Working Group has made recommendations that would allow dissecting our backyard laboratory, the Galaxy, even further. ESO survey telescopes about to become operational and the upcoming ESA Gaia mission are a guarantee for opening new horizons and making new discoveries. We, the astronomers, with the support of our funding agencies, are ready to fully commit to the best exploitation of the treasure that is ahead of us.
    [Show full text]
  • Combined Dynamical Effects of the Bar and Spiral Arms in a Galaxy Model
    A&A 615, A10 (2018) Astronomy https://doi.org/10.1051/0004-6361/201833035 & c ESO 2018 Astrophysics Combined dynamical effects of the bar and spiral arms in a Galaxy model. Application to the solar neighbourhood T. A. Michtchenko, J. R. D. Lépine, D. A. Barros, and R. S. S. Vieira Universidade de São Paulo, IAG, Rua do Matão 1226, Cidade Universitária, 05508-090 São Paulo, Brazil e-mail: [email protected]; [email protected]; [email protected] Received 16 March 2018 / Accepted 17 April 2018 ABSTRACT Context. Observational data indicate that the Milky Way is a barred spiral galaxy. Computation facilities and availability of data from Galactic surveys stimulate the appearance of models of the Galactic structure, however further efforts are needed to build dynamical models containing both spiral arms and the central bar/bulge. Aims. We expand the study of the stellar dynamics in the Galaxy by adding the bar/bulge component to a model with spiral arms introduced in one of our previous publications. The model is tested by applying it to the solar neighbourhood, where observational data are more precise. Methods. We model analytically the potential of the Galaxy to derive the force field in its equatorial plane. The model comprises an axisymmetric disc derived from the observed rotation curve, four spiral arms with Gaussian-shaped groove profiles, and a classical elongated/oblate ellipsoidal bar/bulge structure. The parameters describing the bar/bulge are constrained by observations and the stel- lar dynamics, and their possible limits are determined. 9 Results.
    [Show full text]
  • ANDREA KUNDER an Der Sternwarte 16 14482 Potsdam, Germany B: [email protected] Curriculum Vitae : +49-331-58395304 M
    Leibniz Institut für Astrophysik ANDREA KUNDER An der Sternwarte 16 14482 Potsdam, Germany B: [email protected] Curriculum Vitae : +49-331-58395304 m: www.aip.de/∼akunder EDUCATION June 2009 Dartmouth College; Hanover, NH PhD in Physics & Astronomy Advisor: Dr. Brian C. Chaboyer Thesis: RR Lyrae stars as tracers of stellar populations in the Galactic bulge and satellite galaxies May 2003 Willamette University; Salem, OR Bachlelors of Arts in Chemistry and German; GPA: 3.73/4.00 2000 - 2001 Ludwig-Maximillians Universität München; Munich, Germany Immersion program in language, culture, and history. 2002 Columbia University’s Biosphere 2; Oracle, AZ Universe Semester; Researched RR Lyrae stars with local telescopes. CURRENT EMPLOYMENT Independent Postdoctoral Fellow, Leibniz Institut für Astrophysik, Potsdam (AIP) PI of a Deutsche Forschungsgemeinschaft (DFG) fully-funded grant to research the Galactic bulge RESEARCH INTERESTS The formation and evolution of Local Group galaxies and the Milky Way through detailed chemical and dynamical studies of individual stars; RR Lyrae stars and distance indicators; Globular clusters and resolved stellar populations. HONORS/AWARDS • 2016 “Eigene Stelle" Deutsche Forschungsgemeinschaft Science Grant (269,650 Euros) • 2013 NOAO Science Excellence Award • 2013 NOAO DECam Installation, Commissioning and Scientific Verification Team Award • 2009 The Dartmouth College Arts and Sciences Graduate Student Research Presentation Award • 2007 Honorable Mention Chambliss Award (AAS) • Mary L. Collins Graduate Scholarship
    [Show full text]
  • Tracing the Hercules Stream with Gaia and LAMOST: New Evidence for a Fast Bar in the Milky Way Giacomo Monari, Daisuke Kawata, Jason Hunt, Benoit Famaey
    Tracing the Hercules stream with Gaia and LAMOST: new evidence for a fast bar in the Milky Way Giacomo Monari, Daisuke Kawata, Jason Hunt, Benoit Famaey To cite this version: Giacomo Monari, Daisuke Kawata, Jason Hunt, Benoit Famaey. Tracing the Hercules stream with Gaia and LAMOST: new evidence for a fast bar in the Milky Way. Monthly Notices of the Royal As- tronomical Society: Letters, Oxford Journals, 2017, 466 (1), pp.L113-L117. 10.1093/mnrasl/slw238. hal-03146773 HAL Id: hal-03146773 https://hal.archives-ouvertes.fr/hal-03146773 Submitted on 1 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MNRAS 466, L113–L117 (2017) doi:10.1093/mnrasl/slw238 Advance Access publication 2016 November 28 Tracing the Hercules stream with Gaia and LAMOST: new evidence for a fast bar in the Milky Way Giacomo Monari,1,2‹ Daisuke Kawata,3 Jason A. S. Hunt3,4 and Benoit Famaey1 1Observatoire Astronomique de Strasbourg, UMR 7550, Universite´ de Strasbourg, CNRS 11, F-67000 Strasbourg, France 2The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova, SE-10691 Stockholm, Sweden 3Mullard Space Science Laboratory, University College London, Holmbury St.
    [Show full text]
  • Tracing the Hercules Stream with Gaia and LAMOST: New Evidence for a Fast Bar in the Milky Way
    MNRAS 466, L113–L117 (2017) doi:10.1093/mnrasl/slw238 Advance Access publication 2016 November 28 Tracing the Hercules stream with Gaia and LAMOST: new evidence for a fast bar in the Milky Way Giacomo Monari,1,2‹ Daisuke Kawata,3 Jason A. S. Hunt3,4 and Benoit Famaey1 1Observatoire Astronomique de Strasbourg, UMR 7550, Universite´ de Strasbourg, CNRS 11, F-67000 Strasbourg, France 2The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova, SE-10691 Stockholm, Sweden 3Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT, UK 4Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario M5S 3H4, Canada Accepted 2016 November 23. Received 2016 November 22; in original form 2016 October 17 ABSTRACT The length and pattern speed of the Milky Way bar are still controversial. Photometric and spectroscopic surveys of the inner Galaxy, as well as gas kinematics, favour a long and slowly rotating bar, with corotation around a Galactocentric radius of 6 kpc. On the other hand, the existence of the Hercules stream in local velocity space favours a short and fast bar with corotation around 4 kpc. This follows from the fact that the Hercules stream looks like a typical signature of the outer Lindblad resonance of the bar. As we showed recently, reconciling this local stream with a slow bar would need to find a yet unknown alternative explanation, based, for instance, on the effect of spiral arms. Here, by combining the TGAS catalogue of the Gaia DR1 with LAMOST radial velocities, we show that the position of Hercules in velocity space as a function of radius in the outer Galaxy indeed varies exactly as predicted by fast bar models with a pattern speed no less than 1.8 times the circular frequency at the Sun’s position.
    [Show full text]
  • Galactic Archaeology with Gaia
    Galactic Archaeology with Gaia GyuChul Myeong Institute of Astronomy University of Cambridge This dissertation is submitted for the degree of Doctor of Philosophy Pembroke College July 2019 Declaration I hereby declare that except where specific reference is made to the work of others, the contents of this dissertation are original and have not been submitted in whole or in part for consideration for any other degree or qualification at the University of Cambridge, or any other University. This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration, except where specifically indicated. This dissertation contains less than 60,000 words including abstract, appendices, footnotes, tables and equations and has less than 150 figures. GyuChul Myeong July 2019 Abstract GyuChul Myeong: Galactic Archaeology with Gaia The halo of our Galaxy is believed to be mainly formed by the materials accreted/merged in the past, and so has “extragalactic” origin. Such formation process will leave dynamical traces imprinted in the halo, like stellar substructures, distinguishable from the in-situ halo component. Studying the present-day structure and substructures of the Milky Way halo is one of the most direct ways of understanding the formation and the evolutionary history of the Galaxy, as well as investigating the LCDM model on the galaxy scale which has not yet been tested thoroughly. It has been a challenge to obtain a sufficiently large sample of halo stars for such study due to the sparse density of the halo. The recent Gaia mission can open a new era for the study of Galactic Archaeology as it provides quality data for ∼ 1:3 billion stars across the Milky Way which had remained uncharted so far.
    [Show full text]
  • Turon 2008.Pdf
    Report by the ESA-ESO Working Group on Galactic populations, chemistry and dynamics Abstract Between the early 40s, when Baade showed the first evidence for the existence of two distinct stellar populations, and today, with our Galaxy surprising us with new substructures discovered almost on a monthly basis, it is clear that a remarkable progress has been achieved in our understanding of the Galaxy, of its structure and stellar populations, and of its chemical and dynamical signatures. Yet, some questions have remained open and have proven to be very challenging. The main task of this Working Group has been to review the state-of-the- art knowledge of the Milky Way galaxy, to identify the future challenges, and to propose which tools (in terms of facilities, infrastructures, instruments, science policies) would be needed to successfully tackle and solve the remaining open questions. Considering the leadership position that Europe has reached in the field of Galactic astronomy (thanks to the Hipparcos mission and the Very Large Telescope) and looking at the (near-)future major initiatives it has undertaken (VISTA and VST survey telescopes, Gaia mission), this work clearly has been very timely. It is of uttermost importance for European astronomy to keep and further consolidate its leading position. This Working Group has made recommendations that would allow dissecting our backyard laboratory, the Galaxy, even further. ESO survey telescopes about to become operational and the upcoming ESA Gaia mission are a guarantee for opening new horizons and making new discoveries. We, the astronomers, with the support of our funding agencies, are ready to fully commit to the best exploitation of the treasure that is ahead of us.
    [Show full text]
  • Identifying Resonances of the Galactic Bar in Gaia DR2: I
    MNRAS 000,1–21 (2020) Preprint 4 November 2020 Compiled using MNRAS LATEX style file v3.0 Identifying resonances of the Galactic bar in Gaia DR2: I. Clues from action space Wilma H. Trick1¢, Francesca Fragkoudi1, Jason A. S. Hunt2,3, J. Ted Mackereth4, and Simon D. M. White1 1Max-Planck-Insitut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching b. München, Germany 2Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario, M5S 3H4, Canada 3Center for Computational Astrophysics, Flatiron Institute, 162 5th Av., New York City, NY 10010, USA 4School of Astronomy and Astrophysics, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK Accepted XXX. Received YYY; in original form ZZZ ABSTRACT Action space synthesizes the orbital information of stars and is well-suited to analyse the rich kinematic substructure of the disc in the Gaia DR2 radial velocity sample (RVS). We revisit the strong perturbation induced in the Milky Way (MW) disc by an < = 2 bar, using test particle simulations and the actions ¹퐽',!I, 퐽Iº estimated in an axisymmetric potential. These make three useful diagnostics cleanly visible. (1.) We use the well-known characteristic flip from outward to inward motion at the Outer Lindblad Resonance (OLR, ; = ¸1, < = 2), which occurs along the axisymmetric resonance line (ARL) in ¹!I, 퐽'º, to identify in the Gaia action data three candidates for the bar’s OLR and pattern speed Ωbar: 1.85Ω0, 1.20Ω0, and 1.63Ω0 (with ∼ 0.1Ω0 systematic uncertainty). The Gaia data is therefore consistent with both slow and fast bar models in the literature, but disagrees with recent measurements of ∼ 1.45Ω0.
    [Show full text]