Volumen 23 Número 2 ISSN 0121-750X E-ISSN 23448393 REVISTA CIENTÍFICA CUATRIMESTRAL

Total Page:16

File Type:pdf, Size:1020Kb

Volumen 23 Número 2 ISSN 0121-750X E-ISSN 23448393 REVISTA CIENTÍFICA CUATRIMESTRAL i i i i Volumen 23 Número 2 ISSN 0121-750X E-ISSN 23448393 REVISTA CIENTÍFICA CUATRIMESTRAL 2018 i i i i i i i i Volumen 23 · Numero´ 2 · Ano˜ 2018 · ISSN 0121-750X · E-ISSN 2344-8393 ARBITROS´ EN ESTA EDICION´ REVISTA CIENTIFICA´ CUATRIMESTRAL Alvaro´ Angel´ Orozco Gutierrez,´ PhD. Carrera 7 No. 40-53 Universidad Tecnologica´ de Pereira. Colombia Edificio Administrativo Piso 7 - Facultad de Ingenier´ıa Sergio Rivera Rodriguez, PhD. Bogota,´ Colombia Universidad Nacional de Colombia Telefono:´ + 57 (1) 323 93 00 ext. 2413 Correo revista: Diego Cantor, PhD. revista [email protected] University of Western Ontario Robarts Research Institute. Canada´ http://revistas.udistrital.edu.co/ojs/index.php/reving Melissa Aguas de Hoyos, MSc. POSTURA EDITORIAL Y AUDIENCIA Universidad Nacional de Colombia La Revista INGENIERIA´ es una publicacion´ de caracter´ cient´ıfico con una periodi- cidad cuatrimestral editada por la Universidad Distrital Francisco Jose´ de Caldas. La Jose Fidel Torres Delgado, PhD. Revista esta´ dirigida a la comunidad academica,´ investigadores, egresados, sectores Universidad de los Andes. Colombia productivos y en general al publico´ interesado en los temas del campo de la Ingenier´ıa. Su principal objetivo es difundir y debatir avances en investigacion´ y desarrollo en las diferentes areas´ de la ingenier´ıa a traves´ de la publicacion´ de art´ıculos originales e Julio Cesar´ Londono˜ Ortega, MSc. ineditos,´ con pertinencia local o internacional. Universidad del Valle. Colombia EDITOR Andres Felipe Osorio Muriel, PhD. Sergio A. Rojas, PhD. Universidad ICESI. Colombia Universidad Distrital Francisco Jose´ de Caldas, Colombia Juan Carlos Figueroa, PhD. COMITE´ EDITORIAL Universidad Distrital F.J. de C. Colombia Sarah Greenfield, PhD. Carlos Andres´ Pena,˜ PhD. Faculty of Technolgy of Institute for Information and Commu- Sergio A. Rojas, PhD. Montfort University, nication Technologies - Haute Ecole Universidad Distrital F.J. de C. Colombia Reino Unido d’Ingenierie´ et de Gestion du Canton de Vaud, Suiza ´ Diego Cantor, PhD. Ivan´ Santelices Malfanti, PhD. PERMISO DE REPRODUCCION University of Western Ontario Universidad del B´ıo-B´ıo, Robarts Research Institute, Canada´ Chile Los textos de los art´ıculos incluidos en esta edicion´ pue- den ser utilizados y reproducidos con fines sin animo´ de Jose Marcio Luna, PhD. Carlos Eduardo Moreno, PhD. lucro y dando credito´ a los autores. Este´ trabajo se distri- Perelman School of Medicine, Universidad Nacional de buye bajo la Licencia de Creative Commons University of Pennsylvania, Estados Unidos Colombia Reconocimiento – No comercial – Sin Obra Derivada 3.0 Unported. Jose´ Luis Villa, PhD. V´ıctor Hugo Grisales, PhD. ´ Universidad Tecnologica´ de Universidad Nacional de Ni la Revista INGENIERIA, Editor, Comite´ Editorial, Comite´ Cient´ıfico, Facultad Bol´ıvar, Colombia Colombia de Ingenier´ıa de la Universidad Distrital F.J.C., otorgan ninguna garant´ıa, expresa o impl´ıcita, a asumen responsabilidad alguna por la exactitud, completitud o utilidad de Luz Esperanza Bohorquez, PhD. Juan Carlos Figueroa, PhD. cualquier informacion,´ aparato, producto o proceso divulgado, o que represente que Universidad Distrital Francisco Universidad Distrital Francisco su uso no infrinja derechos privados. La mencion´ o referencia a algun´ producto, pro- Jose´ de Caldas, Colombia Jose´ de Caldas, Colombia ceso o servicio comercial en espec´ıfico, por su marca comercial, marca registrada, fabricante o cualquier otra denominacion,´ no implica ni constituye su endoso, re- ´ ´ comendacion´ endoso, recomendacion´ o favorecimiento por parte de la Revista IN- COMITE CIENTIFICO GENIERIA.´ Los juicios y opiniones expresadas por los autores en este medio son de su responsabilidad y no establecen, reflejan o comprometen los de la Revista INGE- German´ Jairo Hernandez,´ PhD. Rodrigo Herrera, MSc. NIERIA.´ Universidad Nacional Universidad Distrital Francisco de Colombia Jose´ de Caldas, Colombia Marco Aurelio Alzate, PhD. Henry Alberto Diosa, PhD. COSTO DE PROCESAMIENTO DE Universidad Distrital Francisco Universidad Distrital Francisco ARTICULOS´ Jose´ de Caldas, Colombia Jose´ de Caldas, Colombia German´ Mendez,´ PhD. Edwin Rivas, PhD. La Revista INGENIERIA´ no realiza ningun´ cobro por las postulaciones, evaluacion´ Universidad Distrital Francisco Universidad Distrital Francisco y publicacion´ de los art´ıculos sometidos. La Universidad Distrital Francisco Jose´ de Jose´ de Caldas, Colombia Jose´ de Caldas, Colombia Caldas asume los gastos relacionados con el proceso de edicion,´ gestion´ y publicacion.´ Ana Mar´ıa Pena,˜ PhD. Los Pares Evaluadores realizan su contribucion´ de manera voluntaria y sin retribucion´ Universidad Distrital Francisco economica.´ Jose´ de Caldas, Colombia DIRECTIVAS PREPARACION´ EDITORIAL INDIZADA EN CARATULA´ La portada esta´ inspirada en el art´ıculo Ricardo Garc´ıa Duarte Carolina Suarez´ R., MSc. sobre almacenamiento de energ´ıa Rector Gestora Editorial solar publicado en este numero;´ es una alegor´ıa sobre la importancia Jenny Alexandra Jimenez, MSc. del aprovechamiento de recursos Nelson Libardo Forero Chacon,´ PhD. Correccion´ de Estilo energeticos´ alternativos para la Director Centro de Investigacion´ preservacion´ del planeta. y Desarrollo Cient´ıfico Julian Arcila-Forero, MSc. Idea creativa y Diseno˜ Grafico´ : Diagramacion´ LATEX Carlos E. Montenegro Mar´ın, PhD. Sergio A. Rojas y Julian Hernandez´ Decano de la Facultad de Ingenier´ıa Imagen Editorial Impresion´ i i i i i i i i TABLE OF CONTENTS Editorial Cerrar ciclos, suscitar espirales 113 Cycles eliciting spirals Sergio A. Rojas Industrial Engineering Inventory Routing Problem in perishable supply chains: A literature review 117 El Problema de Ruteo e Inventarios en Cadenas de Suministro de Perecederos: Revision´ de Literatura Diego Fernando Batero Manso Javier Arturo Orjuela Castro · Environmental Engineering A Survey of Materials for Solar Thermal Energy Storage 144 Una Revision´ sobre Materiales para Almacenamiento de Energ´ıa Solar Termica´ Debrayan Bravo Hidalgo Computational Intelligence Forecasting Latin-American Currency Exchange using Models with Static and Stochastic Volatility 166 Pronostico´ de divisas latinoamericanas con modelos de Volatilidad Estatica´ y Estocastica´ Laura Camila Roldan´ Martinez New Algorithms for δγ-Order Preserving Matching 190 Nuevos Algoritmos para Busqueda´ de Orden δγ Juan Mendivelso Rafael Niquefa Yoan Pinzon´ German´ Hernandez´ · · · Instructions for Authors 203 i i i i i i i i Nota Editorial Cerrar ciclos, suscitar espirales Hace poco me encontraba frente al computador elaborando el borrador de una de las recientes caratulas´ de la Revista, que trataba sobre una postal hipotetica´ del planeta Tierra visto desde la superficie solar. Sucedio´ que mi hijo de ocho anos˜ al verme, con una gran curiosidad me pregunto´ que´ estaba haciendo. Le respond´ı: “trabajo en un dibujo para inspirar a las personas a hacer del mundo un lugar mejor; es una metafora.´ ¿Recuerdas que el otro d´ıa estudiamos lo que significaba una metafora?”.´ Asintio´ vacilante, quizas´ porque no recordo´ lo que significaba; pero en cambio exclamo´ entusiasmad´ısimo: “¡yo tambien´ quiero trabajar como tu!”´ e inmediatamente fue por papel y colores, y comenzo´ a garabatear y pintar su propio dibujo, que con su gracia infantil, percib´ı mas´ sincero, mas´ audaz, mas´ colorido que el m´ıo. Entend´ı que en ese momento hab´ıa logrado inspirarlo, que durante ese instante el mundo fue un poquito mejor y que episodios como este eran pequenas˜ recompensas inesperadas para mi trabajo como editor de revista cient´ıfica. Precisamente durante este tiempo como Editor de la Revista INGENIERIA´ he tenido la fortuna de reconfortarme con varias de estas pequenas˜ recom- pensas inesperadas, encontradas en palabras de autores, de evaluadores, de editores y lectores, que han hallado en esta labor motivos de gratitud, de reconocimiento y sobre todo, de motivacion.´ A pesar de que el oficio de editor es muchas veces incomprendido y subvalorado, como lo he expresado en varias ocasiones [1], aquellos que lo asumimos con pasion´ sabemos que nuestro trabajo discretamente contribuye a consolidar los espacios idoneos´ (transparentes, imparciales, diligentes, atentos, distintivos) a fin de que los investigadores puedan comunicar sus avances; esos que en una medida u otra, contribuyen a hacer del mundo un lugar mejor. Lastimosamente en este mismo rol tambien´ he tenido que enfrentar grandes decepciones, reclamos infundados, valoraciones injustas de los logros de la Revista y mas´ recientemente, el devenir del cierre de mi ciclo como editor de esta, no por voluntad propia sino por designio intempestivo y unilateral de parte de las autoridades administrativas de la Universidad. He procurado asumir esta ultima´ afrenta de manera estoica, buscando explica- cion´ en las dinamicas´ propias del servicio publico,´ caracterizadas por ciclos periodicos´ de gestion´ a traves´ de los cuales las instituciones prevalecen so- bre los funcionarios que las presiden. Y dado que considero que uno de los mejores logros alcanzados por la Revista INGENIERIA´ ha sido forjar su ins- Citacion:´ S. Rojas, “Cerrar ciclos, suscitar espirales“, Ingenier´ıa, vol. 23, no. 2, pp. 113-116, 2018. c The authors; reproduction right holder Universidad Distrital Francisco Jose´ de Caldas. DOI: https://doi.org/10.14483/23448393.13388 INGENIER´IA VOL. 23 NO. 2 ISSN 0121-750X E-ISSN 2344-8393 UNIVERSIDAD DISTRITAL FRANCISCO JOSE´ DE CALDAS • • • • • 113 i i i i i i i i Cerrar
Recommended publications
  • Compact Fenwick Trees for Dynamic Ranking and Selection
    Compact Fenwick trees for dynamic ranking and selection Stefano Marchini Sebastiano Vigna Dipartimento di Informatica, Universit`adegli Studi di Milano, Italy October 15, 2019 Abstract The Fenwick tree [3] is a classical implicit data structure that stores an array in such a way that modifying an element, accessing an element, computing a prefix sum and performing a predecessor search on prefix sums all take logarithmic time. We introduce a number of variants which improve the classical implementation of the tree: in particular, we can reduce its size when an upper bound on the array element is known, and we can perform much faster predecessor searches. Our aim is to use our variants to implement an efficient dynamic bit vector: our structure is able to perform updates, ranking and selection in logarithmic time, with a space overhead in the order of a few percents, outperforming existing data structures with the same purpose. Along the way, we highlight the pernicious interplay between the arithmetic behind the Fenwick tree and the structure of current CPU caches, suggesting simple solutions that improve performance significantly. 1 Introduction The problem of building static data structures which perform rank and select operations on vectors of n bits in constant time using additional o(n) bits has received a great deal of attention in the last two decades starting form Jacobson's seminal work on succinct data structures. [7] The rank operator takes a position in the bit vector and returns the number of preceding ones. The select operation returns the position of the k-th one in the vector, given k.
    [Show full text]
  • List of Algorithms
    List of Algorithms Swiss Olympiad in Informatics September 13, 2012 This list contains a few algorithms that may prove useful when solving SOI or IOI related tasks. The current IOI Syllabus can be found here: http://people.ksp.sk/~misof/ioi-syllabus/ioi-syllabus.pdf Please note that this list simply serves as an outline and that tasks are not limited by the algorithms listed below. However, one can also participate (and even be successful) without knowing the algorithms listed below. To guide you better, the most important topics are in bold. • Sorting1 • Binary Search • Data Structures Stack1 Queue1 List: Linked List, Doubly Linked List1 Tree Sets1 and Tree Maps1 (Binary Search Trees) Priority Queue1 Double ended queue1 Binary Heap Data Structure Interval Tree Segment Tree Disjoint{set Data Structure (Union{Find) Rational Numbers Bignum (Addition, Subtraction, Multiplication, Division) Quad Tree optional: Binary Indexed Tree (BIT) (Fenwick Tree) • Graph Algorithms DFS (Depth{First Search) BFS (Breadth{First Search) Connected Components Topological Sorting (toposort) Shortest Path · Dijkstra's Algorithm · Bellman{Ford Algorithm · Floyd{Warshall's Algorithm (all{pairs shortest path) MST (Minimum Spanning Tree) · Kruskal's Algorithm · Prim's Algorithm · Find Articulation Points (articfind) · Hierholzer's Algorithm (for finding Euler cycles) • Dynamic Programming (DP) Prefix Sum Edit Distance LCS (Longest Common Subsequence) LIS (Longest Increasing Subsequence) MCM (Matrix Chain Multiplication) MER (Maximum Empty Rectangle)
    [Show full text]
  • On Updating and Querying Submatrices
    On Updating and Querying Submatrices Jason Yang Mentor: Jun Wan MIT PRIMES Computer Science October 19, 2020 Jason YangMentor: Jun Wan On Updating and Querying Submatrices Range update-query problem A is an array of N numbers A range R = [l; r] is the set of indices fijl ≤ i ≤ rg update(R; v): for all i 2 R, set A[i] to A[i] + v query(R): return mini2R A[i] Segment tree + lazy propagation: O(log N) time updates and queries Jason YangMentor: Jun Wan On Updating and Querying Submatrices Generalizations Using different operators update(R; v): 8i 2 R; A[i] A[i] 5 v query(R; v) : return 4i2R A[i] If 5 and 4 are associative, segment tree + lazy propagation usually works (but not always) Ex. (5; 4) = (+; +) (∗; +) ( ; min) This problem and variants have applications in LCA in a tree image retrieval Jason YangMentor: Jun Wan On Updating and Querying Submatrices Generalizations 2 dimensions: the array becomes a matrix ranges fijl ≤ i ≤ rg becomes submatrices [l0; r0][l1; r1] = fijl0 ≤ i ≤ r0g × fjjl1 ≤ j ≤ r1g We call this the submatrix update-query problem. Jason YangMentor: Jun Wan On Updating and Querying Submatrices Previous Work Generalizing segment tree seems to be very difficult update query d = 1 Segment Tree O(log N) O(log N) d = 2 2D Segment Tree O(N log N) O(log2 N) Quadtree O(N) O(N) d = 2, special operator pairs (5; 4) 2D Fenwick Tree (Mishra) O(16 log2 N) O(16 log2 N) 2D Segment Tree (Ibtehaz) O(log2 N) O(log2 N) 2D Segment Tree (ours) O(log2 N) O(log2 N) Jason YangMentor: Jun Wan On Updating and Querying Submatrices Intuition Why is
    [Show full text]
  • A New Algorithm for Updating and Querying Sub-Arrays Of
    A New Algorithm for Updating and Querying Sub-arrays of Multidimensional Arrays Pushkar Mishra Computer Laboratory, University of Cambridge [email protected] Abstract Given a d-dimensional array A, an update operation adds a given constant C to each element within a continuous sub-array of A. A query operation computes the sum of all the elements within a continuous sub-array of A. The one-dimensional update and query handling problem has been studied intensively and is usually solved using segment trees with lazy propagation technique. In this paper, we present a new algorithm incorporating Binary Indexed Trees and Inclusion-Exclusion Principle to accomplish the same task. We extend the algorithm to update and query sub-matrices of matrices (two-dimensional array). Finally, we propose a general form of the algorithm for d-dimensions which d d achieves O(4 ∗ log n) time complexity for both updates and queries. This is an improvement over the previously known algorithms which utilize hierarchical data structures like quadtrees and octrees d−1 and have a worst-case time complexity of Ω(n ) per update/query. Keywords: Algorithm; Data Structure; Multidimensional Array; Binary Indexed Tree; Range-update; Range-query. 1 Introduction The problem of updating and querying sub-arrays of multidimensional arrays is of consequence to sev- eral fields including data management, image processing and geographical information systems. The one-dimensional version of this problem has conventionally been solved using segment trees with lazy propagation technique. We show in this paper that a d-dimensional segment tree (d> 1) supports lazy propagation only along one out of the d dimensions.
    [Show full text]
  • Olympiads in Informatics15
    Olympiads in Informatics Olympiads OlympiadsVolume 15, 2021 in Informatics in Informatics Volume 15, 2021 Foreword 1 Olympiads in Informatics G. AUDRITO, W. DI LUIGI, L. LAURA, E. MORASSUTTO, D. OSTUNI 15 The Italian Job: Moving (Massively) Online a National Olympiad 3 D. GINAT Self-Generated Figures in Sequence Processing 13 J. HASANOV, H. GADIRLI, A. BAGIYEV On Using Real-Time and Post-Contest Data to Improve the Contest Organization, Tech- nical/Scientific Procedures and Build an Efficient Contestant Preparation Strategy 23 M. MAREŠ Security of Grading Systems 37 L. NIKHÁZY, Á. NOSZÁLY, B. DEÁK Why You Should Know and Not Only Use Sorting Algorithms: Some Beautiful Problems 53 P.S. PANKOV, T.M. IMANALIEV, A.A. KENZHALIEV Automatic Makers as a Source for Olympiad Tasks 75 Z. PLUHÁR Extending Computational Thinking Activities 83 V.D. RISTOVSKA, E. STANKOV, P. SEKULOSKI Teaching and Examination Process of Some University Courses before vs during the 91 Corona Crisis Volume 15, 2021 M.S. TSVETKOVA, V.M. KIRYUKHIN Algorithmic Thinking and New Digital Literacy 105 T. VERHOEFF Look Ma, Backtracking without Recursion 119 REPORTS F. HERNÁNDEZ GONZÁLEZ, J.D. RODRÍGUEZ MORALES, D.A. RIPOLL MÉNDEZ The Cuban Olympiad in Informatics: A New Stage from the DMOJ Online Judge 133 A. LAAKSONEN Reviews of Two Programming Books 143 Ics In Informat IOIIad olymp Ional ISSN 1822-7732 Internat ISSN 1822-7732 INTERNATIONAL OLYMPIAD IN INFORMATICS VILNIUS UNIVERSITY OLYMPIADS IN INFORMATICS Volume 15 2021 Selected papers of the International Conference joint with the XXXIII International Olympiad in Informatics (online) Singapore, 19–25 June, 2021 OLYMPIADS IN INFORMATICS Editor-in-Chief Valentina Dagienė Vilnius University, Lithuania, [email protected] Executive Editor Mile Jovanov Sts.
    [Show full text]
  • Day 03: Problem Analysis Vitaly Aksenov ITMO University, St
    Day 03: Problem Analysis Vitaly Aksenov ITMO University, St. Petersburg, Russia 25.02.2014 Problems • Problems, where taken half from the Petrozavodk camp for Russian teams, the other half from the old NEERC Nothern Quaterfinals • What you should know to solve this problems: – Treap (explicit/implicit key) – Segment tree – Fenwick tree – Even in one problem you could use DSU Problem A. Problem with queries • You are given some specific subset of sql commands • And you need to evaluate them Problem A. Problem with queries • You should see, that restrictions in this problem are small. This means, that you shouldn’t think to much about optimization of problem and you can use strict-forward solution. • You need to parse input commands. It seems to be one of the hardest part of the problem, because you need to write a lot of code without mistakes. Such as InSErT is the same as INSERT. • You need to write the logical operations properly, where AND has bigger priority. Problem B. Examinator • You need perform the following queries: – How many cubes between A and B? – Insert cube A upon cube B. – Remove cube A. Problem B. Examinator • Let us think, that you don’t need to remove cubes. We will perform adding cubes to the tower with the help of the list structure. • When we add all the cubes, we know the position of each cube in the result tower. A -> pos[A] • Now, rephrase all the queries: – How many ones between pos[A] and pos[B]? – Put one in the position pos[A]. – Remove one from the position pos[A].
    [Show full text]
  • Algorithms for Efficiently Collapsing Reads with Unique Molecular Identifiers
    bioRxiv preprint doi: https://doi.org/10.1101/648683; this version posted May 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Liu RESEARCH Algorithms for efficiently collapsing reads with Unique Molecular Identifiers Daniel Liu Correspondence: [email protected] Abstract Torrey Pines High School, Del Mar Heights Road, San Diego, United Background: Unique Molecular Identifiers (UMI) are used in many experiments to States of America find and remove PCR duplicates. Although there are many tools for solving the Department of Psychiatry, University of California San Diego, problem of deduplicating reads based on their finding reads with the same Gilman Drive, La Jolla, United alignment coordinates and UMIs, many tools either cannot handle substitution States of America errors, or require expensive pairwise UMI comparisons that do not efficiently scale Full list of author information is available at the end of the article to larger datasets. Results: We formulate the problem of deduplicating UMIs in a manner that enables optimizations to be made, and more efficient data structures to be used. We implement our data structures and optimizations in a tool called UMICollapse, which is able to deduplicate over one million unique UMIs of length 9 at a single alignment position in around 26 seconds. Conclusions: We present a new formulation of the UMI deduplication problem, and show that it can be solved faster, with more sophisticated data structures.
    [Show full text]
  • Partial Sums on the Ultra-Wide Word RAM∗ Arxiv:1908.10159V2 [Cs.DS]
    Partial Sums on the Ultra-Wide Word RAM∗ Philip Bille Inge Li Gørtz Frederik Rye Skjoldjensen [email protected] [email protected] [email protected] Abstract We consider the classic partial sums problem on the ultra-wide word RAM model of computation. This model extends the classic w-bit word RAM model with special ultrawords of length w2 bits that support standard arithmetic and boolean operation and scattered memory access operations that can access w (non- contiguous) locations in memory. The ultra-wide word RAM model captures (and idealizes) modern vector processor architectures. Our main result is a new in-place data structure for the partial sum problem that only stores a constant number of ultrawords in addition to the input and supports operations in doubly logarithmic time. This matches the best known time bounds for the problem (among polynomial space data structures) while improving the space from superlinear to a constant number of ultrawords. Our results are based on a simple and elegant in-place word RAM data structure, known as the Fenwick tree. Our main technical contribution is a new efficient parallel ultra-wide word RAM implementation of the Fenwick tree, which is likely of independent interest. 1 Introduction Let A[1; : : : ; n] be an array of integers of length n. The partial sums problem is to maintain a data structure for A under the following operations: sum(i): return Pi A[k]. • k=1 update(i; ∆): set A[i] A[i] + ∆. • The partial sums problem is a classic and well-studied data structure problem [1,2,3,4, arXiv:1908.10159v2 [cs.DS] 30 Sep 2020 10,13,15,17,18,19,20,22,23,24,25,32,33,39].
    [Show full text]
  • Team Reference Document
    Team Reference Document ACM-ICPC World Finals, 2018 April 15{20, Beijing Contestants: Coach: Filip Bialas doc. Mgr. Zdeněk Dvoøák, Ph.D. Richard Hladík Václav Volhejn Charles University 1 Prologue 1 Treap 6 Link-cut tree 15 trinerdi/base.hpp 1 Counting the number of spanning trees 16 trinerdi/sc.sh 1 Numerical 6 Geometry 16 trinerdi/check.sh 1 Polynomial 6 Binary search 6 Geometric primitives 16 Mathematics (text) 1 Golden section search 6 Point 16 Equations 1 Polynomial roots 6 Line distance 16 Recurrences 1 Determinant 7 Segment distance 16 Trigonometry 2 Linear programming 7 Segment intersection 16 Geometry 2 Linear equations 7 Segment intersection (boolean version) 17 Triangles 2 Linear equations++ 7 Line intersection 17 Quadrilaterals 2 Linear equations in Z 7 2 Point-line orientation 17 Spherical coordinates 2 Matrix inversion 8 Point on segment 17 Derivatives/Integrals 2 FFT 8 Linear transformation 17 Sums 2 Angle 17 Series 2 Number theory 8 Probability theory 2 Fast exponentiation 8 Circles 18 Discrete distributions 2 Primality test 8 Circle intersection 18 Binomial distribution 2 Sieve of Eratosthenes 8 Circle tangents 18 First success distribution 2 Extended Euclid's Algorithm 8 Circumcircle 18 Poisson distribution 2 Modular arithmetic 8 Minimum enclosing circle 18 Continuous distributions 2 Modular inverse (precomputation) 9 Uniform distribution 2 Modular multiplication for ll 9 Polygons 18 Exponential distribution 2 Modular square roots 9 Inside general polygon 18 Normal distribution 3 Discrete logarithm 9 Polygon area 18 Markov chains 3 NTT 9 Polygon's center of mass 18 Number-theoretical 3 Factorization 9 Polygon cut 18 Pythagorean Triples 3 Phi function 10 Convex hull 19 Primes 3 Chinese remainder theorem 10 Polygon diameter 19 Estimates 3 Inside polygon (pseudo-convex) 19 Combinatorics 10 Intersect line with convex polygon (queries) 19 Combinatorial (text) 3 Permutation serialization 10 Misc.
    [Show full text]
  • Data Structures
    Data Structure(III) Ian Things that we would talk about ● Disjoint set ● Segment tree ● Binary indexed tree ● Trie Disjoint set ● Keep tracking elements belong to which subset (non- overlapping) ● Support two operation – Union (merge two subset into one) – Find (see if element x belong to which subset) Disjoint set ● We use a forest to represent this ● Each node is a element ● Two element is in same subset if they are in the same tree. Which means the root for two element is the same. ● Merging two subset equals to merging to tree into one. ● Below we have two subset. Implementing Disjoint Set ● We define parent(x) as parent of x ● Int find(int x) while (x is not root) x = parent(x) return x ● Void merge(int x, int y) set parent of x to y ● If x is in the same subset with y, find(x) = find(y) ● Otherwise find(x) <> find(y) ● Time complexity for find is O(N) ● Time complexity for merge is O(1) ● We can make it faster Path Compression Path Compression ● Each time we find the root of x, we change the parent all of its ancestor including x to root. ● Int find(int x) if x is root return x int root = find(parent(x)) set root as parent of x return root ● This make find operation O(N log N) Union by Rank ● Idea if simple. We should avoid making tree tall. So each find operation use less time. ● Define height of the tree as the max of distance of root to its leaves.
    [Show full text]
  • IOI Training Week 7 Advanced Data Structures Tim Dumol
    IOI Training Week 7 Advanced Data Structures Tim Dumol Contents 1 Range Minimum Query 1 1.1 Square-root (sqrt) Decomposition....................................1 1.2 Segment Trees...............................................2 1.3 Notes.....................................................3 2 Self-Balancing Binary Search Trees3 3 Bonus: More interesting data structures6 4 Problems 6 4.1 Bonus Problems..............................................6 5 References 6 1 Range Minimum Query This section rotates around a common problem: Definition 1 (Range Minimum Query (RMQ)). Given an integer array of fixed length, answer a set of queries of the form: \What is the minimum element in the range of the array from i to j?". The contents of the array may change between queries. The na¨ıve solution for RMQ has no setup time, and O(n) query time. We can improve on this by adding some setup time, and using some additional memory. We will discuss two approaches: square-root decomposition, and segment trees. 1.1 Square-root (sqrt) Decomposition √ √ The idea behind√ sqrt decomposition is simple: preprocess the array into n chunks√ of size n each (thus consuming O( n) extra memory), so that we can perform the query in O( n) time, by using the pre- processed chunks to compute the minimum for the parts√ of the range that have a full intersection with the chunks, and then traversing the remaining at most 2 n − 1 elements uncovered by the chunks1. To elaborate, in code2: struct SqrtDecomp f vector <int >∗ a r r ; vector <int> chunks ; int c h u n k s i z e ; int n chunks ; SqrtDecomp(vector <int> const ∗ arr) : arr(arr) f c h u n k s i z e = ( int ) s q r t ( arr −>s i z e ( ) ) ; n chunks = ( int ) c e i l ( arr −>s i z e ( ) /( double ) n chunks ) ; chunks.
    [Show full text]
  • Binary Trees, While 3-Ary Trees Are Sometimes Called Ternary Trees
    Rooted Tree A rooted tree is a tree with a countable number of nodes, in which a particular node is distinguished from the others and called the root: In some contexts, in which only a rooted tree would make sense, the term tree is often used. Infinite Tree A rooted tree is infinite if it contains a countably infinite number of nodes. Finite Tree Similarly, a rooted tree is finite if it contains a finite number of nodes. Parent Consider a rooted tree T whose root is r T Let t be a node of T From Paths in Trees are Unique, there is only one path from t to r T Let π:T−{r T }→T be the mapping defined as: π(t)= the node adjacent to t on the path to r T Then π(t) is known as the parent (or parent node) of t , and π as the parent function or parent mapping. Root Node The root node, or just root, is the one node in a rooted tree which, by definition, has no parent. Ancestor An ancestor (or ancestor node) of a node t of a rooted tree T whose root is r T is a node in the path from t to r T . Thus, the root of a rooted tree T is the ancestor of every node of T (including itself). Proper Ancestor A proper ancestor of a node t is an ancestor of t which is not t itself. Children The children (or child nodes) of a node t in a rooted tree T are the elements of the set: {s∈T:π(s)=t} That is, the children of t are all the nodes of T of which t is the parent.
    [Show full text]