Note to Users

Total Page:16

File Type:pdf, Size:1020Kb

Note to Users NOTE TO USERS This reproduction is the best copy available. SYSTEMATKS AND BIOGEOGRAPHY OF THE RED ALGAL ORDER HLLDENBRANDIALES (RHODOPHYTA) A Thesis Presented to The Faculty of Graduate Studies of The University of Guelph by ALISON RUTH SHERWOOD In partial fulfihent of requirements for the degree of Doctor of Philosophy December, 2000 O Aiison R. Sherwood, 2000 National Library Bibliothèque nationale du Canada Acquisitions and Acquisitions et Bibliog raphic Services services bi bIiograp hiques 395 Wellington Street 395. rue Wellington Ottawa ON KIA ON4 Ottawa ON K1A ON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Lïbrary of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire' prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la foxme de microfiche/nlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts from it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. ABSTRACT SYSTEMATICS AND BIOGEOGRAPHY OF THE RED ALGAL ORDER HILDENBRANDMES (RHODOPHYTA) Alison Ruth Shercvood Advisor: University of Guelph, 2000 Professor R-G, Sheath The genetic variability of the genus Hildenbrandia throughout its distributional range and the taxonomie implications of this variation were examined using a combination of DNA sequence analyses (rbcL and 18s rRNA genes, and ITS regions), othzr rno lecular marker techniques (ISSR analyses) and morpliometric analyses. The phylogenetic relationship of Hildenbrandia to the second genus of the Hildenbrandiales, Apophlaea, was also exarnined using these techniques. Analyses of North American Hildenbrandia demonstrated high sequence divergence values within and arnong marine and fieshwater forms (225.8% [rbcL]; ~9.7%[18S rRNA]); although these levels were comparable in marine European rnembers of the genus (524.9% [rbcL];55.8% [18S &NA]), they were much lower for fieshwater European members (r 1.9% [rbcL]; ~3.6% [18S &NA]). The rbcL gene was transitionally saturated within the North Amencan and global level comparisons, but the phylogenetic signal for the 18s rRNA gene was strong even among global collections. Biogeographic comparisons of marine and fkeshwater Hildenbrandia collections fiom a small geographical region (southem Sweden) revealed different relationships among the samples, but comparisons to other samples fiom Europe indiczted a close phylogenetic relatiooship among al1 European freshwater Hildenbrandia. Some trends revealed by morphometric analysis correlated with those yielded by phylogenetic analyses, especiaily at a global level. Except for the common marine species, rubra, samples with similar morphologies fonned clades in phylogenetic trees. Based on these analyses, as well as morphornetric examinations of the qpe specimens and global representatives, taxonomie revision is recommended to reduce the number of currently accepted marine Hildenbuandia taxa fiom 12 to seven, with no synonymies recommended for the fieshwater taxa Inclusion of Apophlaea in the analyses indicated that although Apophlaea is a monophy Ietic genus, Hildenbrundia is not. A rnicroscopic examination of the freshwater species, H. angolemis, and its unique form of asemal reproduction demonstrated that gemrnae develop within the algal thallus and are released from the thallus surface. Histochemical cornparisons between gemma and thallus cells revealed large amounts of starch in the gemmae, but not in thallus cells, Completing this degree would not have been possible without help and assistance fkom a nuniber of people and organizations. Most importantly, 1 would like to thank my advisor, Dr. Robert Sheath, for his guidance and support since my undergraduate days. 1 am gratefül for the multitude of research, travel and teaching opportunities that he has provided over the years. The other members of my advisory cornmittee (Dr. Joe Gerrath, Dr. Denis Lynn and Dr. Larry Peterson) have also helped in the design of my projects and provided advice in their areas of expertise. 1 have shared the lab with a number of people at various points during my degree, and I would like to thank them al1 for making the thne fun and interestùig: Lesley Campbell, Dana Couture, Laura Kline, Kirsten Müller, Tara Rintoul, Troina Shea and Stacey Thompson. Thanks aiso to my fiends in both the botany and zoology departments. 1have received a large amount of help with my thesis projects fiom other people. Many phycologists around the world have provided me with material for this thesis, and to them 1 owe a large "thank you" for giving me the opportunity to examine specimens with such a wide geographical scope. Troina Shea did rnuch of the PCR work for Chapter 4 and Stacey Thompson helped with the light microscopy sectioning for Chapter 5. Dr. Paul Silva (UC Berkeley Herbarium) has kindly sorted through my taxonomie and nomenclatural quenes and Dr. Ten Crease (Dept. of Zoology, Guelph) hm spent a good deal of time helping me with my phylogenetic analyses. Angela Holiiss (Guelph Molecular Supercentre) has sequenced innumerab2e templates for me over the past four years- Many thanks to Ron Deckert, who has been a wonderfil field assistant, source of conimon sense, general botany guru, listener and friend. Also to my parents, John and Glenda Shenvood, who have always been supportive of my academic endeavors. 1would like to acknowledge financial assistance fkom NSERC in the form of two post-graduate schola. awards. Research costs have been covered through NSERC grant OGP 0 183 503 to Dr. Robert Sheath, the University of Guelph and a PSA grant-in-aid of research. *.. 111 TABLE OF CONTENTS Page Acknowledgments i-ii Table of Contents z-vii List of Tables viii-ix List of Figures x-xiv Abbreviations xv-XVi Chapter 1: General Introduction 1-21 1.1. Morphology and distribution of the Hildenbrandides 1.2, Taxonomy of the Hildenbrandides 1-3. Phylogenetic positioning of the Hildenbrandiales 1.4. Biogeographic study of the Hiidenbrandiales 1S. The origins of fieshwater Hildenbrandia 1.6. Asexual propagation by gernmae in Hildenbrandia 1-7. Research objectives 1-8. Literature cited Chapter 2: Biogeography and systematics of Hildenbrandia in North America: inferences from morphometrics and sequence analysis of the rbcL and 18s rRNA genes 2.1. Introduction 2.2, Materials and Methods 2.2.1. Collection and identification of materials and DNA extraction 2.2.2. Morphometric analysis 2.2.3. Amplification and sequencing of the rbcL and 18s rRNA genes 2.2.4. rbcL and 185 rRNA gene analyses TABLE OF CONTENTS cont. 2.3. Results 2.3.1. Morphometric analysis 34 2.3 -2. Analysis of transitional saturation of the rbcL and 18s rRNA 39 genes 2.3 -3. rbcL gene distance, parsimony and quartet puzzIing analyses 47 2.3 -4. 18s rRNA gene distance and parsimony analyses 52 2.4. Discussion 57 2-5. Literature Cited 62 Chapter 3: Biogeography and systematics of Hildenbrandia in Europe: 67-101 inferences from morphometrics and sequence analysis of the rbcL and 18s rRNA genes 3.1. Introduction 3 -2. Materials and Methods 3.2.1. Sample collection and DNA extraction 3 -2.2. Morphometric analysis 3-2.3. Amplification and sequencing of the rbcL and 18s rRNA genes 3.2.4. rbcL and 18s rRNA gene sequence analyses 3 -3. Results 3 -3.1. Morphometric analyses 3 -3-2. Analysis of transitional saturation of the rbcL and 18S rRNA genes 3 -3-3. Parsirnony, distance and quartet puzzling analyses of the rbcL gene 3 -3-4. Parsimony, distance and quartet puzzling analyses of the 18s rRNA gene TABLE OF CONTENTS cont. 3 -4. Discussion 3 -5. Literature Cited Chapter 4: The relationship between marine and freshwater Hiïdenbrandia along an historical salinity gradient 4.1. Introduction 4.2. Materials and Methods 4.2.1. Collection of materials and morphologicd examination 4.2.2. DNA extraction, rbcL and 18s rRNA gene amplification, sequencing and gene sequence analyses 4.2.3. ITS 1 and ITS2 amplification and analyses 4.2.4. ISSR amplification and analyses 4.2.5. Determination of time since isolation f7om the Baltic Sea 4.3. Results 4.3.1. Morphological examination of collections 113 4.3 -2. Analyses of the ITS 1 and ITS2 regions 114 4.3 -3. ISSR-PCR results 221 4.3.4. rbcL and 18s rRNA analyses of representative collections 125 4-4. Discussion 131 4.5. Literature Cited 135 Chapter 5: Microscopic analysis and seasonality of gemma production 140-164 in Hilden brandia angolensis 5.1. Introduction 5.2. Materials and Methods 5.2.1. Collection of HiZdenbrundia angolensis 5.2.2. Microscopical and histochemical techniques 5.2.3. Seasonality of gemma production TABLE OF CONTlENTS cont. 5-3. Results 5-3.1. Gemma morphology and anatomy 144 5.3 -2. Histochemistry and X-ray microanalysis 145 5-3 -3. Gernma development 149 5 -3-4. Seasonality of gemma production 154 5.4. Discussion 157 5.5. Literature Cited 260 Chapter 6: Analysis of global collections and the type specimens of 165-140 Hildenbrandia 6.1. Introduction 6.2. Materiais and Methods 6.2.1. Type specimens, historicaliy signifTcant specimens and global collections analyzed 6.2.2. Morphometric analyses 6.2.3. rbcL and 18s rRNA gene sequence analyses 6.3. Results 6.3.1. Morphometric analyses 179 6.3-2. Analysis of transitional saturation of the rbcL and 18s rRNA 203 genes 6.3.3. 18s rRNA gene sequence analyses - parsimony analysis 203 6.3-4. 18 S rFWA gene sequence analyses - distance analy sis 209 6.3.5. 18s rRNA gene sequence analyses - quartet puzzling analysis 214 6.3.6.
Recommended publications
  • Divergence Time Estimates and the Evolution of Major Lineages in The
    www.nature.com/scientificreports OPEN Divergence time estimates and the evolution of major lineages in the florideophyte red algae Received: 31 March 2015 Eun Chan Yang1,2, Sung Min Boo3, Debashish Bhattacharya4, Gary W. Saunders5, Accepted: 19 January 2016 Andrew H. Knoll6, Suzanne Fredericq7, Louis Graf8 & Hwan Su Yoon8 Published: 19 February 2016 The Florideophyceae is the most abundant and taxonomically diverse class of red algae (Rhodophyta). However, many aspects of the systematics and divergence times of the group remain unresolved. Using a seven-gene concatenated dataset (nuclear EF2, LSU and SSU rRNAs, mitochondrial cox1, and plastid rbcL, psaA and psbA genes), we generated a robust phylogeny of red algae to provide an evolutionary timeline for florideophyte diversification. Our relaxed molecular clock analysis suggests that the Florideophyceae diverged approximately 943 (817–1,049) million years ago (Ma). The major divergences in this class involved the emergence of Hildenbrandiophycidae [ca. 781 (681–879) Ma], Nemaliophycidae [ca. 661 (597–736) Ma], Corallinophycidae [ca. 579 (543–617) Ma], and the split of Ahnfeltiophycidae and Rhodymeniophycidae [ca. 508 (442–580) Ma]. Within these clades, extant diversity reflects largely Phanerozoic diversification. Divergences within Florideophyceae were accompanied by evolutionary changes in the carposporophyte stage, leading to a successful strategy for maximizing spore production from each fertilization event. Our research provides robust estimates for the divergence times of major lineages within the Florideophyceae. This timeline was used to interpret the emergence of key morphological innovations that characterize these multicellular red algae. The Florideophyceae is the most taxon-rich red algal class, comprising 95% (6,752) of currently described species of Rhodophyta1 and possibly containing many more cryptic taxa2.
    [Show full text]
  • Marine Algal Flora of São Miguel Island, Azores
    Biodiversity Data Journal 9: e64969 doi: 10.3897/BDJ.9.e64969 Data Paper Marine algal flora of São Miguel Island, Azores Ana I Azevedo Neto‡‡, Ignacio Moreu , Edgar F. Rosas Alquicira§, Karla León-Cisneros|, Eva Cacabelos¶,‡, Andrea Z Botelho#, Joana Micael ¤, Ana C Costa#, Raul M. A. Neto«, José M. N. Azevedo‡, Sandra Monteiro#, Roberto Resendes»,˄ Pedro Afonso , Afonso C. L. Prestes‡, Rita F. Patarra˅,‡, Nuno V. Álvaro¦, David Milla-Figueras˄, Enric Ballesterosˀ, Robert L. Fletcherˁ, William Farnhamˁ, Ian Tittley ₵, Manuela I. Parente# ‡ cE3c - Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group, Faculdade de Ciências e Tecnologia, Departamento de Biologia, Universidade dos Açores, 9500-321 Ponta Delgada, Açores, Portugal § Lane Community College, 4000 East 30th Ave., Eugene, Oregon, United States of America | Universidad Autónoma de Baja California Sur, Departamento Académico de Ciencias Marinas y Costeras, Carretera al Sur Km. 5.5, colonia el Mezquitito, La Paz, Baja California Sur, 23080, Mexico ¶ MARE – Marine and Environmental Sciences Centre, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Edif. Madeira Tecnopolo, Piso 2, Caminho da Penteada, Funchal, Madeira, Portugal # CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Universidade dos Açores, Faculdade de Ciências e Tecnologia, Departamento de Biologia, 9500-321 Ponta Delgada, Açores, Portugal ¤ Southwest Iceland Nature Research Centre (SINRC),
    [Show full text]
  • Rhodophyta) of The
    ! !" "! !"##$%&'(&)&"('*+'&,$'+#$(,-)&$#'#$.')/0)/'.12$#(1&3'45,*.*6,3&)7'*+'&,$' #! 8+#19)%'9*%&1%$%&'1%9/".1%0'.$(9#16&1*%'*+'%$-'&):)'4;)&#)9,*(6$#<)/$(7' $! ' %! ' &! ! '! #!"#$"%$%%&&'#()!'%(*#"(+"#%)%%*",-*."#$'%#$)/"-0%*%%#1*/)$)%%"#$%+*.2"#%$%%,'/!&" (! !"!"#$%&'"(&)*+),(-.%*('"(&$/)$(0)1/$(&)2.*/*345)1*%&"%)6$//5)78.*)9(.-"%:.&45);&8"(:5)765) )! <=>?@5)9A;) *! 2Unit for Environmental Science and Management, North-West University, Potchefstroom, 2520 "+! South Africa ""! 3South African Institute for Aquatic Biodiversity (SAIAB), Makhanda, 6140, South Africa "#! 4Faculty of Science, Department of Botany, University of Lagos, Akoka, Nigeria. "$! B))-../01-23425"6789-.":;40<=946>-94-%/37?) "%! ) "&! ) "'! ) "(! @722425"848A/B"C./09D68/."@9-3-19E86"34;/.048E"42"#F.4=6" ")! " "*! " #+! ! #"! ! ##! ! #$! ! ! ! G" #%! #1/(."3("" #&! C./09D68/."./3"6A56/"96;/"H//2"=-AA/=8/3"-2"89/"#F.4=62"=-2842/28"042=/"89/"/6.AE"!IJJ0%" #'! K-D/;/.'"89/"=-AA/=84-20"96;/"H//2"016.0/"623"5/-5.6194=6AAE"./08.4=8/3%"*9/"1./0/28"0873E" #(! 0-7598"8-"H.425"8-5/89/."42F-.L684-2"F.-L"89/"A48/.687./'"9/.H6.47L"01/=4L/20"623"2/DAE" #)! =-AA/=8/3"01/=4L/20"8-"1.-;43/"62"71368/3"600/00L/28"-F"89/"F./09D68/."./3"6A56A"34;/.048E"-F"89/" #*! #F.4=62"=-2842/28"D489"6"F-=70"-2"89/"01/=4/0".4=9"M68.6=9-01/.L6A/0%"NO#"0/P7/2=/"3686"623" $+! L-.19-A-54=6A"-H0/.;684-20"D/./"=-237=8/3"F-."./=/28AE"=-AA/=8/3"01/=4L/20%"C.-L"89/0/" $"! 626AE0/0'"F-7."2/D"86Q6"6./"1.-1-0/3B"CD'$(*$)E*DF'$(..5)A8"$&8.$)'D%#8"4.5)A.%*0*&.$) $#! G"(("04.)623"89/"F-.L"86Q-2)RH8$(&%$(:.$)$ID%"$S%"NO#"0/P7/2=/"3686"963"H//2"1./;4-70AE"
    [Show full text]
  • Organellar Genome Evolution in Red Algal Parasites: Differences in Adelpho- and Alloparasites
    University of Rhode Island DigitalCommons@URI Open Access Dissertations 2017 Organellar Genome Evolution in Red Algal Parasites: Differences in Adelpho- and Alloparasites Eric Salomaki University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss Recommended Citation Salomaki, Eric, "Organellar Genome Evolution in Red Algal Parasites: Differences in Adelpho- and Alloparasites" (2017). Open Access Dissertations. Paper 614. https://digitalcommons.uri.edu/oa_diss/614 This Dissertation is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. ORGANELLAR GENOME EVOLUTION IN RED ALGAL PARASITES: DIFFERENCES IN ADELPHO- AND ALLOPARASITES BY ERIC SALOMAKI A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOLOGICAL SCIENCES UNIVERSITY OF RHODE ISLAND 2017 DOCTOR OF PHILOSOPHY DISSERTATION OF ERIC SALOMAKI APPROVED: Dissertation Committee: Major Professor Christopher E. Lane Jason Kolbe Tatiana Rynearson Nasser H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2017 ABSTRACT Parasitism is a common life strategy throughout the eukaryotic tree of life. Many devastating human pathogens, including the causative agents of malaria and toxoplasmosis, have evolved from a photosynthetic ancestor. However, how an organism transitions from a photosynthetic to a parasitic life history strategy remains mostly unknown. Parasites have independently evolved dozens of times throughout the Florideophyceae (Rhodophyta), and often infect close relatives. This framework enables direct comparisons between autotrophs and parasites to investigate the early stages of parasite evolution.
    [Show full text]
  • Parallel Evolution of Highly Conserved Plastid Genome Architecture in Red Seaweeds and Seed Plants
    Lee et al. BMC Biology (2016) 14:75 DOI 10.1186/s12915-016-0299-5 RESEARCH ARTICLE Open Access Parallel evolution of highly conserved plastid genome architecture in red seaweeds and seed plants JunMo Lee1, Chung Hyun Cho1, Seung In Park1, Ji Won Choi1, Hyun Suk Song1, John A. West2, Debashish Bhattacharya3† and Hwan Su Yoon1*† Abstract Background: The red algae (Rhodophyta) diverged from the green algae and plants (Viridiplantae) over one billion years ago within the kingdom Archaeplastida. These photosynthetic lineages provide an ideal model to study plastid genome reduction in deep time. To this end, we assembled a large dataset of the plastid genomes that were available, including 48 from the red algae (17 complete and three partial genomes produced for this analysis) to elucidate the evolutionary history of these organelles. Results: We found extreme conservation of plastid genome architecture in the major lineages of the multicellular Florideophyceae red algae. Only three minor structural types were detected in this group, which are explained by recombination events of the duplicated rDNA operons. A similar high level of structural conservation (although with different gene content) was found in seed plants. Three major plastid genome architectures were identified in representatives of 46 orders of angiosperms and three orders of gymnosperms. Conclusions: Our results provide a comprehensive account of plastid gene loss and rearrangement events involving genome architecture within Archaeplastida and lead to one over-arching conclusion: from an ancestral pool of highly rearranged plastid genomes in red and green algae, the aquatic (Florideophyceae) and terrestrial (seed plants) multicellular lineages display high conservation in plastid genome architecture.
    [Show full text]
  • A Literature Review on the Poor Knights Islands Marine Reserve 30
    4. Marine flora There is a rich abundance and diversity of macroalgae at the Poor Knights Islands with 121 species of algae recorded from the islands. A thorough taxonomic survey of the macroalgae of the Poor Knights Islands has not been conducted, and therefore this is likely to be a conservative estimate of the number of macroalgal species present. Some of the lushest kelp beds in New Zealand can be found at Nursery Cove and Cleanerfish Bay and subtidal reefs are covered with the golden seawrack, Carpophyllum angustifolium, the strap kelp, Lessonia variegata, and the common kelp, Ecklonia radiata (Ayling & Schiel, 2003). The marine flora of the Poor Knights Islands is an unusual mixture of species common to northeastern New Zealand such as C. angustifolium and Gigartina alveata, subtropical species such as Pedobesia clavaeformis, Microdictyon umbilicatum, and Palmophyllum umbracola, and southern New Zealand species, such as Durvillea antarctica and Caulerpa brownii. Bull kelp (D. antarctica) is a common species in southern New Zealand, but is not found in the North Island between North Cape and East Cape with the exception of some exposed offshore islands including the Poor Knights Islands. It is possible that at high levels of wave exposure D. antarctica can withstand higher water temperatures (Creese & Ballantine, 1986). Several rare species of macroalgae are found at the Poor Knights Islands. In 1994 the rare, endemic red alga, Gelidium allanii, was discovered with a sample of Pterocladia capillacea taken from the Poor Knights Islands in 1978. Prior to 1994 G. allanii had only been recorded from the type locality in the Bay of Islands.
    [Show full text]
  • Freshwater Algae in Britain and Ireland - Bibliography
    Freshwater algae in Britain and Ireland - Bibliography Floras, monographs, articles with records and environmental information, together with papers dealing with taxonomic/nomenclatural changes since 2003 (previous update of ‘Coded List’) as well as those helpful for identification purposes. Theses are listed only where available online and include unpublished information. Useful websites are listed at the end of the bibliography. Further links to relevant information (catalogues, websites, photocatalogues) can be found on the site managed by the British Phycological Society (http://www.brphycsoc.org/links.lasso). Abbas A, Godward MBE (1964) Cytology in relation to taxonomy in Chaetophorales. Journal of the Linnean Society, Botany 58: 499–597. Abbott J, Emsley F, Hick T, Stubbins J, Turner WB, West W (1886) Contributions to a fauna and flora of West Yorkshire: algae (exclusive of Diatomaceae). Transactions of the Leeds Naturalists' Club and Scientific Association 1: 69–78, pl.1. Acton E (1909) Coccomyxa subellipsoidea, a new member of the Palmellaceae. Annals of Botany 23: 537–573. Acton E (1916a) On the structure and origin of Cladophora-balls. New Phytologist 15: 1–10. Acton E (1916b) On a new penetrating alga. New Phytologist 15: 97–102. Acton E (1916c) Studies on the nuclear division in desmids. 1. Hyalotheca dissiliens (Smith) Bréb. Annals of Botany 30: 379–382. Adams J (1908) A synopsis of Irish algae, freshwater and marine. Proceedings of the Royal Irish Academy 27B: 11–60. Ahmadjian V (1967) A guide to the algae occurring as lichen symbionts: isolation, culture, cultural physiology and identification. Phycologia 6: 127–166 Allanson BR (1973) The fine structure of the periphyton of Chara sp.
    [Show full text]
  • Supplementary Materials: Figure S1
    1 Supplementary materials: Figure S1. Algal communities in Luhuitou reef in rainy season 2016: (A−J) Transect 1, heavily polluted area; (K−M) Transect 2, moderately polluted area. (A) The upper intertidal monodominant community with the dominance of the brown crust alga Neoralfsia expansa; insert: the dominant alga N. expansa. (B) The upper intertidal monodominant community of algal turf, the red alga Polysiphonia howei; insert: the dominant alga P. howei. (C) The upper intertidal monodominant community of algal turf, the green alga Ulva prolifera; insert: the dominant alga U. prolifera. (D) The upper intertidal monodominant algal turf community of the green alga Ulva clathrata; insert: the dominant alga U. clathrata. (E) The upper intertidal bidominant community of the red alga P. howei and the green alga Cladophoropsis sundanensis insert: the dominant alga C. sundanensis. (F) The middle intertidal monodominant community of the red crust alga Hildenbrandia rubra. (G) The middle intertidal monodominant community of the brown crust alga Ralfsia verrucosa. (H) The middle intertidal monodominant algal turf community with the dominance of the red fine filamentous alga Centroceras clavulatum. (I) The lower intertidal bidominant community of the turf-forming red algae C. clavulatum and Jania adhaerens; insert: the dominant alga J. adhaerens. (J) Monodominant community of the red alga Grateloupia filicina densely overgrown with the epiphyte Ceramium cimbricum in the middle part of concrete chute of outlet from fish farm, and bidominant community of the green algae Trichosolen mucronatus and U. flexuosa at marginal parts of the chute; inserts: (a) the dominant U. flexuosa; (b) T. mucronatus; (c) Grateloupia filicina.
    [Show full text]
  • I a FLORISTIC ANALYSIS of the MARINE ALGAE and SEAGRASSES BETWEEN CAPE MENDOCINO, CALIFORNIA and CAPE BLANCO, OREGON by Simona A
    A FLORISTIC ANALYSIS OF THE MARINE ALGAE AND SEAGRASSES BETWEEN CAPE MENDOCINO, CALIFORNIA AND CAPE BLANCO, OREGON By Simona Augytė A Thesis Presented to the Faculty of Humboldt State University In Partial Fulfillment Of the Requirements for the Degree Master of Arts In Biology December, 2011 [Type a quote from the [Type a quotedocument from theor the document or the summarysummary ofi ofan aninteresting point. Youinteresting can position point. the text box anywhereYou can in theposition document. Use the Textthe textBox Toolsbox tab to change theanywhere formatting in the of the pull quote textdocument. box.] Use the Text Box A FLORISTIC ANALYSIS OF THE MARINE ALGAE AND SEAGRASSES BETWEEN CAPE MENDOCINO, CALIFORNIA AND CAPE BLANCO, OREGON By Simona Augytė We certify that we have read this study and that it conforms to acceptable standards of scholarly presentation and is fully acceptable, in scope and quality, as a thesis for the degree of Master of Arts. ________________________________________________________________________ Dr. Frank J. Shaughnessy, Major Professor Date ________________________________________________________________________ Dr. Erik S. Jules, Committee Member Date ________________________________________________________________________ Dr. Sarah Goldthwait, Committee Member Date ________________________________________________________________________ Dr. Michael R. Mesler, Committee Member Date ________________________________________________________________________ Dr. Michael R. Mesler, Graduate Coordinator Date
    [Show full text]
  • The Marine Life Information Network® for Britain and Ireland (Marlin)
    The Marine Life Information Network® for Britain and Ireland (MarLIN) Assessment of the Potential Impacts of Coasteering on Rocky Intertidal Habitats in Wales Report to Cyngor Cefn Gwlad Cymru / Countryside Council for Wales Contract no. NWR012 Dr Harvey Tyler-Walters FINAL REPORT March 2005 Reference: Tyler-Walters, H., 2005. Assessment of the Potential Impacts of Coasteering on Rocky Intertidal Habitats in Wales. Report to Cyngor Cefn Gwlad Cymru / Countryside Council for Wales from the Marine Life Information Network (MarLIN). Marine Biological Association of the UK, Plymouth. [CCW Contract no. NWR012] Assessment of the potential impacts of coasteering in Wales MarLIN 2 Assessment of the potential impacts of coasteering in Wales MarLIN The Marine Life Information Network® for Britain and Ireland (MarLIN) Assessment of the Potential Impacts of Coasteering on Rocky Intertidal Habitats in Wales Contents CONTRACT SPECIFICATION ..............................................................................................4 EXECUTIVE SUMMARY .......................................................................................................7 1. AIMS AND TIMETABLE...............................................................................................11 2. METHODOLOGY..........................................................................................................11 2.1. LITERATURE REVIEW .................................................................................................11 2.2. IDENTIFICATION OF POTENTIALLY VULNERABLE
    [Show full text]
  • Nitrogen Ecophysiology of Intertidal Seaweeds from New Zealand: N Uptake, Storage and Utilisation in Relation to Shore Position and Season
    MARINE ECOLOGY PROGRESS SERIES Vol. 264: 31–48, 2003 Published December 15 Mar Ecol Prog Ser Nitrogen ecophysiology of intertidal seaweeds from New Zealand: N uptake, storage and utilisation in relation to shore position and season J. C. Phillips1, 2,*, C. L. Hurd1 1Department of Botany, University of Otago, PO Box 56, Dunedin, New Zealand 2Present address : CSIRO Marine Research, Private Bag No. 5, Wembley, Western Australia 6913, Australia ABSTRACT: The nitrogen ecophysiology of 4 intertidal seaweeds (Stictosiphonia arbuscula, Apophlaea lyallii, Scytothamnus australis, Xiphophora gladiata) from southeastern New Zealand is described in terms of N status, N uptake rates and N utilisation. The species growing in the highest – + + shore position had large internal NO3 and NH4 pools. For all species, tissue NH4 pools were greater – than tissue NO3 pools. Total tissue N was directly related to shore position with high intertidal spe- cies having highest tissue N, while the opposite trend was observed for C:N ratios. The ability to take – + up inorganic (NO3 , NH4 ) and organic (urea) N when one or all N forms were present in the culture medium was measured using time-course uptake experiments at initial concentrations of 5 and 30 µM. Nitrate uptake did not vary over time for any of the species. S. arbuscula and S. australis + exhibited a surge phase of NH4 uptake at both concentrations. Urea uptake at 5 µM was generally low and consistent over time; uptake at 30 µM was highly variable. All species were capable of simul- taneous uptake of all N forms. The relative importance of each N form to overall N nutrition indicated + that NH4 was an important N source in winter for all species.
    [Show full text]
  • Ballast-Mediated Introductions in Port Valdez/Prince William Sound, Alask
    Chapt 9C1. Marine Plants, page 9C1- 1 Chapter 9C1. Focal Taxonomic Collections: Marine Plants in Prince William Sound, Alaska Gayle I. Hansen, Hatfield Marine Science Center, Oregon State University Background Several NIS marine plants with potential for invasion of Alaskan waters have been reported on the west coast of North America. For example, the pervasive algae Sargassum muticum, Lomentaria hakodatensis, and the Japanese eelgrass Zostera japonica are thought to have been introduced with the aquaculture of oysters by the importation of spat from Japan. At least 5 oyster farms occur in Prince William Sound, and all have imported spat. For the herring- roe-on-kelp (HROK) pound fishery, the giant kelp Macrocystis integrifolia is transported to Prince William Sound via plane from southeast Alaska (the northern limit of this species) to be used as a substrate for herring roe. Although the giant kelp cannot recruit in Prince William Sound, it seems likely that other species, accidentally co-transported with Macrocystis, could become established. Our Pilot Study (Ruiz and Hines 1997) also considered several NIS algal species reported from Alaskan waters, including a report of a cosmopolitan species Codium fragile tomentasoides from Green Island. Methods Sample Period. Marine benthic algae, seagrasses, and intertidal lichens were sampled as a part of the cruise aboard the F/V Kristina during 20-28 June 1998, described above for invertebrates. Site Information. A subset of 19 of the 46 sites selected for invertebrate sampling were chosen for the plant study, including 13 intertidal sites (4 within Port Valdez and 9 in Prince William Sound) and 6 off-shore float sites.
    [Show full text]