Genetic Variability, Demography, and Habitat Selection in A

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Variability, Demography, and Habitat Selection in A GENETIC VARIABILITY, DEMOGRAPHY, AND HABITAT SELECTION IN A REINTRODUCED ELK (CERVUS ELAPHUS) POPULATION by JONATHAN MARK CONARD B.S., Southwestern College, 2000 M.S., Kansas State University, 2003 AN ABSTRACT OF A DISSERTATION submitted in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY Division of Biology College of Arts and Sciences KANSAS STATE UNIVERSITY Manhattan, Kansas 2009 Abstract Understanding factors that influence genetic variability, demographic vital rates, and resource selection is important for conservation and management of wildlife populations. I examined factors influencing microsatellite variability, demographic vital rates, and habitat use for a reintroduced elk (Cervus elaphus) population at Fort Riley, Kansas based on data collected from 2003 – 2007. Levels of allelic richness, observed heterozygosity, and expected heterozygosity for the Fort Riley population were intermediate to other North American elk populations. Genetic variability in restored North American elk populations was not well explained by founding population size, number of founding populations, or number of years since the last translocation. I examined the influence of demographic vital rates on the rate of population change (λ) to test the hypothesis that variability in calf survival has a greater influence on rates of population change than adult survival. Survival for prime-age adult elk had the highest stage-specific elasticity value, but life-stage simulation analysis indicated that variation in calf survival had the highest correlation with variation in λ. These results suggest that calf survival varies temporally and is the vital rate most directly related to variation in λ for this population. I assessed the relative influence of risk-related and resource-related factors on elk habitat selection by comparing predictor variables included in top resource selection function models at the landscape and home range scales. All predictor variables, with the exception of fall and spring prescribed burns, were included in top models across seasons at both spatial scales. Elk selected low elevation areas, gentle slopes, edge habitat, and areas close to streams at both spatial scales. At the landscape scale, elk generally avoided roads and preferred areas on or near Fort Riley. At both spatial scales, elk used riparian woodlands more frequently than grasslands and selected for agricultural crops when seasonally available. These findings do not support the idea that risk-related factors are the primary determinant of elk habitat use at the landscape scale as has been found for ungulates in areas with natural predators. GENETIC VARIABILITY, DEMOGRAPHY, AND HABITAT SELECTION IN A REINTRODUCED ELK (CERVUS ELAPHUS) POPULATION by JONATHAN MARK CONARD B.S., Southwestern College, 2000 M.S., Kansas State University, 2003 A DISSERTATION submitted in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY Division of Biology College of Arts and Sciences KANSAS STATE UNIVERSITY Manhattan, Kansas 2009 Approved by: Major Professor Philip S. Gipson Abstract Understanding factors that influence genetic variability, demographic vital rates, and resource selection is important for conservation and management of wildlife populations. I examined factors influencing microsatellite variability, demographic vital rates, and habitat use for a reintroduced elk (Cervus elaphus) population at Fort Riley, Kansas based on data collected from 2003 – 2007. Levels of allelic richness, observed heterozygosity, and expected heterozygosity for the Fort Riley population were intermediate to other North American elk populations. Genetic variability in restored North American elk populations was not well explained by founding population size, number of founding populations, or number of years since the last translocation. I examined the influence of demographic vital rates on the rate of population change (λ) to test the hypothesis that variability in calf survival has a greater influence on rates of population change than adult survival. Survival for prime-age adult elk had the highest stage-specific elasticity value, but life-stage simulation analysis indicated that variation in calf survival had the highest correlation with variation in λ. These results suggest that calf survival varies temporally and is the vital rate most directly related to variation in λ for this population. I assessed the relative influence of risk-related and resource-related factors on elk habitat selection by comparing predictor variables included in top resource selection function models at the landscape and home range scales. All predictor variables, with the exception of fall and spring prescribed burns, were included in top models across seasons at both spatial scales. Elk selected low elevation areas, gentle slopes, edge habitat, and areas close to streams at both spatial scales. At the landscape scale, elk generally avoided roads and preferred areas on or near Fort Riley. At both spatial scales, elk used riparian woodlands more frequently than grasslands and selected for agricultural crops when seasonally available. These findings do not support the idea that risk-related factors are the primary determinant of elk habitat use at the landscape scale as has been found for ungulates in areas with natural predators. Table of Contents List of Figures................................................................................................................................ix List of Tables .................................................................................................................................. x Acknowledgements...................................................................................................................... xiv CHAPTER 1 - INTRODUCTION.................................................................................................. 1 Historical status of elk in Kansas............................................................................................ 1 Reintroduction of elk to Kansas.............................................................................................. 3 Conclusions............................................................................................................................. 4 References................................................................................................................................... 6 CHAPTER 2 - THE INFLUENCE OF TRANSLOCATION STRATEGY AND MANAGEMENT PRACTICES ON GENETIC VARIABILITY IN A RESTORED ELK (CERVUS ELAPHUS) POPULATION ................................................................................... 9 Abstract....................................................................................................................................... 9 Introduction............................................................................................................................... 10 Methods .................................................................................................................................... 12 Study area and population history......................................................................................... 12 Sample collection.................................................................................................................. 13 Data analysis ......................................................................................................................... 14 Results....................................................................................................................................... 19 Fort Riley population ............................................................................................................ 19 Population comparisons ........................................................................................................ 19 Modeling genetic variability................................................................................................. 20 Temporal changes in genetic variability ............................................................................... 21 Discussion................................................................................................................................. 21 Management Implications......................................................................................................... 27 References................................................................................................................................. 28 CHAPTER 3 - ELK (CERVUS ELAPHUS) SURVIVAL AND POPULATION DYNAMICS IN NORTHEASTERN KANSAS............................................................................................... 40 Abstract..................................................................................................................................... 40 vii Introduction............................................................................................................................... 41 Study area ................................................................................................................................. 44 Methods .................................................................................................................................... 46 Results....................................................................................................................................... 59 Discussion................................................................................................................................
Recommended publications
  • Adaptation from Standing Genetic Variation and from Mutation
    Adaptation from standing genetic variation and from mutation Experimental evolution of populations of Caenorhabditis elegans Sara Carvalho Dissertation presented to obtain the Ph.D degree in Biology Instituto de Tecnologia Química e Biológica | Universidade Nova de Lisboa Oeiras, Janeiro, 2012 Adaptation from standing genetic variation and from mutation Experimental evolution of populations of Caenorhabditis elegans Sara Carvalho Dissertation presented to obtain the Ph.D degree in Evolutionary Biology Instituto de Tecnologia Química e Biológica | Universidade Nova de Lisboa Research work coordinated by: Oeiras, Janeiro, 2012 To all the people I love. Table of contents List of Figures 3 List of Tables 5 Acknowledgements 7 Abstract 9 Resumo 13 CHAPTER 1 – Introduction 17 1.1 And yet…it changes 18 1.1.2 Evolution and adaptation 19 1.1.3 Mutation and standing genetic variation 25 Mutation 26 Standing genetic variation 32 Mutation versus standing genetic variation 34 Genetic recombination among adaptive alleles 35 1.1.4 Other players in evolution 37 1.1.5 Evolution in the wild and in the lab 40 1.1.6 Objectives 43 1.2 Caenorhabditis elegans as a model for experimental evolution 45 1.2.1 Experimental populations of C. elegans 50 1.3 References 53 CHAPTER 2 – Adaptation from high levels of standing genetic 63 variation under different mating systems 2.1 Summary 64 2.2 Introduction 64 2.3 Materials and Methods 69 2.4 Results 84 2.5 Discussion 98 2.6 Acknowledgements 103 2.7 References 103 2.8 Supplementary information 110 1 CHAPTER 3 – Evolution
    [Show full text]
  • Splendor in the Grass—Daily Itinerar-Y
    Kansas’ Tallgrass Prairies With Naturalist Journeys & Caligo Ventures September 12 – 20, 2020 866.900.1146 800.426.7781 520.558.1146 [email protected] www.naturalistjourneys.com or find us on Facebook at Naturalist Journeys, LLC Naturalist Journeys, LLC / Caligo Ventures PO Box 16545 Portal, AZ 85632 PH: 520.558.1146 / 800.426.7781 Fax 650.471.7667 naturalistjourneys.com / caligo.com [email protected] / [email protected] Autumn hues and cooler weather make Tour Highlights September an ideal time to experience the ✓ Experience the grandeur and history of natural secrets hidden deep in Kansas’ tallgrass ranching days at the NPS’s Tallgrass Prairie prairies. Witness tens of thousands of acres of Preserve prairie that stretch your imagination and ✓ Learn about the latest research on prairie inspire your heart. Join Naturalist Journeys on ecosystems at Konza Prairie this tallgrass prairie tour to investigate world- class wetlands and grasslands as we explore ✓ Visit the Maxwell Game Wildlife Refuge for a the amazing prairies of central Kansas and the safe encounter with bison and possibly elk Flint Hills ecosystem. This is the only remaining ✓ Search for Burrowing Owl at Cheyenne area in America with intact, extensive tallgrass Bottoms, a Wetland of International prairie landscapes. Importance ✓ Observe raptors, gulls, early migrating September brings fall color and tall, mature waterfowl, shorebirds, and with a bit of luck, grasses decorate the landscape. This is our American White Pelican by the thousands guides’ favorite time to visit. Discover Big- ✓ Explore with local guides, Ed and Sil Pembleton, bluestem, Indiangrass, Switchgrass, and the who have their finger on the pulse of the area, other tall grasses that blanket these hills, and savor late-blooming wildflowers.
    [Show full text]
  • Genetic Variation in Polyploid Forage Grass: Assessing the Molecular Genetic Variability in the Paspalum Genus Cidade Et Al
    Genetic variation in polyploid forage grass: Assessing the molecular genetic variability in the Paspalum genus Cidade et al. Cidade et al. BMC Genetics 2013, 14:50 http://www.biomedcentral.com/1471-2156/14/50 Cidade et al. BMC Genetics 2013, 14:50 http://www.biomedcentral.com/1471-2156/14/50 RESEARCH ARTICLE Open Access Genetic variation in polyploid forage grass: Assessing the molecular genetic variability in the Paspalum genus Fernanda W Cidade1, Bianca BZ Vigna2, Francisco HD de Souza2, José Francisco M Valls3, Miguel Dall’Agnol4, Maria I Zucchi5, Tatiana T de Souza-Chies6 and Anete P Souza1,7* Abstract Background: Paspalum (Poaceae) is an important genus of the tribe Paniceae, which includes several species of economic importance for foraging, turf and ornamental purposes, and has a complex taxonomical classification. Because of the widespread interest in several species of this genus, many accessions have been conserved in germplasm banks and distributed throughout various countries around the world, mainly for the purposes of cultivar development and cytogenetic studies. Correct identification of germplasms and quantification of their variability are necessary for the proper development of conservation and breeding programs. Evaluation of microsatellite markers in different species of Paspalum conserved in a germplasm bank allowed assessment of the genetic differences among them and assisted in their proper botanical classification. Results: Seventeen new polymorphic microsatellites were developed for Paspalum atratum Swallen and Paspalum notatum Flüggé, twelve of which were transferred to 35 Paspalum species and used to evaluate their variability. Variable degrees of polymorphism were observed within the species. Based on distance-based methods and a Bayesian clustering approach, the accessions were divided into three main species groups, two of which corresponded to the previously described Plicatula and Notata Paspalum groups.
    [Show full text]
  • Worldwide Genetic Variation in Dopamine and Serotonin Pathway
    American Journal of Medical Genetics Part B (Neuropsychiatric Genetics) 147B:1070–1075 (2008) Worldwide Genetic Variation in Dopamine and Serotonin Pathway Genes: Implications for Association Studies Michelle Gardner,1,2 Jaume Bertranpetit,1,2 and David Comas1,2* 1Unitat de Biologia Evolutiva, Universitat Pompeu Fabra, Doctor Aiguader, Barcelona, Spain 2CIBER Epidemiologı´a y Salud Pu´blica (CIBERESP), Barcelona, Spain The dopamine and serotonin systems are two of the most important neurotransmitter pathways in Please cite this article as follows: Gardner M, Bertran- the human nervous system and their roles in petit J, Comas D. 2008. Worldwide Genetic Variation controlling behavior and mental status are well in Dopamine and Serotonin Pathway Genes: Implica- accepted. Genes from both systems have been tions for Association Studies. Am J Med Genet widely implicated in psychiatric and behavioral Part B 147B:1070–1075. disorders, with numerous reports of associations and almost equally as numerous reports of the failure to replicate a previous finding of associa- tion. We investigate a set of 21 dopamine and serotonin genes commonly tested for association INTRODUCTION with psychiatric disease in a set of 39 worldwide The dopamine and serotonin systems are two of the major populations representing global genetic diversity neurotransmitter systems in humans. Dopamine affects brain to see whether the failure to replicate findings of processes that control both motor and emotional behavior and association may be explained by population based it is known to have a role in the brain’s reward mechanism differences in allele frequencies and linkage [Schultz, 2002]. Serotonin has a critical role in temperature disequilibrium (LD) in this gene set.
    [Show full text]
  • 1055.Full.Pdf
    Copyright 1999 by the Genetics Society of America Evolution of Genetic Variability and the Advantage of Sex and Recombination in Changing Environments Reinhard BuÈrger Institut fuÈr Mathematik, UniversitaÈt Wien, A-1090 Wien, Austria and International Institute of Applied Systems Analysis, A-2361 Laxenburg, Austria Manuscript received February 22, 1999 Accepted for publication May 12, 1999 ABSTRACT The role of recombination and sexual reproduction in enhancing adaptation and population persistence in temporally varying environments is investigated on the basis of a quantitative-genetic multilocus model. Populations are ®nite, subject to density-dependent regulation with a ®nite growth rate, diploid, and either asexual or randomly mating and sexual with or without recombination. A quantitative trait is determined by a ®nite number of loci at which mutation generates genetic variability. The trait is under stabilizing selection with an optimum that either changes at a constant rate in one direction, exhibits periodic cycling, or ¯uctuates randomly. It is shown by Monte Carlo simulations that if the directional- selection component prevails, then freely recombining populations gain a substantial evolutionary advan- tage over nonrecombining and asexual populations that goes far beyond that recognized in previous studies. The reason is that in such populations, the genetic variance can increase substantially and thus enhance the rate of adaptation. In nonrecombining and asexual populations, no or much less increase of variance occurs. It is explored by simulation and mathematical analysis when, why, and by how much genetic variance increases in response to environmental change. In particular, it is elucidated how this change in genetic variance depends on the reproductive system, the population size, and the selective regime, and what the consequences for population persistence are.
    [Show full text]
  • Review Questions Meiosis
    Review Questions Meiosis 1. Asexual reproduction versus sexual reproduction: which is better? Asexual reproduction is much more efficient than sexual reproduction in a number of ways. An organism doesn’t have to find a mate. An organism donates 100% of its’ genetic material to its offspring (with sex, only 50% end up in the offspring). All members of a population can produce offspring, not just females, enabling asexual organisms to out-reproduce sexual rivals. 2. So why is there sex? Why are there boys? If females can reproduce easier and more efficiently asexually, then why bother with males? Sex is good for evolution because it creates genetic variety. All organisms depend on mutations for genetic variation. Sex takes these preexisting traits (created by mutations) and shuffles them into new combinations (genetic recombination). For example, if we wanted a rice plant that was fast-growing but also had a high yield, we would have to wait a long time for a fast-growing rice to undergo a mutation that would also make it highly productive. An easy way to combine these two desirable traits is through sexually reproduction. By breeding a fast-growing variety with a high-yielding variety, we can create offspring with both traits. In an asexual organism, all the offspring are genetically identical to the parent (unless there was a mutation) and genetically identically to each other. Sexual reproduction creates offspring that are genetically different from the parents and genetically different from their siblings. In a stable environment, asexual reproduction may work just fine. However, most ecosystems are dynamic places.
    [Show full text]
  • Genetic Diversity of Marine Gastropods: Contrasting Strategies of Cerithium Rupestre and C
    MARINE ECOLOGY - PROGRESS SERIES Vol. 28: 99-103, 1986 Published January 9 Mar. Ecol. Prog. Ser. Genetic diversity of marine gastropods: contrasting strategies of Cerithium rupestre and C. scabridum in the Mediterranean Sea Batia Lavie & Eviatar Nevo Institute of Evolution, University of Haifa, Mount Carrnel, Haifa, Israel ABSTRACT: Allozymic variation encoded by 25 gene loci was compared and contrasted in natural co- existing populations of the marine gastropods Cerithiurn rupestre and C. scabridum collected along the rocky beach of the northern Mediterranean Sea of Israel. C. rupestre showed considerably less genic diversity than C. scabridurn. Results support the niche-width variation hypothesis as C. scabridum may be considered a species characterized by a broader ecological niche than C. rupestre. However, the extreme difference between the genic diversity of the 2 species might result from at least 2 sets of factors reinforcing each other, namely the ecological niche as well as the life zone and life history characteristics. INTRODUCTION (Van Valen 1965) there should be a positive correlation between the niche breadth and the level of genetic Since its first application for studies of genetic diver- diversity. Genetic-ecological correlations over many sity, the technique of electrophoresis has been used in species demonstrate inferentially the adaptive signifi- hundreds of surveys of natural populations. Nevo et al. cance of enzyme polymorphisms (see critical discus- (1984) analysed the genetic variability of 1111 species sion in Nevo et al. 1984 and references therein), belonging to 10 higher taxa. The distribution patterns although exceptions have been found (e.g. Somero & obtained for both genetic indices of diversity, hetero- Soule' 1974).
    [Show full text]
  • Contemporary and Historic Factors Influence Differently Genetic
    Heredity (2015) 115, 216–224 & 2015 Macmillan Publishers Limited All rights reserved 0018-067X/15 www.nature.com/hdy ORIGINAL ARTICLE Contemporary and historic factors influence differently genetic differentiation and diversity in a tropical palm C da Silva Carvalho1,2, MC Ribeiro2, MC Côrtes2, M Galetti2 and RG Collevatti1 Population genetics theory predicts loss in genetic variability because of drift and inbreeding in isolated plant populations; however, it has been argued that long-distance pollination and seed dispersal may be able to maintain gene flow, even in highly fragmented landscapes. We tested how historical effective population size, historical migration and contemporary landscape structure, such as forest cover, patch isolation and matrix resistance, affect genetic variability and differentiation of seedlings in a tropical palm (Euterpe edulis) in a human-modified rainforest. We sampled 16 sites within five landscapes in the Brazilian Atlantic forest and assessed genetic variability and differentiation using eight microsatellite loci. Using a model selection approach, none of the covariates explained the variation observed in inbreeding coefficients among populations. The variation in genetic diversity among sites was best explained by historical effective population size. Allelic richness was best explained by historical effective population size and matrix resistance, whereas genetic differentiation was explained by matrix resistance. Coalescence analysis revealed high historical migration between sites within landscapes and constant historical population sizes, showing that the genetic differentiation is most likely due to recent changes caused by habitat loss and fragmentation. Overall, recent landscape changes have a greater influence on among-population genetic variation than historical gene flow process. As immediate restoration actions in landscapes with low forest amount, the development of more permeable matrices to allow the movement of pollinators and seed dispersers may be an effective strategy to maintain microevolutionary processes.
    [Show full text]
  • Genetic Variation in Subdivided Populations and Conservation Genetics
    Heredity 57 (1986) 189—198 The Genetical Society of Great Britain Received 19 November 1985 Geneticvariation in subdivided populations and conservation genetics Sirkka-Liisa Varvio*, University of Texas Health Science Center at Ranajit Chakraborty and Masatoshi Nei Houston, Center for Demographic and Population Genetics, P.O. Box 20334, Houston, Texas 77225 The genetic differentiation of populations is usually studied by using the equilibrium theory of Wright's infinite island model. In practice, however, populations are not always in equilibrium, and the number of subpopulations is often very small. To get some insight into the dynamics of genetic differentiation of these populations, numerical computations are conducted about the expected gene diversities within and between subpopulations by using the finite island model. It is shown that the equilibrium values of gene diversities (H and H) and the coefficient of genetic differentiation (G) depend on the pattern of population subdivision as well as on migration and that the GST value is always smaller than that for the infinite island model. When the number of migrants per subpopulation per generation is greater than 1, the equilibrium values of H and HT are close to those for panmictic populations, as noted by previous authors. However, the values of H, HT, and GST in transient populations depend on the pattern of population subdivision, and it may take a long time for them to reach the 95 per cent range of the equilibrium values. The implications of the results obtained for the conservation of genetic variability in small populations are discussed. It is argued that any single principle should not be imposed as a general guideline for the management of small populations.
    [Show full text]
  • Adaptation from Standing Genetic Variation to a Moving Phenotypic Optimum
    HIGHLIGHTED ARTICLE GENETICS | INVESTIGATION Catch Me if You Can: Adaptation from Standing Genetic Variation to a Moving Phenotypic Optimum Sebastian Matuszewski,*,1 Joachim Hermisson,*,† and Michael Kopp‡ *Mathematics and BioSciences Group, Faculty of Mathematics, University of Vienna, A-1090 Vienna, Austria, †Max F. Perutz Laboratories, A-1030 Vienna, Austria, and ‡Aix Marseille Université, Centre National de la Recherche Scientifique, Centrale Marseille, I2M, Unité Mixte de Recherche 7373, 13453 Marseille, France ABSTRACT Adaptation lies at the heart of Darwinian evolution. Accordingly, numerous studies have tried to provide a formal framework for the description of the adaptive process. Of these, two complementary modeling approaches have emerged: While so- called adaptive-walk models consider adaptation from the successive fixation of de novo mutations only, quantitative genetic models assume that adaptation proceeds exclusively from preexisting standing genetic variation. The latter approach, however, has focused on short-term evolution of population means and variances rather than on the statistical properties of adaptive substitutions. Our aim is to combine these two approaches by describing the ecological and genetic factors that determine the genetic basis of adaptation from standing genetic variation in terms of the effect-size distribution of individual alleles. Specifically, we consider the evolution of a quantitative trait to a gradually changing environment. By means of analytical approximations, we derive the distribution
    [Show full text]
  • A Glossary of Terms for Restoration Genetics
    Paul R. Salon Allele – The specific composition of DNA at each gene is known as an allele. Multiple alleles of a gene maybe A Glossary of Terms for Restoration Genetics USDA-NRCS Syracuse, NY generated by mutations which are structural or chemical changes in DNA at a specific location on a chromosome (locus), this generates genetic variation. Genetic shift – A change in the germplasm balance of a cross pollinated variety, usually caused by Biodiversity - The total variability within and among species of living organisms and the ecological complexes environmental selection pressures, or nursery practices and selection. that they inhabit. Biodiversity has three levels - ecosystem, species, and genetic diversity reflected in the Genetic vulnerability - Having a narrow range of genetic diversity and reacting uniformly to diverse external number of different species, the different combination of species, and the different combinations of genes within conditions. (Applied to breeding populations of varieties or species). each species. Genotype - The genetic constitution of an individual or group of plants. It is the set of alleles it possesses at a Biotype - A group of individuals within a population occurring in nature, all with essentially the same genetic certain locus or over particular or all loci. constitution. A species usually consists of many biotypes. See also “ecotype”. Germplasm – Genetic material that determines the morphological and physiological characteristics of a species. Chromosomes - Are thread like DNA and protein-based structures in cells whose function is the orderly duplication and distribution of genes during cell division. Heterozygote – If alleles at a locus are different. Cultivar - The international term cultivar denotes an assemblage of cultivated plants that is clearly distinguished Homozygote – If alleles at a locus are the same, the locus is homozygous and the organism is a homozygote for that by any characters (morphological, physiological, cytological, chemical, or others) and when reproduced (sexually gene or trait.
    [Show full text]
  • American Bison Table of Contents
    American Bison Table of Contents How to Get Started 3 Curriculum Standards (Kansas) 4 Curriculum Standards (National) 5 Lesson A: Bison or Buffalo? 6 Lesson B: Natural History of the Bison 9 Lesson C: Bison and Their Habitat 1 4 Lesson D: American Indians and Bison 1 9 Lesson E: The Early Buffalo Hunt 24 Lesson F: Destruction of the Bison 28 Lesson G: Bison Conservation Efforts 3 5 Post-Trunk Activities 39 References and Additional Resources 40 Inventory 4 1 2 How to Get Started The American bison was the largest mammal living on the largest ecosystem in North America. It dictated the functioning of the prairie ecosystem as well as the functioning of human culture for almost 10,000 years. Over the course of one generation, the animal, the ecosystem, and the human culture were nearly exterminated. Today, the bison is a symbol of the capacity for human destruction but also our efforts to preserve and restore. Materials contained in this kit are geared toward grades 4- 5 and correlated to Kansas State Education Standards for those levels. However, you may use the materials in the trunk and this booklet as you deem appropriate for your students. References to items from trunk will be in bold print and underlined. Graphics with a Figure Number referenced will have accompanying transparencies and digital versions on the CD. Watch for the following symbols to help guide you through the booklet: All questions, com - ments, and suggestions Indicates a class discussion point and potential are welcome and should writing activity. be forwarded to: Education Coordinator Tallgrass Prairie NPRES Indicates further resources on the Web for 2480B Ks Hwy 177 extension learning.
    [Show full text]