Cerebral Cortex Advance Access published March 5, 2015 Cerebral Cortex, 2015, 1–13 doi: 10.1093/cercor/bhv026 Original Article ORIGINAL ARTICLE Altered Structural Brain Networks in Tuberous Sclerosis Complex Downloaded from Kiho Im1,2, Banu Ahtam1,2, Daniel Haehn2,3, Jurriaan M. Peters4,5, Simon K. Warfield3,5, Mustafa Sahin4, and P. Ellen Grant1,2,3,6 1Division of Newborn Medicine, 2Fetal Neonatal Neuroimaging and Developmental Science Center, 3Department of Radiology, 4Department of Neurology, 5Computational Radiology Laboratory, Boston Children’s Hospital, http://cercor.oxfordjournals.org/ Harvard Medical School, Boston, MA 02115, USA, and 6Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02119, USA Address correspondence to Kiho Im, Boston Children’s Hospital, 1 Autumn Street, Boston, MA 02115, USA. Email:
[email protected] Kiho Im and Banu Ahtam contributed equally to this study. Abstract at University of Victoria on November 14, 2015 Tuberous sclerosis complex (TSC) is characterized by benign hamartomas in multiple organs including the brain and its clinical phenotypes may be associated with abnormal neural connections. We aimed to provide the first detailed findings on disrupted structural brain networks in TSC patients. Structural whole-brain connectivity maps were constructed using structural and diffusion MRI in 20 TSC (age range: 3–24 years) and 20 typically developing (TD; 3–23 years) subjects. We assessed global (short- and long-association and interhemispheric fibers) and regional white matter connectivity, and performed graph theoretical analysis using gyral pattern- and atlas-based node parcellations. Significantly higher mean diffusivity (MD) was shown in TSC patients than in TD controls throughout the whole brain and positively correlated with tuber load severity.