Risk Assessment Model for the Import and Keeping of Exotic Freshwater and Estuarine Finfish
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
News 111-E.Pdf
2 NEWS 111 Inhalt Impressum Rosy barbs 3 Preview: Herausgeber: Wolfgang Glaser New tetras from Peru 6 News No 112 Chefredakteur: Dipl. -Biol. Frank Schäfer Current importations 11 will appear on KW 17/18 2014 Redaktionsbeirat: Thorsten Holtmann Volker Ennenbach Baldellia ranunculoides 19 Don’t miss it! Dr. med. vet. Markus Biffar Thorsten Reuter The ideal dwarf turtle 22 Levin Locke Do you know Procatopus? 26 Manuela Sauer Dipl.- Biol. Klaus Diehl Giant plated Lizard 31 AqualogKids Layout: Bärbel Waldeyer Black spectacled toad 36 Goldfishes 44 Übersetzungen: Mary Bailey Gestaltung: Aqualog animalbook GmbH Tilefishes 38 TerralogKids Frederik Templin The Axolotl - extinct? 42 Curlytail lizards 46 Titelgestaltung: Petra Appel, Steffen Kabisch Druck: Westdeutsche Verlags- und Druckerei GmbH, Mörfelden- Walldorf Wollen Sie keine Ausgabe der News versäumen ? Gedruckt am: 9.4.2014 Anzeigendisposition: Aqualog animalbook GmbH Werden Sie Abonnent(in) und füllen Sie einfach den Abonnenten-Abschnitt aus und Verlag Liebigstraße 1, D-63110 Rodgau und schicken ihn an: Aqualog animalbook GmbH, Liebigstr.1, D- 63110 Rodgau Tel: 49 (0) 61 06 - 697977 Fax: 49 (0) 61 06 - 697983 Hiermit abonniere ich die Ausgaben 110-113 (2014) zum Preis von €12 ,- für 4 Ausgaben, e-mail: [email protected] (außerhalb Deutschlands € 19,90) inkl. Porto und Verpackung. http://www.aqualog.de All rights reserved. The publishers do not accept liability for unsolicited manuscripts or photographs. Articles written Name by named authors do not necessarily represent the editors’ opinion. Anschrift ISSN 1430-9610 Land I PLZ I Wohnort Ich möchte folgendermaßen bezahlen: auf Rechnung Visa I Mastercard Prüf.- Nr.: Kartennummer: gültig bis: Name des Karteninhabers (falls nicht identisch mit dem Namen des Abonnenten) Wie und wo erhalten Sie die News ? Jeder Zoofachhändler, jede Tierarztpraxis und jeder Zoologische Garten kann beim Aqualog-Verlag ein Kontingent der NEWS anfordern und als Kundenzeitschrift auslegen. -
Review and Updated Checklist of Freshwater Fishes of Iran: Taxonomy, Distribution and Conservation Status
Iran. J. Ichthyol. (March 2017), 4(Suppl. 1): 1–114 Received: October 18, 2016 © 2017 Iranian Society of Ichthyology Accepted: February 30, 2017 P-ISSN: 2383-1561; E-ISSN: 2383-0964 doi: 10.7508/iji.2017 http://www.ijichthyol.org Review and updated checklist of freshwater fishes of Iran: Taxonomy, distribution and conservation status Hamid Reza ESMAEILI1*, Hamidreza MEHRABAN1, Keivan ABBASI2, Yazdan KEIVANY3, Brian W. COAD4 1Ichthyology and Molecular Systematics Research Laboratory, Zoology Section, Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran 2Inland Waters Aquaculture Research Center. Iranian Fisheries Sciences Research Institute. Agricultural Research, Education and Extension Organization, Bandar Anzali, Iran 3Department of Natural Resources (Fisheries Division), Isfahan University of Technology, Isfahan 84156-83111, Iran 4Canadian Museum of Nature, Ottawa, Ontario, K1P 6P4 Canada *Email: [email protected] Abstract: This checklist aims to reviews and summarize the results of the systematic and zoogeographical research on the Iranian inland ichthyofauna that has been carried out for more than 200 years. Since the work of J.J. Heckel (1846-1849), the number of valid species has increased significantly and the systematic status of many of the species has changed, and reorganization and updating of the published information has become essential. Here we take the opportunity to provide a new and updated checklist of freshwater fishes of Iran based on literature and taxon occurrence data obtained from natural history and new fish collections. This article lists 288 species in 107 genera, 28 families, 22 orders and 3 classes reported from different Iranian basins. However, presence of 23 reported species in Iranian waters needs confirmation by specimens. -
Tanichthys Kuehnei, New Species, from Central Vietnam (Cypriniformes: Cyprinidae)
1 Ichthyological Exploration of Freshwaters/IEF-1081/pp. 1-10 Published 9 February 2019 LSID: http://zoobank.org/urn:lsid:zoobank.org:pub:7F247BBC-6CC9-447A-8F88-ECACA2CB0934 DOI: http://doi.org/10.23788/IEF-1081 Tanichthys kuehnei, new species, from Central Vietnam (Cypriniformes: Cyprinidae) Jörg Bohlen*, Tomáš Dvorák*, **, Ha Nam Thang*** and Vendula Šlechtová* Tanichthys kuehnei, new species, is described from a stream in the Bach Ma Mountains in Hue Province in Central 1 1 Vietnam. The new species differs from its congeners by having more branched rays in anal fin (9 /2 vs. 7-8 /2 1 in T. micagemmae and 8 /2 in T. albonubes and T. thacbaensis). Morphological and genetic characters suggest it to be closer related to T. micagemmae, the only other species of Tanichthys known from Central Vietnam. Tanichthys kuehnei differs from T. micagemmae by having a white anal-fin margin (vs. red). Introduction genus Tanichthys inhabit moderately large to very small streams, with populations frequently being Cyprinid fishes of the genus Tanichthys are small restricted to very small geographic areas and are (maximum 33 mm SL) but colourful and well- often found only very locally (Freyhof & Herder, liked by ornamental fish hobbyists. The genus is 2001), leading to strong isolation effects between characterised by confluent narial openings that are the populations. This isolation was demonstrated not separated by a skin wall and by males bear- in a genetic study by Luo et al. (2015) where each ing cornified tubercles on the snout posterior to of six analysed wild populations of T. albonubes premaxilla (Freyhof & Herder, 2001). -
Phylogenetic Relationships of the Neon Tetras Paracheirodon Spp
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/342480576 Phylogenetic relationships of the neon tetras Paracheirodon spp. (Characiformes: Characidae: Stethaprioninae), including comments on Petitella georgiae and Hemigrammus bleheri Article in Neotropical Ichthyology · June 2020 DOI: 10.1590/1982-0224-2019-0109 CITATIONS READS 0 149 5 authors, including: Pedro Senna Bittencourt Valeria Nogueira Machado Instituto Nacional de Pesquisas da Amazônia Federal University of Amazonas 9 PUBLICATIONS 20 CITATIONS 66 PUBLICATIONS 62 CITATIONS SEE PROFILE SEE PROFILE Tomas Hrbek Izeni Pires Farias Federal University of Amazonas Federal University of Amazonas 389 PUBLICATIONS 3,110 CITATIONS 321 PUBLICATIONS 3,819 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Conservation of the Amazonian Marmosets View project Macroecology of the marmoset monkeys from south America View project All content following this page was uploaded by Pedro Senna Bittencourt on 03 July 2020. The user has requested enhancement of the downloaded file. Neotropical Ichthyology Original article https://doi.org/10.1590/1982-0224-2019-0109 Phylogenetic relationships of the neon tetras Paracheirodon spp. (Characiformes: Characidae: Stethaprioninae), including comments on Petitella georgiae and Hemigrammus bleheri Correspondence: 1 1 Pedro Senna Bittencourt Pedro Senna Bittencourt , Valéria Nogueira Machado , 2 1 1 [email protected] Bruce Gavin Marshall , Tomas Hrbek and Izeni Pires Farias Neon tetras (Paracheirodon spp.) are three colorful characid species with a complicated taxonomic history, and relationships among the species are poorly known. Molecular data resolved the relationships among the three neon tetras, and strongly supported monophyly of the genus and its sister taxon relationship to Brittanichthys. -
Diverse Strategies for Ion Regulation in Fish Collected from the Ion-Poor, Acidic Rio Negro
37 Diverse Strategies for Ion Regulation in Fish Collected from the Ion-Poor, Acidic Rio Negro R. J. Gonzalez1,2,* to ensure high rates of Naϩ uptake on return to dilute water. R. W. Wilson1,3 As well as being tolerant of extremely dilute waters, Rio Negro C. M. Wood1,4 fish generally were fairly tolerant of low pH. Still, there were M. L. Patrick1,5 significant differences in sensitivity to pH among the species A. L. Val1 on the basis of degree of stimulation of Naϩ efflux at low pH. ϩ 1Laboratory of Ecology and Molecular Evolution, National There were also differences in sensitivity to low pH of Na Institute for Amazon Research, Alameda Cosme Ferreira, uptake, and two species maintained significant rates of uptake 1756. 69.083-000 Manaus, Amazonas, Brazil; 2Department of even at pH 3.5. When fish were exposed to low pH in Rio Biology, University of San Diego, 5998 Alcala´ Park, San Negro water instead of deionized water (with the same con- Diego, California 92110; 3Department of Biological Sciences, centrations of major ions), the effects of low pH were reduced. Hatherly Laboratories, University of Exeter, Prince of Wales This suggests that high concentrations of dissolved organic mol- Road, Exeter EX4 4PS, United Kingdom; 4Department of ecules in the water, which give it its dark tea color, may interact Biology, McMaster University, 1280 Main Street West, with the branchial epithelium in some protective manner. Hamilton, Ontario L8S 4K1, Canada; 5Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697 Introduction Accepted 12/12/01 Recent studies of fish native to the ion-poor, acidic blackwaters of the Rio Negro reveal two basic strategies for maintenance of ion balance. -
Aliens; a Catastrophe for Native Fresh Water Fish Diversity in Pakistan
The Journal of Animal and Plant Sciences, 21(2 Suppl.): 2011, Page: 435-440 ISSN: 1018-7081 ALIENS; A CATASTROPHE FOR NATIVE FRESH WATER FISH DIVERSITY IN PAKISTAN A. M. Khan, Z. Ali, S. Y. Shelly* Z. Ahmad** and M. R. Mirza** Department of Zoology, University of the Punjab, Lahore *Department of Fisheries, Government of Punjab, Munawan, Lahore. Department of Zoology, Government College University, Lahore Corresponding author e-mail: [email protected] ABSTRACT Pakistan has introduced several alien exotic fish species e.g. grass carp (Ctenopharyngodon idella), bighead carp, (Hypophthalmichthys nobilis), silver carp, (Hypophthalmichthys molitrix), common carp (Cyprinus carpio), gold fish (Carassius auratus), and three species of tilapia (Oreochromis aureus, Oreochromis mossambicus, Oreochromis niloticus) in warm waters along with two trout species: the rainbow trout (Onchorynchus mykiss) and the brown trout (Salmo trutta fario) in colder regions for specific purposes like sport fishing, yield enhancement and biological control of aquatic weeds and mosquitoes. The exotic species are becoming invasive in the freshwater biomes of the Punjab and other provinces of Pakistan by reason of their potent reproductive potential and feeding competitions with the native freshwater fish fauna. Resultantly the native fish species viz; Channa marulius, Wallago attu, Rita rita, Sperata sarwari, Gibelion catla, Cirrhinus mrigala and Labeo rohita, which are of economic value are under threat. Key words: Exotic, invasions, freshwater, fish fauna, Pakistan. wild, 421 (35 %) are reported as not established and 177 INTRODUCTION (15 %) with unknown establishment (Fish base, 2003). In Asia, there have been 406 introduction There are more than 186 freshwater fish species records, 176 (43.3 %) are reported as having been described from freshwater bodies of Pakistan. -
Hemichromis Bimaculatus (African Jewelfish)
African Jewelfish (Hemichromis bimaculatus) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, April 2011 Revised, September 2018 Web Version, 2/14/2019 Photo: Zhyla. Licensed under CC BY-SA 3.0. Available: https://commons.wikimedia.org/wiki/File:Hemichromis_bimaculatus1.jpg. (September 2018). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2018): “Africa: widely distributed in West Africa, where it is known from most hydrographic basins [Teugels and Thys van den Audenaerde 2003], associated with forested biotopes [Daget and Teugels 1991, Lamboj 2004]. Also reported from coastal basins of Cameroon, Democratic Republic of the Congo and Nile basin [Teugels and Thys van den Audenaerde 1992], but at least its presence in Cameroon is unconfirmed in [Stiassny et al. 2008]. [Lamboj 2004] limits this species to Guinea, Sierra Leone and Liberia.” 1 From Azeroual and Lalèyè (2010): “This species is widely distributed throughout western Africa, but has also been recorded from Algeria to Egypt.” “Northern Africa: Within this region this species is very rare. It used to be caught from the coastal lagoons, especially Lake Mariut (Egypt) and Algeria. Its [sic] found in Tunisia in the wadis of Kebili in the south of Tunisia and in wadis near Chott Melrhir in eastern Algeria (Kraiem, pers. comm.), and Egypt (Wadi El Rayan Lakes).” “Western Africa: It is known from most hydrographic basins in western Africa.” Status in the United States It is not certain if this species is present in the United States, or if records pertain to H. letourneuxi. From NatureServe (2018): “Introduced and established in Dade County, Florida, […] (Nelson 1983).” From Nico et al. -
Etroplus Suratensis) Ecological Risk Screening Summary
Green Chromide Cichlid (Etroplus suratensis) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, April 2011 Revised, September 2018 Web Version, 6/5/2019 Photo: P. Corbett. Licensed under CC BY 2.0. Available: https://flic.kr/p/tmiiei. (September 2018). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2018): “Western Indian Ocean: India and Sri Lanka.” 1 From Abraham (2011): “Etroplus suratensis is distributed in the coastal regions of peninsular India and Sri Lanka. In India, the wild populations have been recorded from the states of Kerala and Tamil Nadu.” Status in the United States This species has not been reported as introduced or established in the United States. This species is in trade in the United States. From Imperial Tropicals (2015): “Green Chromide Cichlid (Etroplus suratensis) […] $ 19.99” From Bluegrass Aquatics (2019): “Green Chromide Cichlid – REGULAR $26.98” Means of Introductions in the United States This species has not been reported as introduced or established in the United States. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From ITIS (2018): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Actinopterygii Class Teleostei Superorder Acanthopterygii Order Perciformes Suborder Labroidei Family Cichlidae Genus Etroplus Species Etroplus suratensis (Bloch, 1790)” From Fricke et al. (2018): “Current status: Valid as Etroplus suratensis (Bloch 1790). Cichlidae: Etroplinae.” 2 Size, Weight, and Age Range From Froese and Pauly (2018): “Max length : 40.0 cm TL male/unsexed; [Menon 1999]; common length : 20.0 cm TL male/unsexed; [Pethiyagoda 1991]” Environment From Froese and Pauly (2018): “Brackish; benthopelagic; depth range 10 - ? m. -
Croaking Gourami, Trichopsis Vittata (Cuvier, 1831), in Florida, USA
BioInvasions Records (2013) Volume 2, Issue 3: 247–251 Open Access doi: http://dx.doi.org/10.3391/bir.2013.2.3.12 © 2013 The Author(s). Journal compilation © 2013 REABIC Rapid Communication Croaking gourami, Trichopsis vittata (Cuvier, 1831), in Florida, USA Pamela J. Schofield 1* and Darren J. Pecora2 1 US Geological Survey, Southeast Ecological Science Center, 7920 NW 71st Street, Gainesville, FL 32653, USA 2 US Fish and Wildlife Service, Arthur R. Marshall Loxahatchee National Wildlife Refuge, 10216 Lee Road, Boynton Beach, FL 33473, USA E-mail: [email protected] (PJS), [email protected] (DJP) *Corresponding author Received: 8 February 2013 / Accepted: 30 May 2013 / Published online: 1 July 2013 Handling editor: Kit Magellan Abstract The croaking gourami, Trichopsis vittata, is documented from wetland habitats in southern Florida. This species was previously recorded from the same area over 15 years ago, but was considered extirpated. The rediscovery of a reproducing population of this species highlights the dearth of information available regarding the dozens of non-native fishes in Florida, as well as the need for additional research and monitoring. Key words: canal; croaking gourami; cypress swamp; Florida; Loxahatchee; Osphronemidae; Trichopsis vittata was previously considered extirpated (Shafland Introduction et al. 2008a, b), but is now known to be reproducing in a localised area. Dozens of non-native fishes have been introduced into Florida’s inland waterways, via accidental escape, pet releases, or intentional introduction -
Coexistence of Two Closely Related Cyprinid Fishes (Hemiculter Bleekeri and Hemiculter Leucisculus) in the Upper Yangtze River, China
diversity Article Coexistence of Two Closely Related Cyprinid Fishes (Hemiculter bleekeri and Hemiculter leucisculus) in the Upper Yangtze River, China Wen Jing Li 1,2, Xin Gao 1,*, Huan Zhang Liu 1 and Wen Xuan Cao 1 1 The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; [email protected] (W.J.L.); [email protected] (H.Z.L.); [email protected] (W.X.C.) 2 University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected]; Tel.: +86-27-6878-0723 Received: 17 June 2020; Accepted: 16 July 2020; Published: 19 July 2020 Abstract: Species coexistence is one of the most important concepts in ecology for understanding how biodiversity is shaped and changed. In this study, we investigated the mechanism by which two small cyprinid fishes (H. leucisculus and H. bleekeri) coexist by analyzing their niche segregation and morphological differences in the upper Yangtze River. Morphological analysis indicated that H. leucisculus has posteriorly located dorsal fins, whereas H. bleekeri has a more slender body, bigger eyes, longer anal fin base, and a higher head. Niche segregation analysis showed spatial and trophic niche segregation between these two species: on the spatial scale, H. leucisculus was more widely distributed than H. bleekeri, indicating that H. leucisculus is more of a generalist in the spatial dimension; on the trophic scale, H. bleekeri had a wider niche than H. leucisculus. Therefore, these two species adopt different adaptation mechanisms to coexist Keywords: biodiversity; species coexistence; spatial niche segregation; trophic niche segregation; morphology 1. -
Polyphyletic Origin of Ornamental Goldfish
Food and Nutrition Sciences, 2015, 6, 1005-1013 Published Online August 2015 in SciRes. http://www.scirp.org/journal/fns http://dx.doi.org/10.4236/fns.2015.611104 Polyphyletic Origin of Ornamental Goldfish Aleksandr V. Podlesnykh1, Vladimir A. Brykov1,2, Lubov A. Skurikhina1 1Far Eastern Branch of the Russian Academy of Sciences, A. V. Zhirmunsky Institute of Marine Biology, Vladivostok, Russia 2School of Natural Sciences, Far Eastern Federal University, Vladivostok, Russia Email: [email protected] Received 6 May 2015; accepted 17 August 2015; published 20 August 2015 Copyright © 2015 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Mitochondrial DNA fragment of cytb was compared in all species Carassius auratus complex and three forms of ornamental goldfish. It is shown that the phylogenetic relationships between com- plex species correspond to the existing views, based on mtDNA data and geographical distribution. All forms of ornamental goldfish have a monophyletic origin from Chinese goldfish C. auratus au- ratus. The analysis showed that three nuclear genes (rps7, GH1 and Rh) in the two forms of orna- mental goldfish (Oriental twintail goldfish and Chinese Ranchu) were almost identical C. auratus auratus genes, while all three gene in another more simple form of goldfish (common goldfish) were highly homologous to carp Cyprinus carpio nuclear genes. The obtained data suggested that in the history of aquarium goldfish breeding occurred the stage of distant hybridization between goldfish and common carp. Subsequently, the nuclear genomes of some ornamental forms could be enriched by goldfish genes (a relatively recent form as Oriental twintail goldfish and Chinese Ranchu) or common carp genes (the simplest and most ancient forms like common goldfish) as a result of multidirectional breeding and selection of aquarium goldfish various forms. -
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................