2011 Encana Annual Information Form

Total Page:16

File Type:pdf, Size:1020Kb

2011 Encana Annual Information Form Encana Corporation Annual Information Form February 23, 2012 Table of Contents Table of Contents .................................................................................................................................................................1 Introduction ..........................................................................................................................................................................2 Corporate Structure ..............................................................................................................................................................3 General Development of the Business...................................................................................................................................4 Narrative Description of the Business ....................................................................................................................................7 Canadian Division................................................................................................................................................... 8 USA Division......................................................................................................................................................... 12 Market Optimization .............................................................................................................................................. 16 Former Operations................................................................................................................................................ 17 Reserves and Other Oil and Gas Information......................................................................................................... 18 Acquisitions, Divestitures and Capital Expenditures................................................................................................ 19 Competitive Conditions ......................................................................................................................................... 20 Environmental Protection ...................................................................................................................................... 20 Social and Environmental Policies ......................................................................................................................... 21 Employees............................................................................................................................................................ 22 Foreign Operations ............................................................................................................................................... 22 Directors and Officers ......................................................................................................................................................... 23 Audit Committee Information............................................................................................................................................... 26 Description of Share Capital................................................................................................................................................ 28 Credit Ratings .................................................................................................................................................................... 30 Market for Securities........................................................................................................................................................... 31 Dividends ........................................................................................................................................................................... 31 Legal Proceedings.............................................................................................................................................................. 32 Risk Factors ....................................................................................................................................................................... 32 Transfer Agents and Registrars........................................................................................................................................... 38 Interest of Experts .............................................................................................................................................................. 38 Additional Information ......................................................................................................................................................... 38 Note Regarding Forward-Looking Statements...................................................................................................................... 39 Note Regarding Reserves Data and Other Oil and Gas Information...................................................................................... 40 Appendix A - Canadian Protocol Disclosure of Reserves Data and Other Oil and Gas Information ..................................... A-1 Appendix B - Report on Reserves Data by Independent Qualified Reserves Evaluators (Canadian Protocol)...................... B-1 Appendix C - Report of Management and Directors on Reserves Data and Other Information (Canadian Protocol)............. C-1 Appendix D - U.S. Protocol Disclosure of Reserves Data and Other Oil and Gas Information ............................................. D-1 Appendix E - Audit Committee Mandate ........................................................................................................................... E-1 Encana Corporation Annual Information Form (prepared in US$) 1 Introduction This is the annual information form of Encana Corporation (“Encana” or the “Company”) for the year ended December 31, 2011. In this annual information form, unless otherwise specified or the context otherwise requires, reference to “Encana” or to the “Company” includes reference to subsidiaries of and partnership interests held by Encana Corporation and its subsidiaries. In this annual information form, daily natural gas volumes are referenced in either thousands of cubic feet (“Mcf”) per day (“Mcf/d”), millions of cubic feet (“MMcf”) per day (“MMcf/d”), or billions of cubic feet (“Bcf”) per day (“Bcf/d”). The term “liquids” is used to represent oil, natural gas liquids (“NGLs”) and condensate. Daily liquids volumes are referenced in either barrels (“bbls”) per day (“bbls/d”), thousands of barrels (“Mbbls”) per day (“Mbbls/d”) or millions of barrels (“MMbbls”) per day (“MMbbls/d”). Certain liquids volumes have been converted to thousands of cubic feet equivalent (“Mcfe”), millions of cubic feet equivalent (“MMcfe”) or billions of cubic feet equivalent (“Bcfe”) on the basis of one barrel (“bbl”) to six Mcf. Also, certain natural gas volumes have been converted to barrels of oil equivalent (“BOE”) on the same basis. Mcfe, MMcfe, Bcfe and BOE may be misleading, particularly if used in isolation. An Mcfe, MMcfe or Bcfe conversion ratio of one bbl to six Mcf is based on an energy equivalency conversion method primarily applicable at the burner tip and does not represent value equivalency at the wellhead. Given that the value ratio based on the current price of oil as compared to natural gas is significantly different from the energy equivalency of 6:1, utilizing a conversion on a 6:1 basis may be misleading as an indication of value. On January 1, 2011, Encana adopted International Financial Reporting Standards (“IFRS”) for financial reporting purposes, using a transition date of January 1, 2010. The Company’s annual audited Consolidated Financial Statements for the year ended December 31, 2011, including 2010 required comparative information, have been prepared in accordance with IFRS, as issued by the International Accounting Standards Board ("IASB"). Prior to 2011, the Company prepared its consolidated financial statements in accordance with Canadian generally accepted accounting principles (“previous GAAP”). Unless otherwise indicated, all financial information included in this annual information form is determined using IFRS, which differ from U.S. generally accepted accounting principles (“U.S. GAAP”). Note 27 to Encana’s annual audited Consolidated Financial Statements for the year ended December 31, 2011 contains a discussion of the principal differences between Encana’s financial results calculated under IFRS and U.S. GAAP. Readers are directed to the sections titled “Note Regarding Forward-Looking Statements” and “Note Regarding Reserves Data and Other Oil and Gas Information”. Unless otherwise specified, all dollar amounts are expressed in United States (“U.S.”) dollars, all references to “dollars”, “$” or to “US$” are to U.S. dollars and all references to “C$” are to Canadian dollars. All proceeds from divestitures are provided on a before-tax basis. Encana Corporation Annual Information Form (prepared in US$) 2 Corporate Structure Name and Incorporation Encana Corporation is incorporated under the Canada Business Corporations Act (“CBCA”). Its executive and registered office is located at 1800, 855 - 2nd Street S.W., Calgary, Alberta, Canada T2P 2S5. On November 30, 2009, Encana completed a corporate reorganization (the “Split Transaction”) to split into two independent publicly traded energy companies – Encana and Cenovus Energy Inc. (“Cenovus”). In conjunction with the Split Transaction, Encana’s articles were
Recommended publications
  • Modern Shale Gas Development in the United States: a Primer
    U.S. Department of Energy • Office of Fossil Energy National Energy Technology Laboratory April 2009 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe upon privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Modern Shale Gas Development in the United States: A Primer Work Performed Under DE-FG26-04NT15455 Prepared for U.S. Department of Energy Office of Fossil Energy and National Energy Technology Laboratory Prepared by Ground Water Protection Council Oklahoma City, OK 73142 405-516-4972 www.gwpc.org and ALL Consulting Tulsa, OK 74119 918-382-7581 www.all-llc.com April 2009 MODERN SHALE GAS DEVELOPMENT IN THE UNITED STATES: A PRIMER ACKNOWLEDGMENTS This material is based upon work supported by the U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory (NETL) under Award Number DE‐FG26‐ 04NT15455. Mr. Robert Vagnetti and Ms. Sandra McSurdy, NETL Project Managers, provided oversight and technical guidance.
    [Show full text]
  • Regulation of Access to Oil Pipelines 777
    REGULATION OF ACCESS TO OIL PIPELINES 777 THE NATIONAL ENERGY BOARD: REGULATION OF ACCESS TO OIL PIPELINES JENNIFER HOCKING* In the past few years, a number of long-distance oil pipelines have been proposed in Canada — Northern Gateway, the Trans Mountain Expansion, Keystone, and the Energy East Project. This article describes the criteria used by the National Energy Board in approving the allocation of capacity in oil pipelines to firm service contracts while requiring that a reasonable percentage of capacity is allocated for uncommitted volumes (common carriage). It explains the economic theory related to regulation of access to major oil pipelines. It reviews and analyzes relevant NEB decisions, which show that the NEB supports well- functioning competitive markets, but will exercise its discretion to resolve complaints where markets are not functioning properly. The article also explains the economic significance of the proposed long-distance oil pipelines to Canada and Alberta despite the current low price of crude oil. The article concludes with recommendations for a written NEB policy regarding access to capacity in oil pipelines. TABLE OF CONTENTS I. SIGNIFICANCE OF PROPOSED OIL PIPELINES TO THE CANADIAN ECONOMY ................................. 778 A. PIPELINES NEEDED DESPITE LOW PRICE OF OIL ............... 780 B. SHIPPING OF OIL BY RAIL ................................ 781 II. OIL PIPELINES AS COMMON CARRIERS ........................... 781 A. THE NATURE OF COMMON CARRIERS ....................... 781 B. COMMON CARRIAGE OBLIGATION SUBJECT TO REASONABLENESS TEST ............................... 783 C. WHY WERE OIL PIPELINES ORIGINALLY DESIGNATED AS COMMON CARRIERS? ................................. 784 III. MAJOR LONG-DISTANCE OIL PIPELINES TODAY ................... 785 A. ENBRIDGE PIPELINES .................................... 786 B. TRANS MOUNTAIN PIPELINE .............................. 787 C. SPECTRA ENERGY EXPRESS-PLATTE .......................
    [Show full text]
  • Hydraulic Fracturing in the Barnett Shale
    Hydraulic Fracturing in the Barnett Shale Samantha Fuchs GIS in Water Resources Dr. David Maidment University of Texas at Austin Fall 2015 Table of Contents I. Introduction ......................................................................................................................3 II. Barnett Shale i. Geologic and Geographic Information ..............................................................6 ii. Shale Gas Production.........................................................................................7 III. Water Resources i. Major Texas Aquifers ......................................................................................11 ii. Groundwater Wells ..........................................................................................13 IV. Population and Land Cover .........................................................................................14 V. Conclusion ....................................................................................................................16 VI. References....................................................................................................................17 2 I. Introduction Hydraulic Fracturing, or fracking, is a process by which natural gas is extracted from shale rock. It is a well-stimulation technique where fluid is injected into deep rock formations to fracture it. The fracking fluid contains a mixture of chemical components with different purposes. Proppants like sand are used in the fluid to hold fractures in the rock open once the hydraulic
    [Show full text]
  • Helium in Northeastern British Columbia
    HELIUM IN NORTHEASTERN BRITISH COLUMBIA Elizabeth G. Johnson1 ABSTRACT Global demand for helium is increasing at a time when world reserves are in decline. The price of grade A helium has quadrupled in the past 12 years. Liquefied natural gas (LNG) processing can be used to capture helium as a value-added byproduct at concentrations as low as 0.04% by volume. The Slave Point, Jean Marie (Redknife) and Wabamun formations of northeastern British Columbia preferentially have helium associated with many of their natural gas pools. The mechanism for this accumulation appears to be flow in hydrothermal brines from helium-enriched basement granitic rocks along deeply seated faults. Separately, the Evie member of the Horn River Formation also has anomalous helium accumulation in its shale gas related to uranium decay in organic-rich shales. Johnson, E.G. (2012): Helium in northeastern British Columbia; in Geoscience Reports 2013, British Columbia Ministry of Natural Gas Development, pages 45–52. 1Geoscience and Strategic Initiatives Branch, British Columbia Ministry of Natural Gas Development, Victoria, British Columbia; [email protected] Key Words: Helium, LNG, Jean Marie, Slave Point, Wabamun, Evie, Horn River Formation INTRODUCTION optical fibre technology (8% of global use; Peterson and Madrid, 2012; Anonymous, 2012). Helium is a nonrenewable resource that has developed In recognition of its strategic value, the United States important strategic value. Helium (atomic number of 2) ex- 4 created the Federal Helium Reserve in the Bush Dome Res- ists primarily as the stable isotope, He, which is produced ervoir, Texas, in 1925. The primary source for the Federal on the earth through alpha decay of radioactive elements Helium Reserve is the world-class Hugoton Reservoir in such as uranium and thorium.
    [Show full text]
  • Assessing Undiscovered Resources of the Barnett-Paleozoic Total Petroleum System, Bend Arch–Fort Worth Basin Province, Texas* by Richard M
    Assessing Undiscovered Resources of the Barnett-Paleozoic Total Petroleum System, Bend Arch–Fort Worth Basin Province, Texas* By Richard M. Pollastro1, Ronald J. Hill1, Daniel M. Jarvie2, and Mitchell E. Henry1 Search and Discovery Article #10034 (2003) *Online adaptation of presentation at AAPG Southwest Section Meeting, Fort Worth, TX, March, 2003 (www.southwestsection.org) 1U.S. Geological Survey, Denver, CO 2Humble Geochemical Services, Humble, TX ABSTRACT Organic-rich Barnett Shale (Mississippian-Pennsylvanian) is the primary source rock for oil and gas that is produced from Paleozoic reservoir rocks in the Bend Arch–Fort Worth Basin Province. Areal distribution and geochemical typing of hydrocarbons in this mature petroleum province indicates generation and expulsion from the Barnett at a depocenter coincident with a paleoaxis of the Fort Worth Basin. Barnett-sourced hydrocarbons migrated westward into reservoir rocks of the Bend Arch and Eastern shelf; however, some oil and gas was possibly sourced by a composite Woodford-Barnett total petroleum system of the Midland Basin from the west. Current U.S. Geological assessments of undiscovered oil and gas are performed using the total petroleum system (TPS) concept. The TPS is composed of mature source rock, known accumulations, and area(s) of undiscovered hydrocarbon potential. The TPS is subdivided into assessment units based on similar geologic characteristics, accumulation type (conventional or continuous), and hydrocarbon type (oil and (or) gas). Assessment of the Barnett-Paleozoic TPS focuses on the continuous (unconventional) Barnett accumulation where gas and some oil are produced from organic-rich siliceous shale in the northeast portion of the Fort Worth Basin. Assessment units are also identified for mature conventional plays in Paleozoic carbonate and clastic reservoir rocks, such as the Chappel Limestone pinnacle reefs and Bend Group conglomerate, respectively.
    [Show full text]
  • Pa 62-15.Pdf
    GEOLOGICAL SURVEY OF CANADA CANADA PAPER 62-15 MIDDLE DEVONIAN AND OLDER PALAEOZOIC FORMATIONS OF SOUTHERN DISTRICT OF MACKENZIE AND ADJACENT AREAS B y Helen R. Belyea and A. W. Norris DEPARTMENT OF MINES AND TECHNICAL SURVEYS CANADA CONTENTS Page Introduction. • . • . • • . • • . • • . • • 1 Ordovician and older(?) . • . • . • • • • • . • . • 1 Old Fort Island Formation........................... 2 Mirage Point Formation ...•...•..•. ,................ 2 Pre-Chinchaga beds . • • • . • • . • . • • • • . • . • • . • 3 Middle Devonian • . • . • . • • . • . • . • . • • . • 3 Chinchaga Formation ..•.•.••.•........•.•••••. • . • • • 3 Keg River Formation . • . • . • . • . • . • • • . 4 Muskeg Formation.................................. 5 Pine Point Formation................. .............. 5 Lonely Bay Formation • . • • • • . • . • • • • . • • 9 Sulphur Point Formation . • • . • . • . • . • . • . • • . • • . • . 10 Presqu 1ile Formation............................... 11 Watt Mountain Formation. • . • • • • . • . • . • • • • • . • . • . 12 Slave Point Formation . • • . • • • . • • . • • • • • • . • • • 12 Horn River Formation . • . • • . • • . • • • . • . • 14 References.............................................. 16 Appendix-logs of wells . • • • . • • • • • • . • . • • . • • • • • . • • . 19 Illustrations Figure 1. Formational nomenclature ••......•... .. .....•. Frontispiec e 2. Correla tion diagram from Pan American et al. A-1 Snake River c-28-D well to Imperial Triad Davidson C reek P-2 well .. ... ... •. .... ... .. in pocket 3. Correlation
    [Show full text]
  • A Comparative Study of the Mississippian Barnett Shale, Fort Worth Basin, and Devonian Marcellus Shale, Appalachian Basin
    DOE/NETL-2011/1478 A Comparative Study of the Mississippian Barnett Shale, Fort Worth Basin, and Devonian Marcellus Shale, Appalachian Basin U.S. DEPARTMENT OF ENERGY DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe upon privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. ACKNOWLEDGMENTS The authors greatly thank Daniel J. Soeder (U.S. Department of Energy) who kindly reviewed the manuscript. His criticisms, suggestions, and support significantly improved the content, and we are deeply grateful. Cover. Top left: The Barnett Shale exposed on the Llano uplift near San Saba, Texas. Top right: The Marcellus Shale exposed in the Valley and Ridge Province near Keyser, West Virginia. Photographs by Kathy R. Bruner, U.S. Department of Energy (USDOE), National Energy Technology Laboratory (NETL). Bottom: Horizontal Marcellus Shale well in Greene County, Pennsylvania producing gas at 10 million cubic feet per day at about 3,000 pounds per square inch.
    [Show full text]
  • TXOGA Versus Denton
    FILED: 11/5/2014 9:08:57 AM SHERRI ADELSTEIN Denton County District Clerk By: Amanda Gonzalez, Deputy CAUSE NO. __________14-08933-431 TEXAS OIL AND GAS ASSOCIATION, § IN THE DISTRICT COURT OF § Plaintiff, § vs. § § DENTON COUNTY, TEXAS CITY OF DENTON, § § Defendant. § § § _____ JUDICIAL DISTRICT § ORIGINAL PETITION The Texas Oil and Gas Association (“TXOGA”) files this declaratory action and request for injunctive relief against the City of Denton, on the ground that a recently-passed City of Denton ordinance, which bans hydraulic fracturing and is soon to take effect, is preempted by Texas state law and is therefore unconstitutional. I. INTRODUCTION This case concerns a significant question of Texas law: whether a City of Denton ordinance that bans hydraulic fracturing is preempted by the Constitution and laws of the State of Texas. The ordinance, approved by voters at the general election of November 4, 2014, exceeds the limited authority of home-rule cities and represents an impermissible intrusion on the exclusive powers granted by the Legislature to state agencies, the Texas Railroad Commission (the “Railroad Commission”) and the Texas Commission on Environmental Quality (the “TCEQ”). TXOGA, therefore, seeks a declaration that the ordinance is invalid and unenforceable. To achieve its overriding policy objective of the safe, efficient, even-handed, and non-wasteful development of this State’s oil and gas resources, the Texas Legislature vested regulatory power over that development in the Railroad Commission and the TCEQ. Both agencies are staffed with experts in the field who apply uniform regulatory controls across Texas and thereby avoid the inconsistencies that necessarily result from short-term political interests, funding, and turnover in local government.
    [Show full text]
  • Energy East Pipeline Project
    WhenEnergy the pipeline East: spills... Previous ruptures along TransCanada’s Mainline – part of the planned Energy East pipeline project. Photos by the Transportation Safety Board of Canada. Cover photos Pipeline Investigation Report P09H0074 Top left: Aerial Photo of the Englehart Occurrence Site, from , Transportation Safety Board of Canada. Available at http://www.tsb. gc.ca/eng/rapports-reports/pipeline/2009/p09h0074/p09h0074.aspPipeline Investigation Report P11H0011 Top right: Downstream line-break section of Line 100-2, from , Transportation Safety Board of Canada. Available at http://www.tsb. gc.ca/eng/rapports-reports/pipeline/2011/p11h0011/p11h0011.aspPipeline Investigation Report P09H0083 Bottom: Aerial photo of the Marten River occurrence site, from , Transportation Safety Board of Canada. Available at http://www.tsb. gc.ca/eng/rapports-reports/pipeline/2009/p09h0083/p09h0083.aspEnergy East: When the pipeline spills... is published under the Creative Commons licence Attribution-NonCommercial- ShareAlike 4.0. Images used within this document remain copyrighted by their respective owners except where specifically indicated. Energy East: When the pipeline spills... TransCanada’s Energy East pipeline project would convertIt would an up be to the40-year-old largest oil natural pipeline gas inpipeline North to America, carry crude oil from Saskatchewan to Ontario, connecting it with new pipeline through Quebec and on to Saint John, New Brunswick. transporting 1.1 million barrelsif of oil every day. when where how much When it comes to pipelines, it is not a matter of a pipeline spills, it is a matter of , and it spills. NL AB SK MB Edmonton Hardisty Regina ON QC PE Winnipeg Thunder Bay Quebec City NB Montreal NS North Bay Saint John Ottawa Selective memory: TransCanada’s safety record.
    [Show full text]
  • The Case of the Canadian Province of Alberta's Oil Sands
    Project Document A sub-national public-private strategic alliance for innovation and export development: the case of the Canadian province of Alberta’s oil sands Annette Hester Leah Lawrence Economic Commission for Latin America and the Caribbean (ECLAC) This background document was prepared by Annette Hester and Leah Lawrence, Consultants of the Division of International Trade and Integration, Economic Commission for Latin America and the Caribbean (ECLAC), within the activities of the study “Public-private alliances for innovation and export upgrading“, coordinated by Robert Devlin and Graciela Moguillansky with the financial support of SEGIB, through the project “Alianzas público-privadas para la Innovación y el Desarrollo Exportador: Casos Exitosos Extraregionales y la Experiencia Latinoamericana”. Some of their preliminary findings were formerly presented at ECLAC, in Structural Change and Productivity Growth 20 Years later: Old Problems, New Opportunities, (LC/G.2367 (SES.32/3)), Santiago de Chile, 2008, chapter VI, pages 231 to 299.. The paper benefited from the support and comments of Inés Bustillo, Clement Bowman, and Eddy Isaacs, as well as the research assistance of Timmy Stuparyk and Michael Bagan. Annette Hester and Leah Lawrence are Calgary-based economists and writers. Ms. Hester is a research fellow with the Centre for International Governance Innovation in Waterloo, Canada and a Senior Associate with the Centre for Strategic and International Studies in Washington, DC. The views expressed in this document, which has been reproduced without formal editing, are those of the author and do not necessarily reflect the views of the Organization. LC/W.292 Copyright © United Nations, April 2010. All rights reserved Printed in Santiago, Chile – United Nations ECLAC – Project Documents collection A sub-national public-private strategic alliance for innovation and export… Contents Abstract……………………..............................................................................................................
    [Show full text]
  • Strategic Center for Natural Gas and Oil R&D Program
    Driving Innovation ♦ Delivering Results The National Energy Technology Laboratory & The Strategic Center for Natural Gas and Oil R&D Program Tribal leader forum: U.S. Department of Energy Albert Yost oil and gas technical assistance capabilities SMTA Strategic Center for Natural Gas & Oil Denver, Colorado August 18, 2015 National Energy Technology Laboratory Outline • Review of Case History Technology Successes • Review of Current Oil and Natural Gas Program • Getting More of the Abundant Shale Gas Resource • Understanding What is Going On Underground • Reducing Overall Environmental Impacts National Energy Technology Laboratory 2 Four Case Histories • Electromagnetic Telemetry • Wired Pipe • Fracture Mapping • Horizontal Air Drilling National Energy Technology Laboratory 3 Development of Electromagnetic Telemetry Problem • In early 1980s, need for non-wireline, non-mud based communication system in air-filled, horizontal or high-angle wellbores grows. • Problems with drillpipe-conveyed and hybrid-wireline alternatives sparked interest in developing a “drill-string/earth,” electromagnetic telemetry (EMT) system for communicating data while drilling. • Attempts to develop a viable EM-MWD tool by U.S.-based companies were unsuccessful. DOE Solution • Partner with Geoscience Electronics Corp. (GEC) to develop a prototype based on smaller diameter systems designed for non-oilfield applications • Test the prototype in air-drilled, horizontal wellbores. • Catalyze development of a U.S.-based, commercial EM-MWD capability to successfully compete with foreign service companies. National Energy Technology Laboratory 4 EMT System Schematic Source: Sperry-Sun, March 1997, Interim Report, DOE FETC Contract: DE-AC21-95MC31103 National Energy Technology Laboratory 5 EMT Path to Commercialization • 1986 – Initial test of GEC prototype tool at a DOE/NETL Devonian Shale horizontal drilling demonstration well in Wayne county, WV (10 hours on- bottom operating time).
    [Show full text]
  • Draft Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources, EPA/600/001/February 2011
    EPA/600/D-11/001/February 2011/www.epa.gov/research Draft Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources United States Environmental Protection Agency Office of Research and Development EPA/600/D-11/001 February 2011 &EPA United States Environmental Protection Ag""" Draft Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources Office of Research and Development U.S. Environmental Protection Agency Washington, D.C. February 7, 2011 DRAFT Hydraulic Fracturing Study Plan February 7, 2011 -- Science Advisory Board Review -- This document is distributed solely for peer review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. DRAFT Hydraulic Fracturing Study Plan February 7, 2011 -- Science Advisory Board Review -- TABLE OF CONTENTS List of Figures ................................................................................................................................................ v List of Tables ................................................................................................................................................. v List of Acronyms and Abbreviations ............................................................................................................ vi Executive Summary ....................................................................................................................................
    [Show full text]