Approaches to Common Peripheral Nerves
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cutaneous Innervation of the Lower Limb Cutaneous Nerves on the Front of the Thigh
Cutaneous Innervation of the Lower Limb https://www.earthslab.com/anatomy/cutaneous-innervation-of-the-lower-limb/ Cutaneous nerves on the front of the thigh • The ilio-inguinal nerve (L1) • The femoral branch of genitofemoral nerve (L1, L2) • The lateral cutaneous nerve of thigh (L2, L3) • The intermediate cutaneous nerve of thigh (L2, L3) • The medial cutaneous nerve of thigh (L2, L3) • The saphenous nerve (L3,4) https://www.slideshare.net/DrMohammadMahmoud/2-front-of-the-thigh-ii https://slideplayer.com/slide/9424949/ Cutaneous nerves of the gluteal region • Subcostal (T12) and ilio- hypogastric (L1) nerves • Posterior primary rami of L1,2,3 and S1,2,3 • Lateral cutaneous nerve of thigh (L2,3) • Posterior cutaneous nerve of thigh (S1,2,3) and perforating cutaneous nerve (S2,3) Cutaneous nerves on the front of leg and dorsum of foot • The infrapatellar branch of the saphenous nerve • The saphenous nerve • The lateral cutaneous nerve of the calf • The superficial peroneal nerve • The sural nerve • The deep peroneal nerve • The digital branches of the medial and lateral plantar nerves Cutaneous nerves on the back of leg • Saphenous nerve (L3, L4) • Posterior division of the medial cutaneous nerve of the thigh (L2, L3) • Posterior cutaneous nerve of the thigh (S1, S2, S3) • Sural nerve (L5, S1, S2) • Lateral cutaneous nerve of the calf (L4, L5, S1) • Peroneal or sural communicating nerve (L5, S1, S2) • Medial calcanean branches (S1, S2) Cutaneous nerves of the sole • Medial calcaneal branches of tibial nerve • Branches from medial plantar nerve • Branches from lateral plantar nerve SEGMENTAL INNERVATION Dermatomes • The area of skin supplied by one spinal segment is called a dermatome. -
Dynamic Phases of Peroneal and Tibial Intraneural Ganglia Formation: a New Dimension Added to the Unifying Articular Theory
J Neurosurg 107:, 2007 Dynamic phases of peroneal and tibial intraneural ganglia formation: a new dimension added to the unifying articular theory ROBERT J. SPINNER, M.D.,1–3 KIMBERLY K. AMRAMI, M.D.,4 ALEXANDRA P. WOLANSKYJ, M.D.,5 NICHOLAS M. DESY, B.SC.,1,6 HUAN WANG, M.D.,1,7 EDUARDO E. BENARROCH, M.D.,8 JOHN A. SKINNER, M.D.,4 MICHAEL G. ROCK, M.D.,2 AND BERND W. SCHEITHAUER, M.D.9 Departments of 1Neurologic Surgery, 2Orthopedics, 3Anatomy, 4Radiology, 5Medicine, 8Neurology, and 9Anatomic Pathology, Mayo Clinic, Rochester, Minnesota; 6McGill University School of Medicine, Montreal, Quebec, Canada; and 7Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China Object. The pathogenesis of intraneural ganglia has been a controversial issue for longer than a century. Recently the authors identified a stereotypical pattern of occurrence of peroneal and tibial intraneural ganglia, and based on an under- standing of their pathogenesis provided a unifying articular explanation. Atypical features, which occasionally are ob- served, have offered an opportunity to verify further and expand on the authors’ proposed theory. Methods. Three unusual cases are presented to exemplify the dynamic features of peroneal and tibial intraneural gan- glia formation. Results. Two patients with a predominant deep peroneal nerve deficit shared essential anatomical findings common to peroneal intraneural ganglia: namely, 1) joint connections to the anterior portion of the superior tibiofibular joint, and 2) dissection of the cyst along the articular branch of the peroneal nerve and proximally. Magnetic resonance (MR) images obtained in these patients demonstrated some unusual findings, including the presence of a cyst within the tibial and sural nerves in the popliteal fossa region, and spontaneous regression of the cysts, which was observed on serial images obtained weeks apart. -
Lower Extremity Focal Neuropathies
LOWER EXTREMITY FOCAL NEUROPATHIES Lower Extremity Focal Neuropathies Arturo A. Leis, MD S.H. Subramony, MD Vettaikorumakankav Vedanarayanan, MD, MBBS Mark A. Ross, MD AANEM 59th Annual Meeting Orlando, Florida Copyright © September 2012 American Association of Neuromuscular & Electrodiagnostic Medicine 2621 Superior Drive NW Rochester, MN 55901 Printed by Johnson Printing Company, Inc. 1 Please be aware that some of the medical devices or pharmaceuticals discussed in this handout may not be cleared by the FDA or cleared by the FDA for the specific use described by the authors and are “off-label” (i.e., a use not described on the product’s label). “Off-label” devices or pharmaceuticals may be used if, in the judgment of the treating physician, such use is medically indicated to treat a patient’s condition. Information regarding the FDA clearance status of a particular device or pharmaceutical may be obtained by reading the product’s package labeling, by contacting a sales representative or legal counsel of the manufacturer of the device or pharmaceutical, or by contacting the FDA at 1-800-638-2041. 2 LOWER EXTREMITY FOCAL NEUROPATHIES Lower Extremity Focal Neuropathies Table of Contents Course Committees & Course Objectives 4 Faculty 5 Basic and Special Nerve Conduction Studies of the Lower Limbs 7 Arturo A. Leis, MD Common Peroneal Neuropathy and Foot Drop 19 S.H. Subramony, MD Mononeuropathies Affecting Tibial Nerve and its Branches 23 Vettaikorumakankav Vedanarayanan, MD, MBBS Femoral, Obturator, and Lateral Femoral Cutaneous Neuropathies 27 Mark A. Ross, MD CME Questions 33 No one involved in the planning of this CME activity had any relevant financial relationships to disclose. -
M1 – Muscled Arm
M1 – Muscled Arm See diagram on next page 1. tendinous junction 38. brachial artery 2. dorsal interosseous muscles of hand 39. humerus 3. radial nerve 40. lateral epicondyle of humerus 4. radial artery 41. tendon of flexor carpi radialis muscle 5. extensor retinaculum 42. median nerve 6. abductor pollicis brevis muscle 43. flexor retinaculum 7. extensor carpi radialis brevis muscle 44. tendon of palmaris longus muscle 8. extensor carpi radialis longus muscle 45. common palmar digital nerves of 9. brachioradialis muscle median nerve 10. brachialis muscle 46. flexor pollicis brevis muscle 11. deltoid muscle 47. adductor pollicis muscle 12. supraspinatus muscle 48. lumbrical muscles of hand 13. scapular spine 49. tendon of flexor digitorium 14. trapezius muscle superficialis muscle 15. infraspinatus muscle 50. superficial transverse metacarpal 16. latissimus dorsi muscle ligament 17. teres major muscle 51. common palmar digital arteries 18. teres minor muscle 52. digital synovial sheath 19. triangular space 53. tendon of flexor digitorum profundus 20. long head of triceps brachii muscle muscle 21. lateral head of triceps brachii muscle 54. annular part of fibrous tendon 22. tendon of triceps brachii muscle sheaths 23. ulnar nerve 55. proper palmar digital nerves of ulnar 24. anconeus muscle nerve 25. medial epicondyle of humerus 56. cruciform part of fibrous tendon 26. olecranon process of ulna sheaths 27. flexor carpi ulnaris muscle 57. superficial palmar arch 28. extensor digitorum muscle of hand 58. abductor digiti minimi muscle of hand 29. extensor carpi ulnaris muscle 59. opponens digiti minimi muscle of 30. tendon of extensor digitorium muscle hand of hand 60. superficial branch of ulnar nerve 31. -
Anatomy, Shoulder and Upper Limb, Arm Quadrangular Space
NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2018 Jan-. Anatomy, Shoulder and Upper Limb, Arm Quadrangular Space Authors Irfan A. Khan1; Matthew Varacallo2. Affiliations 1 Florida International University 2 Department of Orthopaedic Surgery, University of Kentucky School of Medicine Last Update: December 21, 2018. Introduction The quadrangular (or quadrilateral) space (QS) is named based on the shape of its anatomic boundaries. Located along the posterolateral shoulder, the QS serves as a passageway for the axillary nerve and posterior humeral circumflex artery (PHCA). Quadrangular (or quadrilateral) space syndrome (QSS) can occur secondary to various compressive pathologies. Although the incidence of such pathologies is rare, QSS has a known predilection for subgroups of athletic populations and can often suffer misdiagnosis or are clinically under-appreciated. Thus, clinicians should maintain a heightened clinical suspicion for QSS in patients aged 20-40 years of age presenting with a history of current contact or overhead athletic performance (e.g., baseball pitchers, swimmers, etc.), [1][2] or overhead laborers secondary to repetitive stress mechanics on the shoulder.[3] Structure and Function The QS has four anatomic borders; the teres minor superiorly, the inferior border is the teres major muscle, the medial boundary is the long head of the triceps brachii muscle, and the humeral surgical neck forms the lateral bound. The QS functions as a passageway for the axillary nerve, and the posterior humeral circumflex artery (PHCA).[3] The latter provides the primary (two-thirds) of the blood supply to the humeral head.[4] Blood Supply and Lymphatics The posterior humeral circumflex artery (PHCA) within the quadrangular space originates from the axillary artery, and within the QS, the PHCA divides into anterior and posterior branches. -
Nonsystemic Vasculitic Neuropathy: a Clinicopathological Study of 22 Cases
Nonsystemic Vasculitic Neuropathy: A Clinicopathological Study of 22 Cases EVANGELIA KARARIZOU, PANAGIOTA DAVAKI, NIKOS KARANDREAS, ROUBINI DAVOU, and DIMITRIOS VASSILOPOULOS ABSTRACT. Objective. The involvement of the peripheral nervous system in patients with systemic vasculitis has been reported, but nonsystemic peripheral nervous system vasculitis is not so well known. We inves- tigated the clinical, electrophysiological, and pathological features of nonsystemic vasculitic neu- ropathy (NSVN) in order to establish the clinical and histological manifestations and to promote the earlier diagnosis of the syndrome. Methods. Biopsies were selected from over 700 sural nerve biopsies performed at the Section of Neuropathology, Neurological Clinic of Athens University Hospital. The diagnosis of vasculitis was based on established clinicopathological criteria. Other causes of peripheral neuropathy were excluded. Complete laboratory, clinical, electrophysiological, and pathological studies were per- formed in all cases. Results. Nerve biopsies of 22 patients were diagnosed as NSVN. The pathological features were vasculitis and predominant axonal degeneration with a varying pattern of myelinated fiber loss. The vasculitic changes were found mainly in small epineural blood vessels. Mononeuritis multiplex and distal symmetrical sensorimotor neuropathy were equally frequent. Conclusion. NSVN should be suspected in a case of unexplained polyneuropathy without evidence of systemic involvement. Clinical and neurophysiological studies are essential for the detection of nerve involvement, but the specific diagnosis of NSVN may be missed unless a biopsy is performed. (J Rheumatol 2005;32:853–8) Key Indexing Terms: NONSYSTEMIC VASCULITIC NEUROPATHY NONSYSTEMIC VASCULITIS POLYNEUROPATHY AXONAL The syndrome of peripheral neuropathy due to vasculitis We examined the clinical, electrophysiological, and without manifestations of disorders in other systems was histopathological features of 22 patients with NSVN in first reported by Kernohan and Woltman in 19381. -
Review Isolated Vasculitis of the Peripheral Nervous System
Review Isolated vasculitis of the peripheral nervous system M.P. Collins, M.I. Periquet Department of Neurology, Medical College ABSTRACT combination therapy to be more effec- of Wisconsin, Milwaukee, Wisconsin, USA. Vasculitis restricted to the peripheral tive than prednisone alone. Although Michael P. Collins, MD, Ass. Professor; nervous system (PNS), referred to as most patients have a good outcome, M. Isabel Periquet, MD, Ass. Professor. nonsystemic vasculitic neuropathy more than 30% relapse and 60% have Please address correspondence and (NSVN), has been described in many residual pain. Many nosologic, path- reprint requests to: reports since 1985 but remains a poorly ogenic, diagnostic, and therapeutic Michael P. Collins, MD, Department of understood and perhaps under-recog- questions remain unanswered. Neurology, Medical College of Wisconsin, nized condition. There are no uniform 9200 W. Wisconsin Avenue, Milwaukee, WI 53226, USA. diagnostic criteria. Classifi cation is Introduction E-mail: [email protected] complicated by the occurrence of vas- The vasculitides comprise a broad Received on March 6, 2008; accepted in culitic neuropathies in many systemic spectrum of diseases which exhibit, revised form on April 1, 2008. vasculitides affecting small-to-me- as their primary feature, infl ammation Clin Exp Rheumatol 2008; 26 (Suppl. 49): dium-sized vessels and such clinical and destruction of vessel walls, with S118-S130. variants as nonsystemic skin/nerve secondary ischemic injury to the in- © CopyrightCopyright CLINICAL AND vasculitis and diabetic/non-diabetic volved tissues (1). They are generally EXPERIMENTAL RHEUMATOLOGY 2008.2008. lumbosacral radiculoplexus neuropa- classifi ed based on sizes of involved thy. Most patients present with pain- vessels and histopathologic and clini- Key words: Vasculitis, peripheral ful, stepwise progressive, distal-pre- cal features. -
Quadrilateral Space Syndrome
FUNCTIONAL REHABILITATION R. Barry Dale, PhD, PT, ATC, CSCS, Report Editor Quadrilateral Space Syndrome Robert C. Manske, PT, DPT, MEd, SCS, ATC, CSCS, Afton Sumler, ATC, and Jodi Runge, ATC • Wichita State University QUADRILATERAL space syndrome (QSS) is a History uncommon condition that has been reported to affect athletes who perform overhead QSS has been reported to have a spontaneous movement patterns, such as baseball play- onset during sport participation or as a result 1,2,7-15 ers,1-4 tennis players,5 and volleyball players.6 of acute trauma. Misdiagnosis may Cahill and Palmer7 described it as a rare be responsible for an underestimate of the 16 7 condition that involves compression of the prevalence of QSS. Cahill described four posterior humeral cir- cardinal features of QSS: (a) poorly localized cumflex artery (PHCA) shoulder pain, (b) nondermatomal distribu- Key PointsPoints and the axillary nerve tion of paresthesia, (c) discrete point ten- within the quadrilat- derness in the quadrilateral space, and (d) a Qaudrilateral space syndrome is an uncom- eral space, which pro- positive arteriogram finding with the affected mon condition. duces pain over the shoulder in a position of abduction and exter- posterior aspect of nal rotation. A high index of suspicion should Symptoms are caused by entrapment of the shoulder that may be maintained for this unusual diagnosis the axillary nerve within the quadrilateral in the overhead athlete who presents with space. radiate into the arm and forearm with a recalcitrant posterior shoulder pain. Conservative treatment should be non-dermatomal dis- attempted prior to surgical intervention. tribution. -
Quadrilateral Space Syndrome
6 Review Article Quadrilateral space syndrome Omar Zurkiya Division of Interventional Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA Correspondence to: Omar Zurkiya, MD, PhD. Division of Interventional Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA. Email: [email protected]. Abstract: The quadrilateral space is a confined area through which the axillary nerve and posterior circumflex humeral artery (PCHA) travel in the shoulder. Both structures are susceptible to impingement and compression as they travel though this space resulting in a constellation of symptoms known as quadrilateral space syndrome (QSS). Patients may experience paresthesias, loss of motor function, pain and vascular complications. Individuals who perform repetitive overhead arm movements such as elite athletes are at greater risk of developing QSS. The diagnosis can be difficult, but in the setting of clinical suspicion, physical exam and imaging studies can provide specific findings. On MRI, patients may have atrophy of the deltoid or teres minor muscles and angiography may show aneurysm or vascular occlusion of the PCHA. Treatment is initially conservative, with physiotherapy. Surgical decompression is effective in patients with severe or progressive symptoms. Causes of external compression such as fibrous bands, scarring, or other space occupying lesion may be addressed at that time. Neurolysis and aneurysm resection may also be performed. In some cases, emboli from the PCHA can cause ischemia in the involved upper extremity resulting in an acute presentation. Catheter directed therapy such as thrombolysis or thrombectomy may performed emergently in these cases. Though rare, in patients presenting with arm weakness, paresthesia, pain and/or arterial thrombosis in the arm, QSS is an important entity to consider. -
Advanced Neuroanatomic Understanding of the Shoulder and Implications for Pain Management
Advanced Neuroanatomic Understanding of The Shoulder and Implications for Pain Management Maxim S. Eckmann, MD Professor/Clinical, Department of Anesthesiology Executive Director of Pain Medicine University of Texas Health Science Center at San Antonio Disclosures ▪ Employment ▪ University of Texas Health Science Center at San Antonio ▪ Research Support ▪ Avanos Medical Inc – cadaver donation ▪ Fellowship Education Grants ▪ Abbot ▪ Boston Scientific ▪ Medtronic ▪ Speaker Panel / Course Director ▪ Dannemiller, Inc. ▪ American Society of Regional Anesthesia and Pain Medicine ▪ Investments ▪ Insight Dental Systems ▪ iKare MTRC (Behavioral Health) Leveraging Increasingly Peripheral Nerve Blockade in Acute and Chronic Pain Gains and Losses ISB (interscalene block); STB (superior trunk block); LPB (lumbar plexus block); ACB (adductor canal block); Road Map: Joint Analgesia Progression LFCN (lateral femoral cutaneous nerve); IPACK (infiltration between popliteal artery and capsule of knee); PECS (pectoralis block) Plexus Level Peripheral Nerve, Plane Level *,** Articular Level** Field** Suprascap* Sup Cerv Plx Articular Ns ISB Shoulder Axillary* PECS I,II ? SS, Ax, LP, STB*? Lateral Pec* (adjunct)* SubScap… Femoral Joint / ACB** / Knee Neuraxial LPB Sciatic Genicular Ns Wound IPACK** Obturator Injection Femoral “3-in-1” LPB Articular Ns Hip Sciatic ?Quad Fem / SPB Fem / Obt Obturator Sup Glut * Diaphragm Sparing **Motor Movement Sparing Proximal: Progressive loss of: o Dermatome o Cutaneous, muscular anesthesia. Distal: o Myotome/Sclerotome o Osteotome/Capsulotome o Osteotome/Capsulotome Progressive gain of: o Motor Block o Motor function o Motor preservation Evolving understanding: Shoulder Joint Selected Developments in Regional Anesthesia for the Upper Extremity and Shoulder • Axillary (brachial plexus) block • Interscalene Block • Complications Interscalene Block Development and Complications • Multiple Approaches (e.g. Anterolateral, Posterior, etc.) • Single Injection and Continuous Techniques 1. -
Innervation and Blood Supply of the Upper Limb. Carpal Tunnel. Sándor Katz M.D.,Ph.D
Innervation and blood supply of the upper limb. Carpal tunnel. Sándor Katz M.D.,Ph.D. Spinal nerves Brachial plexus Brachial plexus Lateral cord • Musculocutaneous nerve: • perforates the coracobrachialis muscle • runs between the biceps brachii and brachialis muscles • its sensory end-branch is the lateral antebrachial cutaneous nerve • Motor innervation: flexors muscles of the arm • Skin innervation: (lateral antebrachial cutaneous nerve) lateral part of the forearm Lateral cord • Median nerve (lateral part): • runs in the medial bicipital groove lateral to the brachial artery • passes between the two heads of the pronator teres • in the forearm it runs between the flexor digitorum superficialis and profundus • it passes through the carpal tunnel • Motor innervation: majority of the flexor muscles of forearm • Skin innervation: radial part of the palm Medial cord • Median nerve (medial part) • Ulnar nerve: • in the middle part of the arm it pierces the medial intermuscular septum and enters into the ‘extensor muscle compartment’ • in the elbow region it goes around the medial epicondyle (groove for ulnar nerve) • passes between the two heads of the flexor carpi ulnaris • runs through the Guyon’s canal above the flexor retinaculum with the ulnar vessels • Motor innervation: minority of the flexor muscles of forearm and majority of hand muscles • Skin innervation: ulnar side of the hand Medial cord • Medial brachial cutaneous nerve: • only sensory innervation • medial surface of the arm • Medial antebrachial cutaneous nerve: • only sensory -
Special Areas in the Upper Limb and Their Borders the AXILLA O a PYRAMIDAL Space: Has a Flat Apex, 4 Walls, and a Base
This document was created by Alex Yartsev ([email protected]); if I have used your data or images and forgot to reference you, please email me. Special Areas in the Upper Limb and their Borders THE AXILLA o A PYRAMIDAL space: has a flat apex, 4 walls, and a base. Superior border of scapula APEX First rib Clavicle Scapula POSTERIOR Subscapularis WALL Teres major Clavipectoral fascia LATERAL WALL Pectoralis minor ANTERIOR WALL Intertubercular groove of Pectoralis major the humerus; Thus also the tendon of Anterior axillary fold the long head of biceps MEDIAL WALL Chest wall and serratus anterior CONTENTS Axillary artery and its branches Axillary vein and its tributaries- brachial vein, basilic vein and thoracoepigastric vein Lymphatic vessels and axillary lymph nodes Cords and branches of the brachial plexus BOUNDARIES - Apex Medial wall – o Cervicoaxillary canal; passageway into the neck - Rib cage, chest wall – ribs 1-4 and o Bounded by the 1st rib, clavicle, and superior edge of the scapula the intercostal muscles o The vessel and nerve’s gateway into the arm - Serratus anterior - Base o Axillary fossa: fat, fascia, skin Lateral wall – - Anterior Wall– - Narrow wall; intertubercular groove o Pectoralis major, pectoralis minor, pectoral and clavipectoral fascia of the humerus o The inferior part is the anterior axillary fold - Posterior wall – o Scapula and subscapularis o Inferior border is the teres major and latissmus dorsi This document was created by Alex Yartsev ([email protected]); if I have used your data or images and forgot to reference you, please email me. The Medial Triangular Space, Lateral Triangular Space, and the Quadrangular Space These are gaps in the posterior wall of the axilla.