Radio Astronomy

Total Page:16

File Type:pdf, Size:1020Kb

Radio Astronomy Sp.-V/AQuan/1999/10/07:17:14 Page 121 Chapter 6 Radio Astronomy Robert M. Hjellming 6.1 Introduction ......................... 121 6.2 Atmospheric Window and Sky Brightness ....... 123 6.3 Radio Wave Propagation ................. 125 6.4 Radio Telescopes and Arrays .............. 128 6.5 Radio Emission and Absorption Processes ...... 131 6.6 Radio Astronomy References .............. 140 6.1 INTRODUCTION Radio astronomy is defined by three things. First is the range of frequencies that constitute the radio windows of the Earth’s atmosphere, ranging roughly from 20 MHz to 1000 GHz. Second are the astronomical objects that emit radio waves with sufficient strength to be detectable at the Earth; some emit by thermal processes, but most are seen because of the emission from relativistic electrons (cosmic rays) interacting with local magnetic fields. Third, radio radiation behaves more like waves than particles (photons), allowing the measurement of both amplitude and phase of the radiation field. The capability to measure phase gives radio interferometry the capability to do the highest resolution imaging of astronomical objects currently possible in astronomy. The variety and number of radio sources is so large that in Table 6.1 we merely summarize a number of source catalogs devoted to these topics. 121 Sp.-V/AQuan/1999/10/07:17:14 Page 122 122 / 6 RADIO ASTRONOMY Table 6.1. List of radio source catalogs. Type of Source Contents ◦ ◦ 4C Radio Survey [1, 2] 4844 56 cm sources > 2Jy,−7 ≤ δ ≤ 80 ◦ ◦ Bologna B2 Sky Survey [3–5] 408 MHz, 21.7 ≤ δ ≤ 40 ◦ ◦ Bologna B3 Sky Survey [6, 7] 408 MHz, 37 ≤ δ ≤ 47 ◦ 20 cm N. Sky Catalog [8] 365, 1400, 4850 MHz, 0 ≤ δ ≤ 75 ◦ ◦ ◦ ◦ 6 cm Gal. Plane Survey [9] Parkes 64 m, |b|≤2 , l = 190 − 360 − 40 ◦ ◦ 6 cm South & Tropical Surveys [10, 11] Parkes 64 m, −78 ≤ δ ≤−10 11 cm All Sky Catalog [12] Bright sources ◦ ◦ ◦ 11 cm N. Sky Catalog [13] 6483 sources, |b|≤5 , 240 ≤ l ≤ 357 Bright Galaxies [14] All radio data pre-1975, normal galaxies 20 cm Gal. Plane Survey [15] VLA B Conf. Survey ◦ ◦ ◦ 21 cm Gal. Plane Survey [16] Eff. 100m, |b|≤4 ,95 ≤ l ≤ 357 Galaxy HI [17, 18] Galaxies, vradial ≤ 3000 km/s Atlas of Galactic HI [19] 21 cm H emission line profiles Molecular lines [20, 21] Frequencies, other molecular data Pulsars [22] Catalog of known pulsars Opt. Pos. Radio Stars [23] 221 radio stars ◦ 20 cm Radio Sources δ>−5 [24, 25] 1400 MHz sky atlas References 1. Pilkington, J.D.H., & Scott, P.F. 1965, Mem. R.A.S., 69, 183 2. Gower, J.F.R., Scott, P.F., & Willis D. 1967, Mem. R.A.S., 71, 144 3. Colla, G. et al. 1970, A&AS, 1, 281 4. Colla, G. et al. 1972, A&AS, 7,1 5. Colla, G. et al. 1973, A&AS, 11, 291 6. Fanti, C. et al. 1974, A&AS, 18, 147 7. Ficcara, A., Grueff, G., & Tomesetti, G. 1985, A&AS, 59, 255 8. White, R.L., & Becker, R.H. 1992, ApJS, 79, 331 9. Haynes, R.F., Caswell, J.L., & Simons, L.W.J. 1978, Aust. J. Phys. Suppl., 48,1 10. Griffith, M.R. et al. 1994, ApJS, 90, 179 11. Wright, A.E. et al. 1994, ApJS, 91, 111 12. Wall, J.V., & Peacock, J.A. 1985, MNRAS, 216, 173 13. Furst,¨ E. et al. 1990, A&AS, 85, 805 14. Haynes, R.F., Caswell, J.L., & Simons, L.W.J. 1978, Aust. J. Phys. Suppl., 45,1 15. Zoonematkermani, S. et al. 1990, ApJS, 74, 181 16. Reich, W., Reich, P., & Furst,¨ E. 1990, A&AS, 83, 539 17. Tully, R.B. 1988, Nearby Galaxies Catalog (Cambridge University Press, Cambridge) 18. Huchtmeier, W.K., & Richter, O.-G. 1989, A General Catalog of HI Observations of Galaxies: The Reference Catalog (Springer-Verlag, New York) 19. Hartman, D., & Burton, W.D. 1995, Atlas of Galactic HI (Cambridge University Press, Cambridge) 20. Lovas, F.J. 1992, J. Phys. Chem. Ref. Data, 21, 181 21. Lovas, F.J., Snyder, L.E., & Johnson, D.R. 1979, ApJS, 41, 451 22. Taylor, J.H., Manchester, R.N., & Lyne, A.G. 1993, ApJS, 66, 529 23. Requi´ eme,` Y. & Mazurier, J.M. 1991, A&AS, 89, 311 24. Condon, J.J., Broderick, J.J., & Seielstad, G.A. 1989, AJ, 97, 1064 25. Condon, J.J., Broderick, J.J., & Seielstad, G.A. 1991, AJ, 102, 2041 Other information and images from surveys can be obtained from Internet pages maintained by the National Center for Super Computing Applications (NCSA) Astronomy Digital Image Library (ADIL, http://imagelib.ncsa.uiuc.edu/imagelib.html) and the National Radio Astronomy Observatory (NRAO, http://info.aoc.nrao.edu). More extensive radio (and other) catalogs can be found from Internet pages for the NASA Astrophysics Data System (http://adswww.harvard.edu/index.html). In Figure 6.1 schematic radio spectra representative of a variety of continuum radio sources are plotted in the form of flux density (in units of Jy = Jansky = 10−23 ergs cm−2 s−1 Hz−1 = 10−26 Wm−2 Hz−1) as a function of frequency. The sources and spectra in Figure 6.1 are schematic Sp.-V/AQuan/1999/10/07:17:14 Page 123 6.2 ATMOSPHERIC WINDOW AND SKY BRIGHTNESS / 123 108 Active Sun 107 Sky Background 106 Jupiter (radiation belts) 105 Quiet Sun 104 Moon Crab Cas A Pulsar Cyg A (unpulsed) 103 Crab M31 Virgo A Nebula 3C295 102 Flux Density [Jy] 3C273 101 Orion Nebula Jupiter Mars 100 BL Lac SS433 10-1 Crab Pulsar (pulsed) Cyg X-3 (non-flaring) -2 10 Antares 10-3 10 100 1000 10000 Figure 6.1. Radio spectra of various types of sources in the form of flux density as a function of frequency ν. indicators of typical behavior for a wide variety of objects. Major solar-system radio sources are the active Sun, the quiet Sun, the Earth’s Moon, Mars, the surface of Jupiter, and Jupiter’s radiation belts. Stellar system sources are: pulsars, with the pulsed and unpulsed (dashed line) emission from the Crab pulsar; the partially ionized coronal emission of the red supergiant Antares; and the X-ray binaries SS433 and Cyg X-3 (quiescent). The optically thick and thin portions of the radio spectrum of the ionized gas from an HII region is indicated for the Orion Nebula. Cas A is a remnant of a supernova explosion in our Galaxy; and the Crab nebula spectrum is representative of the relatively rare plerion, i.e., nebulosities energized by pulsars. The radio spectrum for M31, the Andromeda nebula, is representative of spiral galaxy behavior. Strong radio galaxies are represented by Cyg A and Virgo A; BL Lac is a blazar, while 3C273 and 3C295 are strong quasars. Defining the convention that the spectral index α is the power law index for the flux density, α Sν ∝ ν , then positive spectral indices indicate optically thick emission while negative spectral indices indicate optically thin emission. Spectral indices near zero indicate optically thin emission for thermal sources, while similarly flat spectra for synchrotron radiation sources indicate optically thick emission from a wide range of optical depths. 6.2 ATMOSPHERIC WINDOW AND SKY BRIGHTNESS 6.2.1 Atmospheric Window The low-frequency end of the radio window is set by ionospheric absorption. Since the ionosphere has diurnal variations, solar cycle variations, variations depending upon the effect of particle storms impacting the atmosphere, and variations with Earth latitude and longitude, the lowest frequency where the atmosphere is transparent varies considerably over the range 10 to 30 MHz. From that low- frequency cut-off, up to about 22 GHz, the Earth’s atmosphere does not absorb radio waves, although variation in the index of refraction affects the phase of incoming radio waves at the higher frequencies. Sp.-V/AQuan/1999/10/07:17:14 Page 124 124 / 6 RADIO ASTRONOMY 1 1 1 mm PWV Atmospheric Transparency 8 mm PWV 0 0 0.01 0.1 1 10 100 1000 0 200 400 600 800 1000 Wavelength [cm] Frequency [GHz] Figure 6.2. The radio window for the Earth’s atmosphere shown in terms of plots of atmospheric transparency as a function of both wavelength and frequency. The solid line is for excellent conditions with 1 mm PWV and the dashed line is for normal conditions with 8 mm PWV. At the lowest frequencies plasma effects in the ionosphere induce variable Faraday rotation in incoming radio waves. In Figure 6.2 we plot models for the transparency of the Earth’s atmosphere for two values of precipitable water vapor (PWV), 1 and 8 mm, representing extremely low and normal levels, respectively. 6.2.2 Surface Brightness and Brightness Temperature All astronomy is based upon measurements of surface brightness on the celestial sphere: Iν(α, δ, t), where t is time, (α,δ) is position specified by right ascension and declination, ν is frequency, and I is the specific intensity which can be any of the four Stokes parameters. The surface brightness ν/ of a black body of temperature T is Bν = (2hν3/c2)(1/[eh kT − 1]), where h and k are the Planck and Boltzmann constants. For small values of hν/kT, the Rayleigh–Jeans approximation is ∼ valid, and Bν(T ) = 2kT/λ2; this is valid at longer radio wavelengths. For reasons related to the antenna measurement equation, radio astronomy often uses brightness temperature rather than surface brightness to describe measurements, where the brightness temperature is λ2 T ≡ Bν. (6.1) b 2k Equation (6.1) is often used even when black body or long wavelength approximations are not hν/kT applicable.
Recommended publications
  • Radio Astronomy
    Theme 8: Beyond the Visible I: radio astronomy Until the turn of the 17th century, astronomical observations relied on the naked eye. For 250 years after this, although astronomical instrumentation made great strides, the radiation being detected was still essentially confined to visible light (Herschel discovered infrared radiation in 1800, and the advent of photography opened up the near ultraviolet, but these had little practical significance). This changed dramatically in the mid-20th century with the advent of radio astronomy. 8.1 Early work: Jansky and Reber The atmosphere is transparent to visible light, but opaque to many other wavelengths. The only other clear “window” of transparency lies in the radio region, between 1 mm and 30 m wavelength. One might expect that the astronomical community would deliberately plan to explore this region, but in fact radio astronomy was born almost accidentally, with little if any involvement of professional astronomers. Karl Jansky (1905−50) was a radio engineer at Bell Telephone. In 1932, while studying the cause of interference on the transatlantic radio-telephone link, he discovered that part of the interference had a periodicity of one sidereal day (23h 56m), and must therefore be coming from an extraterrestrial source. By considering the time at which the interference occurred, Jansky identified the source as the Milky Way. This interesting finding was completely ignored by professional astronomers, and was followed up only by the radio engineer and amateur astronomer Grote Reber (1911−2002). Reber built a modern-looking paraboloid antenna and constructed maps of the radio sky, which also failed to attract significant professional attention.
    [Show full text]
  • Essential Radio Astronomy
    February 2, 2016 Time: 09:25am chapter1.tex © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. 1 Introduction 1.1 AN INTRODUCTION TO RADIO ASTRONOMY 1.1.1 What Is Radio Astronomy? Radio astronomy is the study of natural radio emission from celestial sources. The range of radio frequencies or wavelengths is loosely defined by atmospheric opacity and by quantum noise in coherent amplifiers. Together they place the boundary be- tween radio and far-infrared astronomy at frequency ν ∼ 1 THz (1 THz ≡ 1012 Hz) or wavelength λ = c/ν ∼ 0.3 mm, where c ≈ 3 × 1010 cm s−1 is the vacuum speed of light. The Earth’s ionosphere sets a low-frequency limit to ground-based radio astronomy by reflecting extraterrestrial radio waves with frequencies below ν ∼ 10 MHz (λ ∼ 30 m), and the ionized interstellar medium of our own Galaxy absorbs extragalactic radio signals below ν ∼ 2 MHz. The radio band is very broad logarithmically: it spans the five decades between 10 MHz and 1 THz at the low-frequency end of the electromagnetic spectrum. Nearly everything emits radio waves at some level, via a wide variety of emission mechanisms. Few astronomical radio sources are obscured because radio waves can penetrate interstellar dust clouds and Compton-thick layers of neutral gas. Because only optical and radio observations can be made from the ground, pioneering radio astronomers had the first opportunity to explore a “parallel universe” containing unexpected new objects such as radio galaxies, quasars, and pulsars, plus very cold sources such as interstellar molecular clouds and the cosmic microwave background radiation from the big bang itself.
    [Show full text]
  • Wide-Band, Low-Frequency Pulse Profiles of 100 Radio Pulsars With
    A&A 586, A92 (2016) Astronomy DOI: 10.1051/0004-6361/201425196 & c ESO 2016 Astrophysics Wide-band, low-frequency pulse profiles of 100 radio pulsars with LOFAR M. Pilia1,2, J. W. T. Hessels1,3,B.W.Stappers4, V. I. Kondratiev1,5,M.Kramer6,4, J. van Leeuwen1,3, P. Weltevrede4, A. G. Lyne4,K.Zagkouris7, T. E. Hassall8,A.V.Bilous9,R.P.Breton8,H.Falcke9,1, J.-M. Grießmeier10,11, E. Keane12,13, A. Karastergiou7 , M. Kuniyoshi14, A. Noutsos6, S. Osłowski15,6, M. Serylak16, C. Sobey1, S. ter Veen9, A. Alexov17, J. Anderson18, A. Asgekar1,19,I.M.Avruch20,21,M.E.Bell22,M.J.Bentum1,23,G.Bernardi24, L. Bîrzan25, A. Bonafede26, F. Breitling27,J.W.Broderick7,8, M. Brüggen26,B.Ciardi28,S.Corbel29,11,E.deGeus1,30, A. de Jong1,A.Deller1,S.Duscha1,J.Eislöffel31,R.A.Fallows1, R. Fender7, C. Ferrari32, W. Frieswijk1, M. A. Garrett1,25,A.W.Gunst1, J. P. Hamaker1, G. Heald1, A. Horneffer6, P. Jonker20, E. Juette33, G. Kuper1, P. Maat1, G. Mann27,S.Markoff3, R. McFadden1, D. McKay-Bukowski34,35, J. C. A. Miller-Jones36, A. Nelles9, H. Paas37, M. Pandey-Pommier38, M. Pietka7,R.Pizzo1,A.G.Polatidis1,W.Reich6, H. Röttgering25, A. Rowlinson22, D. Schwarz15,O.Smirnov39,40, M. Steinmetz27,A.Stewart7, J. D. Swinbank41,M.Tagger10,Y.Tang1, C. Tasse42, S. Thoudam9,M.C.Toribio1,A.J.vanderHorst3,R.Vermeulen1,C.Vocks27, R. J. van Weeren24, R. A. M. J. Wijers3, R. Wijnands3, S. J. Wijnholds1,O.Wucknitz6,andP.Zarka42 (Affiliations can be found after the references) Received 20 October 2014 / Accepted 18 September 2015 ABSTRACT Context.
    [Show full text]
  • Great Discoveries Made by Radio Astronomers During the Last Six Decades and Key Questions Today
    17_SWARUP (G-L)chiuso_074-092.QXD_Layout 1 01/08/11 10:06 Pagina 74 The Scientific Legacy of the 20th Century Pontifical Academy of Sciences, Acta 21, Vatican City 2011 www.pas.va/content/dam/accademia/pdf/acta21/acta21-swarup.pdf Great Discoveries Made by Radio Astronomers During the Last Six Decades and Key Questions Today Govind Swarup 1. Introduction An important window to the Universe was opened in 1933 when Karl Jansky discovered serendipitously at the Bell Telephone Laboratories that radio waves were being emitted towards the direction of our Galaxy [1]. Jansky could not pursue investigations concerning this discovery, as the Lab- oratory was devoted to work primarily in the field of communications. This discovery was also not followed by any astronomical institute, although a few astronomers did make proposals. However, a young electronics engi- neer, Grote Reber, after reading Jansky’s papers, decided to build an inno- vative parabolic dish of 30 ft. diameter in his backyard in 1935 and made the first radio map of the Galaxy in 1940 [2]. The rapid developments of radars during World War II led to the dis- covery of radio waves from the Sun by Hey in 1942 at metre wavelengths in UK and independently by Southworth in 1942 at cm wavelengths in USA. Due to the secrecy of the radar equipment during the War, those re- sults were published by Southworth only in 1945 [3] and by Hey in 1946 [4]. Reber reported detection of radio waves from the Sun in 1944 [5]. These results were noted by several groups soon after the War and led to intensive developments in the new field of radio astronomy.
    [Show full text]
  • University of Groningen the Logistic Design of the LOFAR Radio Telescope Schakel, L.P
    University of Groningen The logistic design of the LOFAR radio telescope Schakel, L.P. IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2009 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Schakel, L. P. (2009). The logistic design of the LOFAR radio telescope: an operations Research Approach to optimize imaging performance and construction costs. PrintPartners Ipskamp B.V., Enschede, The Netherlands. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 26-09-2021 Chapter 2 Radio Telescopes 2.1 Introduction This chapter explains the basics of radio telescopes, the types of radio telescopes that exist, and what they can observe in the universe. It is included to provide the reader background information on radio telescopes and to introduce concepts which will be used in later chapters.
    [Show full text]
  • Fundamentals of Radio Astronomy
    • 4.85 GHz radio image The Radio Sky at 4.85 GHz • 45 degrees wide • brightest irregular sources are clouds of ionized hydrogen The Radio Universe Dr. Chuck Higgins Middle Tennessee State University • Supernovae remnants appear as faint radio rings • Radio "stars" scattered over the sky - most are luminous radio galaxies 9 (c) National Radio Astronomy Observatory / Associated or quasars (average distance > 5 x 10 ly) Universities, Inc. / National Science Foundation • 4.85 GHz radio image The Radio Sky at 4.85 GHz • 45 degrees wide • brightest irregular sources are clouds of ionized hydrogen Outline 1.The Radio Sky and the EM Spectrum 2.Radio Telescopes 3.What We Learn and Major Discoveries 4.Sources of Radio Emission 5.Examples – Sun, Planets, Stars, Pulsars, Galaxies, etc. 6.Radio JOVE • Supernovae remnants appear as faint radio rings • Radio "stars" scattered over the sky - most are luminous radio galaxies 9 (c) National Radio Astronomy Observatory / Associated or quasars (average distance > 5 x 10 ly) Universities, Inc. / National Science Foundation Radio Astronomy the study of radio waves originating outside Earth’s atmosphere Radio Window 1 THz – 10 MHz 0.3 mm – 30 m Credit: Adapted from STScI/JHU/NASA Radio Telescopes Concept Drawing of the Square Kilometer Array, Australia Green Bank Telescope (NRAO, NSF) Fast Radio Telescope (China) 500 m dish VLA, New Mexico (NRAO, NSF) Itty Bitty Radio Telescope Radio Telescopes Radio Waves Image Credit: Windows to the Universe Radio waves = electromagnetic waves generally caused by moving charged
    [Show full text]
  • Radio Frequency Interference (Rfi) Mapping for Radio Astronomy in Peninsular Malaysia
    RADIO FREQUENCY INTERFERENCE (RFI) MAPPING FOR RADIO ASTRONOMY IN PENINSULAR MALAYSIA ROSLAN UMAR FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR 2014 RADIO FREQUENCY INTERFERENCE (RFI) MAPPING FOR RADIO ASTRONOMY IN PENINSULAR MALAYSIA ROSLAN UMAR THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF PHYSICS FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR 2014 UNIVERSITI MALAYA ORIGINAL LITERARY WORK DECLARATION Name of Candidate: Roslan b. Umar (I.C./Passport No.:800305115235) Registration/Matrix No.: SHC100045 Name of Degree: Doctor of Philosophy Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”): Radio Frequency Interference (RFI) Mapping for Radio Astronomy In Peninsular Malaysia Field of Study: Radio Astronomy, I do solemnly and sincerely declare that: (1) I am the sole author/writer of this Work; (2) This work is original; (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work; (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work; (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained; (6) I am fully aware that if in the course of making this Work I have infringed any copy- right whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.
    [Show full text]
  • ASTRONET ERTRC Report
    Radio Astronomy in Europe: Up to, and beyond, 2025 A report by ASTRONET’s European Radio Telescope Review Committee ! 1!! ! ! ! ERTRC report: Final version – June 2015 ! ! ! ! ! ! 2!! ! ! ! Table of Contents List%of%figures%...................................................................................................................................................%7! List%of%tables%....................................................................................................................................................%8! Chapter%1:%Executive%Summary%...............................................................................................................%10! Chapter%2:%Introduction%.............................................................................................................................%13! 2.1%–%Background%and%method%............................................................................................................%13! 2.2%–%New%horizons%in%radio%astronomy%...........................................................................................%13! 2.3%–%Approach%and%mode%of%operation%...........................................................................................%14! 2.4%–%Organization%of%this%report%........................................................................................................%15! Chapter%3:%Review%of%major%European%radio%telescopes%................................................................%16! 3.1%–%Introduction%...................................................................................................................................%16!
    [Show full text]
  • Thesis Is Submited in Partial Fulfilment of the Requirements for the Award of the Degree of Doctor of Philosophy of the University of Portsmouth
    Techniques for Cosmological Analysis of Next Generation Low to Mid-Frequency Radio Data Michael Tarr Department of Technology THE THESIS IS SUBMITED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY OF THE UNIVERSITY OF PORTSMOUTH May 2018 Declaration Whilst registered as a candidate for the above degree, I have not been registered for any other research award. The results and conclusions embodied in this thesis are the work of the named candidate and have not been submitted for any other academic award. This dissertation contains 51,523 words not including appendices, bibliography, footnotes, tables and equations, and has 68 figures. Michael Tarr May 2018 Acknowledgements First, I would like to give my most sincere thanks to David. It goes without saying that I can not imagine having completed this work without you. Your enthusiasm and belief in me has been a constant source of motivation from day one to the eleventh hour. You are an inspiration and model of a perfect superior. I cannot overstate how much I appchiate your effort, and I am eternally grateful. My love and thanks also to my parents, who have provided nothing but loving support, despite all my whims and phases. I can only hope it was all worth it to find something I have finally stuck with. Thanks should also go to Xan and Matthew, for taking precious time away from their own research to indulge my pet machine learning project. I owe you both and hope to always be friends. Rebecca1, save the final thanks for you.
    [Show full text]
  • The Search For
    THE SEARCH FOR EXTRATERRESTRIAL INTELLIGENCE Proceedings of an NRAO Workshop held at the National Radio Astronomy Observatory Green Bank, West Virginia May 20, 21, 22, 1985 1960 1985 Honoring the 25th Anniversary of Project OZMA Edited by K. I. Kellermann and G. A. Seielstad THE SEARCH FOR EXTRATERRESTRIAL INTELLIGENCE Proceedings of an NRAO Workshop held at the National Radio Astronomy Observatory Green Bank, West Virginia May 20, 21, 22, 1985 Edited by K. I. Kellermann and GL A. Seielstad Workshop Na 11 Distributed by: National Radio Astronomy Observatory P.O. Box 2 Green Bank, WV 24944-0002 USA The National Radio Astronomy Observatory is operated by Associated Universities, Inc., under contract with the National Science Foundation. Copyright © 1986 NRAO/AUI. All Rights Reserved. CONTENTS Page I. KEYNOTE ADDRESS Life in Space and Humanity on Earth . Sebastian von Hoeimer 3 II. HISTORICAL PERSPECTIVE Project OZMA Frank D. Drake 17 Project OZMA - How It Really Was J. Fred Crews 27 Evolution of Our Thoughts on the Best Strategy for SETI Michael D. Papagiannis 31 III. SEARCH STRATEGIES The Search for Biomolecules in Space Lewis E. Snyder 39 Mutual Help in SETI's David H. Frisch 51 A Symbiotic SETI Search Thomas M. Bania 61 Should the Search be Made Optically? John J. Broderiok 67 A Search for SETI Targets Jane L. Russell 69 A Milky Way Search Strategy for Extra¬ terrestrial Intelligence .... Woodruff T. Sullivan, III 75 IV. CURRENT PROGRAMS SETI Observations Worldwide Jill C. Tarter 79 Ultra-Narrowband SETI at Harvard/Smithsonian . Paul Horowitz 99 The NASA SETI Program: An Overview Bernard M.
    [Show full text]
  • Instrumentation for Wide Bandwidth Radio Astronomy
    Instrumentation for Wide Bandwidth Radio Astronomy Thesis by Glenn Evans Jones In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2010 (Defended September 25, 2009) ii c 2010 Glenn Evans Jones All Rights Reserved iii To my family. iv Acknowledgements Since I was very young I have been fascinated by radio telescopes, but despite a keen interest in other areas of electronics, I never learned how they were used until I began working with my research advisor, Sandy Weinreb. As a fellow electronics and technology enthusiast, I cannot imagine a better person to introduce me to the field of radio astronomy which has steadily become my career. From the very beginning, he has been a tireless advocate for me while sharing his broad experience across the gamut of radio astronomy instrumentation and observations. One of the most important ways in which Sandy has influenced me professionally is by pursuing every available opportunity to introduce me to members of the radio astronomy community. I also very much appreciate the support provided by my academic advisor, Dave Rutledge. Dave provided a wide range of useful suggestions and encouragement during group meetings, and looked out for me from the very beginning. Each of the other members of my thesis committee also deserves special thanks apart from my gratitude to them for serving on the committee. P.P. Vaidyanathan introduced me to digital signal processing and his clear, insightful lectures helped to inspire my interest in the field. Tony Read- head's courses on radio astronomy instrumentation and radiative processes significantly improved my understanding of the details of radio astronomy.
    [Show full text]
  • WAVES of EXTRATERRESTRIAL ORIGIN DISSERTATION Presented
    AN INVESTIGATION AND ANALYSIS OF RATIO ' WAVES OF EXTRATERRESTRIAL ORIGIN DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By HSIEN-CHING KO, B.S., M.S. The Ohio State University 1 9 # Approved by: _ Adviser Department of Electrical Engineering ACKNOWLEDGEMENTS The research presented in this dissertation was done at the Radio Observatory of The Ohio State University under the supervision of Professor John D* Kraus who originated the radio astronory project, designed the radio telescope and guided the research. The author wishes to express his sincere appreciation to Professor Kraus, his adviser, for his helpful guidance, discussion and review of the manuscript. For three years he has continuously- provided the author with every assistance possible in order that the present investigation could be successfully completed. Dr. Kraus has contributed many valuable new ideas throughout the investigation* It is a pleasure to acknowledge the work of Mr. Dorm Van Stoutenburg in connection with the improvement and maintenance of the equipment. Thanks are also due many others who participated in the construction of the radio telescope. In addition, rry thanks go to Miss Pi-Yu Chang and Miss Justine Wilson for their assistance in the preparation of the manuscript, and to Mr. Charles E. Machovec of the Physics Library for his cooperation in using the reference materials• The radio astronony project is supported ty grants from the Development Fund,
    [Show full text]