Lattice-Boltzmann Fluid Dynamics a Versatile Tool for Multiphase and Other Complicated flows Shiyi Chen, Gary D

Total Page:16

File Type:pdf, Size:1020Kb

Lattice-Boltzmann Fluid Dynamics a Versatile Tool for Multiphase and Other Complicated flows Shiyi Chen, Gary D Lattice-Boltzmann Fluid Dynamics a versatile tool for multiphase and other complicated flows Shiyi Chen, Gary D. Doolen, and Kenneth G. Eggert 98 Los Alamos Science Number 22 1994 Number 22 1994 Los Alamos Science 99 Lattice-Boltzmann Fluid Dynamics ong-term research efforts at the method yields a good approximation to projects of this type helped motivate Laboratory often produce results the standard equations of fluid flow, the the oil companies to ask that Congress Lthat prove highly valuable to Navier-Stokes equations, in the limit of substantially increase DOE support for U.S. industry. The example described long wavelengths and low frequencies. oil and gas research and make those here is a new approach to modeling the Also, recent generalizations of the funds available for significant new col- flow of multiphase fluid mixtures, such method have extended its applicability laborations between the oil and gas in- as oil and water, through very compli- to multiphase flows, chemically react- dustry and the National Laboratories. cated geometries. This new modeling ing flows, diffusion and thermohydro- The result is ACTI—the Advanced technique, called the lattice-Boltzmann dynamics. Computational Technology Initiative— method, evolved out of ideas that have United States oil companies have an initiative that will receive $30–50 been intensely investigated since 1985, expressed considerable interest in the million in funding in 1995. when Laboratory scientists and others lattice-Boltzmann method for address- In this article we will first sketch the discovered that very simple models of ing problems in oil recovery. For ex- basic ideas of the lattice-Boltzmann discrete particles confined to a lattice ample, we are collaborating with the method and its general applicability. can be used to solve very complicated Mobil Exploration and Producing Tech- We will then explain how the lattice- flow problems. nical Center on using the lattice-Boltz- gas and lattice-Boltzmann methods are This lattice method can be regarded mann method to simulate the flow of adapted to describe the dynamics at the as one of the simplest microscopic, or oil and water through oil-bearing sand- interfaces between two immiscible flu- particle, approaches to modeling macro- stone at a scale and an accuracy never ids such as oil and water and present scopic dynamics. It is based on the before possible. Mobil provided Los some simulations of phase separation. Boltzmann transport equation for the Alamos with 5-micron-resolution sand- Finally, we will mention a few of the time rate of change of the particle dis- stone geometries for use in the simula- new directions into which lattice-Boltz- tribution function in a particular state. tions. (Typical pore diameters are tens mann research is moving. Specific ap- The Boltzmann equation simply says of microns.) The goal of the work is to plications to the flows in oil reservoirs that the rate of change is the number of simulate, at the scale of individual are discussed in the companion article. particles scattered into that state minus pores in the rock, what happens when the number scattered out of that state. water is pumped though the rock to The method is fully parallel (the force out oil. Viscosities, surface ten- Lattice Methods for Modeling same calculations are performed at sions, contact angles, and surfactant ef- Continuum Dynamics every lattice site) and local (only near- fects can be varied to determine how by particles interact with each other). well this method of oil recovery can be Lattice methods, including the lat- It is therefore easily programmed and made to work in specific circumstances. tice-gas method and its derivative, the runs efficiently on parallel machines. The collaboration is described by Mobil lattice-Boltzmann method, present pow- Complex boundary conditions are in- and Los Alamos scientists in the com- erful alternatives to the standard “top- corporated in a straightforward way and panion article, “Toward Improved Pre- down” and “bottom-up” approaches to cause the calculational speed to de- diction of Reservoir Flow Perfor- modeling the behavior of physical sys- crease by only a few percent. The mance—Simulating Oil and Water tems. The “top-down” approach begins Flows at the Pore Scale.” The work with a continuum description of macro- Illustration on previous spread: A lattice-Boltz- has included the development of soft- scopic phenomena provided by partial mann simulation of flow past a slab shows the ware to calculate relative permeabilities differential equations. The Navier- complicated flow patterns that can be modeled of oil and water in complex geometries. Stokes equations for incompressible with this technique. The lattice is 1024 3 256 The software received an R&D-100 fluid flows are an example. Numerical sites; the thickness of the slab is 32 sites, which gives the flow a Reynolds number of 960. Wind- award for 1993. techniques, such as finite-difference and tunnel boundary conditions are used—the flow The lattice-Boltzmann work is a su- finite-element methods, are then used to velocity at the entrance (left), the top, and the perb example of applying the extraordi- transform the continuum description bottom boundaries is fixed. The top image shows nary computer power and expertise in into a discrete one in order to solve the contours of equal vorticity; the bottom image shows the pressure distribution of the flow. The computational physics available at Los equations numerically on a computer. simulation was done using the Connection Ma- Alamos to problems in petroleum pro- The “bottom-up” approach is based chine 2 at the Advanced Computing Laboratory. duction. The Laboratory’s success at on the microscopic, particle description 100 Los Alamos Science Number 22 1994 Lattice-Boltzmann Fluid Dynamics lattice1.adb 7/26/94 provided by the equations of molecular dynamics; here the position and veloci- ty of each atom or molecule in the sys- tem are closely followed by solving Newton’s equations of motion. This microscopic description is straightfor- ward to program on a computer but simulations using the largest computers presently available are limited to very small systems (ten million particles) and very short times (a few picosec- Figure 1. Allowed Velocities at a Lattice Site onds). Therefore molecular dynamics The arrows indicate the magnitudes and directions of the allowed velocities ei at a lat- simulations are more suitable for under- tice site in a three-dimensional lattice-Boltzmann simulation. The lattice has a cubic standing the fundamental interactions structure. Six arrows point to nearest-neighbor sites. Eight arrows point along body that underlie macroscopic material diagonals. The sphere at the lattice site represents zero velocity, e0 5 0. Lattice-Boltz- properties than for modeling macro- mann simulations based on a proper equilibrium particle distribution and this minimum scopic dynamics. set of velocities preserve the desired isotropy of fluid properties. Intermediate between the two schemes are the lattice-Boltzmann and attain a speed of 20 gigaflops on a 512- mohydrodynamics, magnetohydrody- lattice-gas methods, which might be processor CM-5 Connection Machine. namics, the dynamics of liquid crystals considered mesoscopic approaches. Typical simulations of flow through and the design of semiconductors. The lattice methods begin from a parti- porous media include 100 million lat- These models are validated by precise cle description of matter: A gas of par- tice sites and run for 5000 timesteps comparisons with other numerical algo- ticles exists on a set of discrete points and therefore require only a few hours rithms, analytic results, and experiments. that are spaced at regular intervals to on that machine. When applied to peri- form a lattice. Time is also divided odic geometries, the three-dimensional into discrete timesteps, and during each lattice-Boltzmann model is able to The Lattice-Boltzmann Method timestep particles jump to the next lat- achieve the same spatial resolution as tice site and then scatter according to conventional methods in half the time. In the lattice-Boltzmann method, simple kinetic rules that conserve mass, Also, because boundary conditions— space is divided into a regular lattice momentum, and energy. This simpli- even complex ones—are imposed local- (for example, a simple cubic lattice) fied molecular dynamics is very care- ly, lattice methods simulate flows in and real numbers at each lattice site fully crafted to include the essentials of both simple and complex geometries represent the single-particle distribution the real microscopic processes. Conse- with almost the same speed and effi- function at that site, which is equal to quently the macroscopic, or averaged, ciency. They are therefore suitable for the expected number of identical parti- properties of lattice simulations obey, simulating flows in the extremely com- cles in each of the available particle to a good approximation, the desired plex geometries of porous media states i. In the simplest model, each continuum equations. Despite their ori- whereas conventional methods are not. particle state i is defined by a particle gin in a particle description, lattice Finally, developing code for lattice velocity, which is limited to a discrete methods are essentially numerical methods is considerably faster and easi- set of allowed velocities. During each schemes for studying averaged macro- er than for traditional schemes. discrete timestep of the simulation, par- scopic behavior. They nevertheless re- General lattice models already exist ticles move, or hop, to the nearest lat- tain the advantages of a particle descrip- for solving the equations of fluid flow, tice site along their direction of motion, tion, including clear physical insight, the wave equation, and the diffusion where they “collide” with other parti- easy implementation of boundary condi- equation. Special versions of these cles that arrive at the same site. The tions, and fully parallel algorithms. models have been developed for simulat- outcome of the collision is determined Because lattice methods are entirely ing flow through porous media, turbulent by solving the kinetic (Boltzmann) local, they are extremely fast.
Recommended publications
  • A Simple Method to Estimate Entropy and Free Energy of Atmospheric Gases from Their Action
    Article A Simple Method to Estimate Entropy and Free Energy of Atmospheric Gases from Their Action Ivan Kennedy 1,2,*, Harold Geering 2, Michael Rose 3 and Angus Crossan 2 1 Sydney Institute of Agriculture, University of Sydney, NSW 2006, Australia 2 QuickTest Technologies, PO Box 6285 North Ryde, NSW 2113, Australia; [email protected] (H.G.); [email protected] (A.C.) 3 NSW Department of Primary Industries, Wollongbar NSW 2447, Australia; [email protected] * Correspondence: [email protected]; Tel.: + 61-4-0794-9622 Received: 23 March 2019; Accepted: 26 April 2019; Published: 1 May 2019 Abstract: A convenient practical model for accurately estimating the total entropy (ΣSi) of atmospheric gases based on physical action is proposed. This realistic approach is fully consistent with statistical mechanics, but reinterprets its partition functions as measures of translational, rotational, and vibrational action or quantum states, to estimate the entropy. With all kinds of molecular action expressed as logarithmic functions, the total heat required for warming a chemical system from 0 K (ΣSiT) to a given temperature and pressure can be computed, yielding results identical with published experimental third law values of entropy. All thermodynamic properties of gases including entropy, enthalpy, Gibbs energy, and Helmholtz energy are directly estimated using simple algorithms based on simple molecular and physical properties, without resource to tables of standard values; both free energies are measures of quantum field states and of minimal statistical degeneracy, decreasing with temperature and declining density. We propose that this more realistic approach has heuristic value for thermodynamic computation of atmospheric profiles, based on steady state heat flows equilibrating with gravity.
    [Show full text]
  • LECTURES on MATHEMATICAL STATISTICAL MECHANICS S. Adams
    ISSN 0070-7414 Sgr´ıbhinn´ıInstiti´uid Ard-L´einnBhaile´ Atha´ Cliath Sraith. A. Uimh 30 Communications of the Dublin Institute for Advanced Studies Series A (Theoretical Physics), No. 30 LECTURES ON MATHEMATICAL STATISTICAL MECHANICS By S. Adams DUBLIN Institi´uid Ard-L´einnBhaile´ Atha´ Cliath Dublin Institute for Advanced Studies 2006 Contents 1 Introduction 1 2 Ergodic theory 2 2.1 Microscopic dynamics and time averages . .2 2.2 Boltzmann's heuristics and ergodic hypothesis . .8 2.3 Formal Response: Birkhoff and von Neumann ergodic theories9 2.4 Microcanonical measure . 13 3 Entropy 16 3.1 Probabilistic view on Boltzmann's entropy . 16 3.2 Shannon's entropy . 17 4 The Gibbs ensembles 20 4.1 The canonical Gibbs ensemble . 20 4.2 The Gibbs paradox . 26 4.3 The grandcanonical ensemble . 27 4.4 The "orthodicity problem" . 31 5 The Thermodynamic limit 33 5.1 Definition . 33 5.2 Thermodynamic function: Free energy . 37 5.3 Equivalence of ensembles . 42 6 Gibbs measures 44 6.1 Definition . 44 6.2 The one-dimensional Ising model . 47 6.3 Symmetry and symmetry breaking . 51 6.4 The Ising ferromagnet in two dimensions . 52 6.5 Extreme Gibbs measures . 57 6.6 Uniqueness . 58 6.7 Ergodicity . 60 7 A variational characterisation of Gibbs measures 62 8 Large deviations theory 68 8.1 Motivation . 68 8.2 Definition . 70 8.3 Some results for Gibbs measures . 72 i 9 Models 73 9.1 Lattice Gases . 74 9.2 Magnetic Models . 75 9.3 Curie-Weiss model . 77 9.4 Continuous Ising model .
    [Show full text]
  • Entropy and H Theorem the Mathematical Legacy of Ludwig Boltzmann
    ENTROPY AND H THEOREM THE MATHEMATICAL LEGACY OF LUDWIG BOLTZMANN Cambridge/Newton Institute, 15 November 2010 C´edric Villani University of Lyon & Institut Henri Poincar´e(Paris) Cutting-edge physics at the end of nineteenth century Long-time behavior of a (dilute) classical gas Take many (say 1020) small hard balls, bouncing against each other, in a box Let the gas evolve according to Newton’s equations Prediction by Maxwell and Boltzmann The distribution function is asymptotically Gaussian v 2 f(t, x, v) a exp | | as t ≃ − 2T → ∞ Based on four major conceptual advances 1865-1875 Major modelling advance: Boltzmann equation • Major mathematical advance: the statistical entropy • Major physical advance: macroscopic irreversibility • Major PDE advance: qualitative functional study • Let us review these advances = journey around centennial scientific problems ⇒ The Boltzmann equation Models rarefied gases (Maxwell 1865, Boltzmann 1872) f(t, x, v) : density of particles in (x, v) space at time t f(t, x, v) dxdv = fraction of mass in dxdv The Boltzmann equation (without boundaries) Unknown = time-dependent distribution f(t, x, v): ∂f 3 ∂f + v = Q(f,f) = ∂t i ∂x Xi=1 i ′ ′ B(v v∗,σ) f(t, x, v )f(t, x, v∗) f(t, x, v)f(t, x, v∗) dv∗ dσ R3 2 − − Z v∗ ZS h i The Boltzmann equation (without boundaries) Unknown = time-dependent distribution f(t, x, v): ∂f 3 ∂f + v = Q(f,f) = ∂t i ∂x Xi=1 i ′ ′ B(v v∗,σ) f(t, x, v )f(t, x, v∗) f(t, x, v)f(t, x, v∗) dv∗ dσ R3 2 − − Z v∗ ZS h i The Boltzmann equation (without boundaries) Unknown = time-dependent distribution
    [Show full text]
  • A Molecular Modeler's Guide to Statistical Mechanics
    A Molecular Modeler’s Guide to Statistical Mechanics Course notes for BIOE575 Daniel A. Beard Department of Bioengineering University of Washington Box 3552255 [email protected] (206) 685 9891 April 11, 2001 Contents 1 Basic Principles and the Microcanonical Ensemble 2 1.1 Classical Laws of Motion . 2 1.2 Ensembles and Thermodynamics . 3 1.2.1 An Ensembles of Particles . 3 1.2.2 Microscopic Thermodynamics . 4 1.2.3 Formalism for Classical Systems . 7 1.3 Example Problem: Classical Ideal Gas . 8 1.4 Example Problem: Quantum Ideal Gas . 10 2 Canonical Ensemble and Equipartition 15 2.1 The Canonical Distribution . 15 2.1.1 A Derivation . 15 2.1.2 Another Derivation . 16 2.1.3 One More Derivation . 17 2.2 More Thermodynamics . 19 2.3 Formalism for Classical Systems . 20 2.4 Equipartition . 20 2.5 Example Problem: Harmonic Oscillators and Blackbody Radiation . 21 2.5.1 Classical Oscillator . 22 2.5.2 Quantum Oscillator . 22 2.5.3 Blackbody Radiation . 23 2.6 Example Application: Poisson-Boltzmann Theory . 24 2.7 Brief Introduction to the Grand Canonical Ensemble . 25 3 Brownian Motion, Fokker-Planck Equations, and the Fluctuation-Dissipation Theo- rem 27 3.1 One-Dimensional Langevin Equation and Fluctuation- Dissipation Theorem . 27 3.2 Fokker-Planck Equation . 29 3.3 Brownian Motion of Several Particles . 30 3.4 Fluctuation-Dissipation and Brownian Dynamics . 32 1 Chapter 1 Basic Principles and the Microcanonical Ensemble The first part of this course will consist of an introduction to the basic principles of statistical mechanics (or statistical physics) which is the set of theoretical techniques used to understand microscopic systems and how microscopic behavior is reflected on the macroscopic scale.
    [Show full text]
  • Entropy: from the Boltzmann Equation to the Maxwell Boltzmann Distribution
    Entropy: From the Boltzmann equation to the Maxwell Boltzmann distribution A formula to relate entropy to probability Often it is a lot more useful to think about entropy in terms of the probability with which different states are occupied. Lets see if we can describe entropy as a function of the probability distribution between different states. N! WN particles = n1!n2!....nt! stirling (N e)N N N W = = N particles n1 n2 nt n1 n2 nt (n1 e) (n2 e) ....(nt e) n1 n2 ...nt with N pi = ni 1 W = N particles n1 n2 nt p1 p2 ...pt takeln t lnWN particles = "#ni ln pi i=1 divide N particles t lnW1particle = "# pi ln pi i=1 times k t k lnW1particle = "k# pi ln pi = S1particle i=1 and t t S = "N k p ln p = "R p ln p NA A # i # i i i=1 i=1 ! Think about how this equation behaves for a moment. If any one of the states has a probability of occurring equal to 1, then the ln pi of that state is 0 and the probability of all the other states has to be 0 (the sum over all probabilities has to be 1). So the entropy of such a system is 0. This is exactly what we would have expected. In our coin flipping case there was only one way to be all heads and the W of that configuration was 1. Also, and this is not so obvious, the maximal entropy will result if all states are equally populated (if you want to see a mathematical proof of this check out Ken Dill’s book on page 85).
    [Show full text]
  • Boltzmann Equation II: Binary Collisions
    Physics 127b: Statistical Mechanics Boltzmann Equation II: Binary Collisions Binary collisions in a classical gas Scattering out Scattering in v'1 v'2 v 1 v 2 R v 2 v 1 v'2 v'1 Center of V' Mass Frame V θ θ b sc sc R V V' Figure 1: Binary collisions in a gas: top—lab frame; bottom—centre of mass frame Binary collisions in a gas are very similar, except that the scattering is off another molecule. An individual scattering process is, of course, simplest to describe in the center of mass frame in terms of the relative E velocity V =Ev1 −Ev2. However the center of mass frame is different for different collisions, so we must keep track of the results in the lab frame, and this makes the calculation rather intricate. I will indicate the main ideas here, and refer you to Reif or Landau and Lifshitz for precise discussions. Lets first set things up in the lab frame. Again we consider the pair of scattering in and scattering out processes that are space-time inverses, and so have identical cross sections. We can write abstractly for the scattering out from velocity vE1 due to collisions with molecules with all velocities vE2, which will clearly be proportional to the number f (vE1) of molecules at vE1 (which we write as f1—sorry, not the same notation as in the previous sections where f1 denoted the deviation of f from the equilibrium distribution!) and the 3 3 number f2d v2 ≡ f(vE2)d v2 in each velocity volume element, and then we must integrate over all possible vE0 vE0 outgoing velocities 1 and 2 ZZZ df (vE ) 1 =− w(vE0 , vE0 ;Ev , vE )f f d3v d3v0 d3v0 .
    [Show full text]
  • Boltzmann Equation
    Boltzmann Equation ● Velocity distribution functions of particles ● Derivation of Boltzmann Equation Ludwig Eduard Boltzmann (February 20, 1844 - September 5, 1906), an Austrian physicist famous for the invention of statistical mechanics. Born in Vienna, Austria-Hungary, he committed suicide in 1906 by hanging himself while on holiday in Duino near Trieste in Italy. Distribution Function (probability density function) Random variable y is distributed with the probability density function f(y) if for any interval [a b] the probability of a<y<b is equal to b P=∫ f ydy a f(y) is always non-negative ∫ f ydy=1 Velocity space Axes u,v,w in velocity space v dv have the same directions as dv axes x,y,z in physical du dw u space. Each molecule can be v represented in velocity space by the point defined by its velocity vector v with components (u,v,w) w Velocity distribution function Consider a sample of gas that is homogeneous in physical space and contains N identical molecules. Velocity distribution function is defined by d N =Nf vd ud v d w (1) where dN is the number of molecules in the sample with velocity components (ui,vi,wi) such that u<ui<u+du, v<vi<v+dv, w<wi<w+dw dv = dudvdw is a volume element in the velocity space. Consequently, dN is the number of molecules in velocity space element dv. Functional statement if often omitted, so f(v) is designated as f Phase space distribution function Macroscopic properties of the flow are functions of position and time, so the distribution function depends on position and time as well as velocity.
    [Show full text]
  • Nonlinear Electrostatics. the Poisson-Boltzmann Equation
    Nonlinear Electrostatics. The Poisson-Boltzmann Equation C. G. Gray* and P. J. Stiles# *Department of Physics, University of Guelph, Guelph, ON N1G2W1, Canada ([email protected]) #Department of Molecular Sciences, Macquarie University, NSW 2109, Australia ([email protected]) The description of a conducting medium in thermal equilibrium, such as an electrolyte solution or a plasma, involves nonlinear electrostatics, a subject rarely discussed in the standard electricity and magnetism textbooks. We consider in detail the case of the electrostatic double layer formed by an electrolyte solution near a uniformly charged wall, and we use mean-field or Poisson-Boltzmann (PB) theory to calculate the mean electrostatic potential and the mean ion concentrations, as functions of distance from the wall. PB theory is developed from the Gibbs variational principle for thermal equilibrium of minimizing the system free energy. We clarify the key issue of which free energy (Helmholtz, Gibbs, grand, …) should be used in the Gibbs principle; this turns out to depend not only on the specified conditions in the bulk electrolyte solution (e.g., fixed volume or fixed pressure), but also on the specified surface conditions, such as fixed surface charge or fixed surface potential. Despite its nonlinearity the PB equation for the mean electrostatic potential can be solved analytically for planar or wall geometry, and we present analytic solutions for both a full electrolyte, and for an ionic solution which contains only counterions, i.e. ions of sign opposite to that of the wall charge. This latter case has some novel features. We also use the free energy to discuss the inter-wall forces which arise when the two parallel charged walls are sufficiently close to permit their double layers to overlap.
    [Show full text]
  • Lecture 7: Boltzmann Distribution & Thermodynamics of Mixing
    Prof. Tibbitt Lecture 7 Networks & Gels Lecture 7: Boltzmann distribution & Thermodynamics of mixing Prof. Mark W. Tibbitt { ETH Z¨urich { 14 M¨arz2019 1 Suggested reading • Molecular Driving Forces { Dill and Bromberg: Chapters 10, 15 2 Boltzmann distribution Before continuing with the thermodynamics of polymer solutions, we will briefly discuss the Boltzmann distri- bution that we have used occassionally already in the course and will continue to assume a working knowledge of for future derivations. We introduced statistical mechanics earlier in the course, showing how a probabilistic view of systems can predict macroscale observable behavior from the structures of the atoms and molecules that compose them. At the core, we model probability distributions and relate them to thermodynamic equilibria. We discussed macrostates, microstates, ensembles, ergodicity, and the microcanonical ensemble and used these to predict the driving forces of systems as they move toward equilibrium or maximum entropy. In the beginning section of the course, we discussed ideal behavior meaning that we assumed there was no energetic contribution from interactions between atoms and molecules in our systems. In general, we are interested in modeling the behavior of real (non-ideal) systems that accounts for energetic interactions between species of the system. Here, we build on the introduction of statistical mechanics, as presented in Lecture 2, to consider how we can develop mathematical tools that account for these energetic interactions in real systems. The central result is the Boltzmann distribution, which provides probability distributions based on the underlying energy levels of the system. In this approach, we now want to consider simple models (often lattice models) that allow us to count microstates but also assign an energy Ei for each microstate.
    [Show full text]
  • Statistical Thermodynamics (Mechanics) Pressure of Ideal Gas
    1/16 [simolant -I0 -N100] 2/16 Statistical thermodynamics (mechanics) co05 Pressure of ideal gas from kinetic theory I co05 Molecule = mass point L Macroscopic quantities are a consequence ¨¨* N molecules of mass m in a cube of edge length L HY HH of averaged behavior of many particles HH Velocity of molecule = ~ , , 6 H = ( , ,y ,z) HH HH ¨¨* After reflection from the wall: , , y ¨ → − ¨ Next time it hits the wall after τ = 2L/, Force = change in momentum per unit time - Momentum P~ = m~ Change of momentum = ΔP = 2m, Averaged force by impacts of one molecule: 2 ΔP 2m, m, F, = = = τ 2L/, L → Pressure = force of all N molecules divided by the area N N 2 F, 1 m, p =1 = = 2 = 3 P L P L Kinetic energy of one molecule: 1 2 1 2 1 2 2 2 m ~ m = m(, + ,y + ,z) 2 | | ≡ 2 2 3/16 4/16 Pressure of ideal gas from kinetic theory II co05 Boltzmann constant co05 Kinetic energy = internal energy (monoatomic gas) 1 N 3 N 2 2 pV = nRT = NkBT Ekin = m = m, 2 1 2 1 X= X= N = nNA ⇒ N 2 1 m, 2 Ekin p = = 3 = P L 3 V R k 1.380649 10 23 JK 1 Or B = = − − NA × 2 ! pV = Ekin = nRT 3 Note: Summary: since May 20, 2019 it is defined: Temperature is a measure of the kinetic energy ( 0th Law) k 1.380649 10 23 JK 1, B = − − ∼ × 23 1 Pressure = averaged impacts of molecules NA = 6.02214076 10 mol , × − We needed the classical mechanics therefore, exactly: 1 1 R = 8.31446261815324 J mol K Ludwig Eduard Boltzmann (1844–1906) Once more: − − credit: scienceworld.wolfram.com/biography/Boltzmann.html N R 3n 3N 3 n = , kB = U Ekin = RT = kBT, CV,m = R NA NA ⇒ ≡ 2 2
    [Show full text]
  • Deterministic Numerical Schemes for the Boltzmann Equation
    Deterministic Numerical Schemes for the Boltzmann Equation by Akil Narayan and Andreas Klöckner <{anaray,kloeckner}@dam.brown.edu> Abstract This article describes methods for the deterministic simulation of the collisional Boltzmann equation. It presumes that the transport and collision parts of the equation are to be simulated separately in the time domain. Time stepping schemes to achieve the splitting as well as numerical methods for each part of the operator are reviewed, with an emphasis on clearly exposing the challenges posed by the equation as well as their resolution by various schemes. 1 Introduction The Boltzmann equation is an equation of statistical mechanics describing the evolution of a rarefied gas. In a fluid in continuum mechanics, all particles in a spatial volume element are approximated as • having the same velocity. In a rarefied gas in statistical mechanics, there is enough space that particles in one spatial volume • element may have different velocities. The equation itself is a nonlinear integro-differential equation which decribes the evolution of the density of particles in a monatomic rarefied gas. Let the density function be f( x, v, t) . The quantity f( x, v, t)dx dv represents the number of particles in the phase-space volume element dx dv at time t. Both x and 3 3 + v are three-dimensional independent variables, so the density function is a map f: R R R R 6 × × → 0 R 0, . The theory of kinetics and statistical mechanics gives rise to the laws which the density func- ∪ ∞ tion {f must} obey in the absence of external forces.
    [Show full text]
  • Boltzmann Equation 1
    Contents 5 The Boltzmann Equation 1 5.1 References . 1 5.2 Equilibrium, Nonequilibrium and Local Equilibrium . 2 5.3 Boltzmann Transport Theory . 4 5.3.1 Derivation of the Boltzmann equation . 4 5.3.2 Collisionless Boltzmann equation . 5 5.3.3 Collisional invariants . 7 5.3.4 Scattering processes . 7 5.3.5 Detailed balance . 9 5.3.6 Kinematics and cross section . 10 5.3.7 H-theorem . 11 5.4 Weakly Inhomogeneous Gas . 13 5.5 Relaxation Time Approximation . 15 5.5.1 Approximation of collision integral . 15 5.5.2 Computation of the scattering time . 15 5.5.3 Thermal conductivity . 16 5.5.4 Viscosity . 18 5.5.5 Oscillating external force . 20 5.5.6 Quick and Dirty Treatment of Transport . 21 5.5.7 Thermal diffusivity, kinematic viscosity, and Prandtl number . 22 5.6 Diffusion and the Lorentz model . 23 i ii CONTENTS 5.6.1 Failure of the relaxation time approximation . 23 5.6.2 Modified Boltzmann equation and its solution . 24 5.7 Linearized Boltzmann Equation . 26 5.7.1 Linearizing the collision integral . 26 5.7.2 Linear algebraic properties of L^ ............................. 27 5.7.3 Steady state solution to the linearized Boltzmann equation . 28 5.7.4 Variational approach . 29 5.8 The Equations of Hydrodynamics . 32 5.9 Nonequilibrium Quantum Transport . 33 5.9.1 Boltzmann equation for quantum systems . 33 5.9.2 The Heat Equation . 37 5.9.3 Calculation of Transport Coefficients . 38 5.9.4 Onsager Relations . 39 5.10 Appendix : Boltzmann Equation and Collisional Invariants .
    [Show full text]