Interactome of Ixr1, HMGB1 and HMGB2 Proteins in Relation to Their Cellular Functions

Total Page:16

File Type:pdf, Size:1020Kb

Interactome of Ixr1, HMGB1 and HMGB2 Proteins in Relation to Their Cellular Functions Interactome of Ixr1, HMGB1 and HMGB2 proteins in relation to their cellular functions Aida Inés Barreiro Alonso PhD Thesis 2017 Directors: Dra. Mª Esperanza Cerdán Villanueva and Dra. Mónica Lamas Maceiras Programa Oficial de Doutoramento en Bioloxía Celular e Molecular El presente trabajo, Interactome of Ixr1, HMGB1 and HMGB2 proteins in relation to their cellular functions, presentado por Doña Aida Inés Barreiro Alonso para aspirar al grado de doctor en Bioquímica, ha sido realizado bajo nuestra dirección en el Departamento de Biología, de la Universidad de A Coruña. Revisado el texto. Estamos conformes con su presentación para ser juzgado. A Coruña, 9 de noviembre de 2017 VºBº VºBº Dra. Mº Esperanza Cerdán Dra. Mónica Lamas Maceiras Villanueva Catedrática de Bioquímica y Profesora de Bioquímica y Biología Molecular Biología Molecular La autora de este trabajo ha disfrutado durante la realización de esta tesis de un contrato a cargo de proyecto por la Universidade da Coruña (julio de 2013‐noviembre de 2013), un contrato predoctoral asociado al plan I2C de la Xunta de Galicia para el año 2013 (1 diciembre 2013‐30 noviembre 2016). Parte del trabajo se realizó en el “Wellcome Trust Sanger Institute” (Hinxton, United Kingdom) entre septiembre de 2016 y Marzo de 2017 en el grupo “Proteomic Mass Spectrometry”. Esta estancia fue financiada por el programa de ayudas predoctorales para estancias Inditex‐UDC y por las ayudas para estancias pre y posdoctorales de investigación para personal de grupos de la agrupación estratégica CICA‐INIBIC. La realización de este trabajo ha sido posible gracias a la financiación obtenida de los proyectos del Instituto de Salud Carlos III con referencia PI14/01031 y de la Xunta de Galicia (Consolidación Grupos referencia Competitiva Contractos no. CN2012‐118 y ED431C 2016‐012), ambos cofinanciados por FEDER. El trabajo realizado durante la estancia de investigación en el Wellcome Trust Sanger Institute fue financiado por el Wellcome Trust (grant number WT098051). A mis padres “I’m not a genius but I’m a terrific package of experience” (Chinese Fortune cookie, Sanger Institute, Cambridge 2017) En primer lugar me gustaría dar las gracias a Mª Esperanza Cerdán Villanueva y Mónica Lamas Maceiras, mis dos directoras de Tesis sin las cuales hoy no estaría aquí. Gracias por darme la oportunidad de aprender lo que de verdad significa “investigar” y de haberme dado la oportunidad no sólo de llevar a cabo mi Tesis doctoral si no de conocer a gente increíble que ya forman parte de mi vida. Como no, agradecer también a todos los profesores del laboratorio de Bioquímica de la UDC, Mª Isabel González Siso, Esther Rodríguez Belmonte, Manuel Becerra Fernández, Marian Freire Picos y Ana Rodríguez Torres la ayuda que me han prestado estos años. Y ahora viene lo difícil, a mí siempre me ha gustado leer las dedicatorias de las tesis y en el laboratorio de bioquímica ya me habéis hecho caer la lagrimilla más de una vez, pero ya os adelanté que a mí esto no se me da tan bien…En primer lugar quiero daros un GRACIAS enorme a todos los que habéis formado parte del laboratorio de Bioquímica durante los años en los que he hecho la tesis, porque gracias a vosotros he disfrutado de esta etapa. Cuando un experimento no sale y no tienes ni idea de por qué no ha salido, lo mejor que te puede pasar es tener a amigos que además de apoyarte en todo momento te dan soluciones y fuerzas para seguir. Porque me acuerdo cuando seguía a Ángel nada más entrar en el laboratorio y curioseaba lo que hacía. Gracias Ángel por ser un super‐predecesor, por contestar mails, whattsapps y skypes, y ayudarme desde donde estés, porque eres un crack y aunque no te guste que te lo diga…”Eres mi Rafa”. Mi Mariu, mi Mari, y mi Olalla, las tres chicas del laboratorio de bioquímica del 2013, tendría mil cosas que deciros, he pasado muchísimos momentos con vosotras en el laboratorio pero los más importantes son los que he pasado fuera, porque hemos pasado bodas, un bebé (y otro que llegará pronto), clases descoordinadas de aerolatinos y spinning, paseos con helados, momentos de risas y momentos no tan alegres pero que te unen un montón. Agustín, te admiro, admiro como has sido capaz de mantener la calma durante tu tesis y como consigues tranquilizarme y razonar conmigo, gracias por ayudarme todo este tiempo. Marta, nuestra “adoptada” del INIBIC, nos tienes que visitar más porque nos tienes muy abandonados con lo que nos gusta que vengas… Desde hace un tiempo se nos unió nuestra última adquisición, Maria “peque”, el labo ya no sería el mismo sin tus aventuras‐desventuras y mil anécdotas. No me olvido de Ana, mi primera TFG, y mucho más que eso, me has demostrado que siempre hay que mirar adelante y seguir con fuerza. Y aunque ya te he mencionado antes Mónica, te vuelvo a incluir aquí, entre los del “Labo”, porque sin ti el labo no sería lo que es. Y por supuesto Juanjo, mi vecino incondicional de escritorio y de poyata y sobre todo un gran amigo, un enorme gracias por aguantarme y tener una santa paciencia conmigo todos estos años. Hay muchas personas que habéis formado parte de este etapa en el laboratorio de Bioquímica a los que también me gustaría daros las gracias como a Rosa, Kamila, Blanca, Martín, Maya, Kike, Isabel…y muchos más que seguramente me estoy dejando en el tintero. Me gustaría también agradecerle a la Dra. Ángela Figueroa la oportunidad de aprender nuevas técnicas durante los meses que me acogieron en su grupo del INIBIC. Y por supuesto este aprendizaje no habría sido posible sin la ayuda de Raquel, Olalla, Isa, Andrea y mucha más gente del INIBIC que me ayudaron durante el tiempo que estuve allí, ¡gracias por acogerme en el grupo! Durante la realización de la tesis llevé a cabo una estancia de 6 meses en el Mass Spectrometry group (Team 17) en el Wellcome Trust Sanger Institute, tengo que dar un enorme gracias a la Dra. Mercedes Pardo, porque sin ella esta estancia no habría sido posible, por hacer que me sintiese totalmente integrada en el grupo y por toda la ayuda que me dio, gracias por ayudarme esos meses y seguir ayudándonos ahora. Como la mayor parte de las personas del grupo no hablan español voy a cambiar de idioma… I would like to thank Dr. Jyoti Choudhary, Team 17 leader, for accepting me in her group and giving me support as if I was one of her team´s member, thank you for believing in my work and for all the help. I learn a lot during my stay in the Team 17, but It was not just lab work, my months in Cambrdige were an amazing experience during which I met amazing people: Junting, Charly, George, Sharna…It wouldn´t have been the same without you! I would also want to thank the other Team 17 members Chris, Lu, Theo, Hendrik and Olallo. Hay una persona que aunque no es de ninguno de los laboratorios en los que he estado ha tenido un papel importante durante todo este tiempo, Santi (mi Ferro). Durante la tesis no todos son momentos buenos, también hay enfados, frustración y desánimos, que son los más difíciles, gracias por estar conmigo en todos esos momentos y apoyarme todo este tiempo. Probablemente el gracias más grande que tengo que dar es a mis padres, porque si es cierto que Esperanza y Mónica me dieron la oportunidad de llevar a cabo mi tesis en este laboratorio, no habría llegado a este punto sin ellos, sin su apoyo. Gracias por permitirme estudiar lo que he querido y por el apoyo, no sólo durante la carrera si no en todo lo que he hecho después porque sin vosotros no estaría donde estoy hoy. ¡Muchas gracias! Como no puedo mencionar a todo el mundo que me gustaría en estos agradecimientos, voy a dar un GRACIAS general a todos aquellos que formáis parte de mi vida y que me habéis apoyado durante este tiempo. Contents Short Abstracts 19 Introduction 25 Objectives 33 Chapter 1 37 The HMGB protein Ixr1 interacts with other proteins involved in transcriptional regulation Chapter 2 71 Delineating the HMGB1 and HMGB2 interactome in prostate and ovary epithelial cells and its relationship with cancer Chapter 3 117 Novel HMGB1 and HMGB2 interacting partners in prostate and ovarian tumoral cells Chapter 4 161 Nuclear and cytoplasmic interactions of HMGB1 in prostate and ovarian tumoral cells identified by an Immunoprecipitation/MS approach Chapter 5 245 A proteomic approach to the role of HMGB1 in the response of PC‐3 and SKOV‐3 cells to cisplatin Concluding remarks 263 Appendix ‐ Resumen 269 Short Abstracts Short Abstracts ABSTRACT The Saccharomyces cerevisiae protein, Ixr1, and human HMGB1 and HMGB2 proteins belong to the HMGB protein family. The main objective of this work was to identify new proteins binding Ixr1, HMGB1 and HMGB2 in order to increase the knowledge about their cellular functions. In yeast Ixr1 has activator or repressor activity on transcription in different promoters and controls the hypoxic response. The transcriptional activator domain of Ixr1 has been identified in its NH2 term in this study. Interactome studies show that Ixr1 binds to Ssn8 and this interaction might mediate the repressor function of Ixr1 on several promoters. Other proteins identified share functions associated to glucose metabolism, stress, and ribosome biogenesis among others. Differential phosphorylation of Ixr1 was observed depending on oxygen availability. The HMGB1 and HMGB2 interactomes were studied using different techniques as yeast two‐hybrid assays and purification methods coupled with mass spectrometry.
Recommended publications
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid
    The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid Leukemia Cells Supported Only by Exogenous Cytokines Is Associated with a Patient Subset with Adverse Outcome Annette K. Brenner, Elise Aasebø, Maria Hernandez-Valladares, Frode Selheim, Frode Berven, Ida-Sofie Grønningsæter, Sushma Bartaula-Brevik and Øystein Bruserud Supplementary Material S2 of S31 Table S1. Detailed information about the 68 AML patients included in the study. # of blasts Viability Proliferation Cytokine Viable cells Change in ID Gender Age Etiology FAB Cytogenetics Mutations CD34 Colonies (109/L) (%) 48 h (cpm) secretion (106) 5 weeks phenotype 1 M 42 de novo 241 M2 normal Flt3 pos 31.0 3848 low 0.24 7 yes 2 M 82 MF 12.4 M2 t(9;22) wt pos 81.6 74,686 low 1.43 969 yes 3 F 49 CML/relapse 149 M2 complex n.d. pos 26.2 3472 low 0.08 n.d. no 4 M 33 de novo 62.0 M2 normal wt pos 67.5 6206 low 0.08 6.5 no 5 M 71 relapse 91.0 M4 normal NPM1 pos 63.5 21,331 low 0.17 n.d. yes 6 M 83 de novo 109 M1 n.d. wt pos 19.1 8764 low 1.65 693 no 7 F 77 MDS 26.4 M1 normal wt pos 89.4 53,799 high 3.43 2746 no 8 M 46 de novo 26.9 M1 normal NPM1 n.d. n.d. 3472 low 1.56 n.d. no 9 M 68 MF 50.8 M4 normal D835 pos 69.4 1640 low 0.08 n.d.
    [Show full text]
  • RNA Editing at Baseline and Following Endoplasmic Reticulum Stress
    RNA Editing at Baseline and Following Endoplasmic Reticulum Stress By Allison Leigh Richards A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Human Genetics) in The University of Michigan 2015 Doctoral Committee: Professor Vivian G. Cheung, Chair Assistant Professor Santhi K. Ganesh Professor David Ginsburg Professor Daniel J. Klionsky Dedication To my father, mother, and Matt without whom I would never have made it ii Acknowledgements Thank you first and foremost to my dissertation mentor, Dr. Vivian Cheung. I have learned so much from you over the past several years including presentation skills such as never sighing and never saying “as you can see…” You have taught me how to think outside the box and how to create and explain my story to others. I would not be where I am today without your help and guidance. Thank you to the members of my dissertation committee (Drs. Santhi Ganesh, David Ginsburg and Daniel Klionsky) for all of your advice and support. I would also like to thank the entire Human Genetics Program, and especially JoAnn Sekiguchi and Karen Grahl, for welcoming me to the University of Michigan and making my transition so much easier. Thank you to Michael Boehnke and the Genome Science Training Program for supporting my work. A very special thank you to all of the members of the Cheung lab, past and present. Thank you to Xiaorong Wang for all of your help from the bench to advice on my career. Thank you to Zhengwei Zhu who has helped me immensely throughout my thesis even through my panic.
    [Show full text]
  • Systems Genetics Identifies Hp1bp3 As a Novel Modulator of Cognitive
    Neurobiology of Aging 46 (2016) 58e67 Contents lists available at ScienceDirect Neurobiology of Aging journal homepage: www.elsevier.com/locate/neuaging Systems genetics identifies Hp1bp3 as a novel modulator of cognitive aging Sarah M. Neuner a, Benjamin P. Garfinkel b,c,1, Lynda A. Wilmott a,1, Bogna M. Ignatowska-Jankowska c, Ami Citri c, Joseph Orly b,LuLud, Rupert W. Overall e, Megan K. Mulligan d, Gerd Kempermann e,f, Robert W. Williams d, Kristen M.S. O’Connell g, Catherine C. Kaczorowski a,* a Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA b Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel c The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel d Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA e CRTDeCenter for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden 01307, Germany f German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden 01307, Germany g Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA article info abstract Article history: An individual’s genetic makeup plays an important role in determining susceptibility to cognitive aging. Received 30 March 2016 Identifying the specific genes that contribute to cognitive aging may aid in early diagnosis of at-risk Received in revised form 7 June 2016 patients, as well as identify novel therapeutics targets to treat or prevent development of symptoms. Accepted 11 June 2016 Challenges to identifying these specific genes in human studies include complex genetics, difficulty in Available online 17 June 2016 controlling environmental factors, and limited access to human brain tissue.
    [Show full text]
  • Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
    Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A.
    [Show full text]
  • Genomic Interaction Between ER and HMGB2 Identifies DDX18 As A
    Oncogene (2015) 34, 3871–3880 © 2015 Macmillan Publishers Limited All rights reserved 0950-9232/15 www.nature.com/onc ORIGINAL ARTICLE Genomic interaction between ER and HMGB2 identifies DDX18 as a novel driver of endocrine resistance in breast cancer cells AM Redmond1,2, C Byrne1, FT Bane1, GD Brown2, P Tibbitts1,KO’Brien1, ADK Hill1, JS Carroll2 and LS Young1 Breast cancer resistance to endocrine therapies such as tamoxifen and aromatase inhibitors is a significant clinical problem. Steroid receptor coactivator-1 (SRC-1), a coregulatory protein of the oestrogen receptor (ER), has previously been shown to have a significant role in the progression of breast cancer. The chromatin protein high mobility group box 2 (HMGB2) was identified as an SRC-1 interacting protein in the endocrine-resistant setting. We investigated the expression of HMGB2 in a cohort of 1068 breast cancer patients and found an association with increased disease-free survival time in patients treated with endocrine therapy. However, it was also verified that HMGB2 expression could be switched on in endocrine-resistant tumours from breast cancer patients. To explore the function of this poorly characterized protein, we performed HMGB2 ChIPseq and found distinct binding patterns between the two contexts. In the resistant setting, the HMGB2, SRC-1 and ER complex are enriched at promoter regions of target genes, with bioinformatic analysis indicating a switch in binding partners between the sensitive and resistant phenotypes. Integration of binding and gene expression data reveals a concise set of target genes of this complex including the RNA helicase DDX18. Modulation of DDX18 directly affects growth of tamoxifen-resistant cells, suggesting that it may be a critical downstream effector of the HMGB2:ER complex.
    [Show full text]
  • Temporal Proteomic Analysis of HIV Infection Reveals Remodelling of The
    1 1 Temporal proteomic analysis of HIV infection reveals 2 remodelling of the host phosphoproteome 3 by lentiviral Vif variants 4 5 Edward JD Greenwood 1,2,*, Nicholas J Matheson1,2,*, Kim Wals1, Dick JH van den Boomen1, 6 Robin Antrobus1, James C Williamson1, Paul J Lehner1,* 7 1. Cambridge Institute for Medical Research, Department of Medicine, University of 8 Cambridge, Cambridge, CB2 0XY, UK. 9 2. These authors contributed equally to this work. 10 *Correspondence: [email protected]; [email protected]; [email protected] 11 12 Abstract 13 Viruses manipulate host factors to enhance their replication and evade cellular restriction. 14 We used multiplex tandem mass tag (TMT)-based whole cell proteomics to perform a 15 comprehensive time course analysis of >6,500 viral and cellular proteins during HIV 16 infection. To enable specific functional predictions, we categorized cellular proteins regulated 17 by HIV according to their patterns of temporal expression. We focussed on proteins depleted 18 with similar kinetics to APOBEC3C, and found the viral accessory protein Vif to be 19 necessary and sufficient for CUL5-dependent proteasomal degradation of all members of the 20 B56 family of regulatory subunits of the key cellular phosphatase PP2A (PPP2R5A-E). 21 Quantitative phosphoproteomic analysis of HIV-infected cells confirmed Vif-dependent 22 hyperphosphorylation of >200 cellular proteins, particularly substrates of the aurora kinases. 23 The ability of Vif to target PPP2R5 subunits is found in primate and non-primate lentiviral 2 24 lineages, and remodeling of the cellular phosphoproteome is therefore a second ancient and 25 conserved Vif function.
    [Show full text]
  • Knockdown of Heterochromatin Protein 1 Binding Protein 3 Recapitulates Phenotypic, Cellular, and Molecular Features of Aging
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The Jackson Laboratory: The Mouseion at the JAXlibrary The Jackson Laboratory The Mouseion at the JAXlibrary Faculty Research 2019 Faculty Research 2-1-2019 Knockdown of heterochromatin protein 1 binding protein 3 recapitulates phenotypic, cellular, and molecular features of aging. Sarah M Neuner The Jackson Laboratory, [email protected] Shengyuan Ding Catherine C Kaczorowski The Jackson Laboratory, [email protected] Follow this and additional works at: https://mouseion.jax.org/stfb2019 Part of the Life Sciences Commons, and the Medicine and Health Sciences Commons Recommended Citation Neuner, Sarah M; Ding, Shengyuan; and Kaczorowski, Catherine C, "Knockdown of heterochromatin protein 1 binding protein 3 recapitulates phenotypic, cellular, and molecular features of aging." (2019). Faculty Research 2019. 32. https://mouseion.jax.org/stfb2019/32 This Article is brought to you for free and open access by the Faculty Research at The ousM eion at the JAXlibrary. It has been accepted for inclusion in Faculty Research 2019 by an authorized administrator of The ousM eion at the JAXlibrary. For more information, please contact [email protected]. Received: 28 August 2018 | Revised: 25 October 2018 | Accepted: 10 November 2018 DOI: 10.1111/acel.12886 ORIGINAL PAPER Knockdown of heterochromatin protein 1 binding protein 3 recapitulates phenotypic, cellular, and molecular features of aging Sarah M. Neuner1,2 | Shengyuan Ding1 | Catherine C. Kaczorowski1 1The Jackson Laboratory, Bar Harbor, Maine Abstract 2Neuroscience Institute, University of Identifying genetic factors that modify an individual's susceptibility to cognitive Tennessee Health Science Center, decline in aging is critical to understanding biological processes involved and miti- Memphis, Tennessee gating risk associated with a number of age‐related disorders.
    [Show full text]
  • Gene Ontology Functional Annotations and Pleiotropy
    Network based analysis of genetic disease associations Sarah Gilman Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2013 Sarah Gilman All Rights Reserved ABSTRACT Network based analysis of genetic disease associations Sarah Gilman Despite extensive efforts and many promising early findings, genome-wide association studies have explained only a small fraction of the genetic factors contributing to common human diseases. There are many theories about where this “missing heritability” might lie, but increasingly the prevailing view is that common variants, the target of GWAS, are not solely responsible for susceptibility to common diseases and a substantial portion of human disease risk will be found among rare variants. Relatively new, such variants have not been subject to purifying selection, and therefore may be particularly pertinent for neuropsychiatric disorders and other diseases with greatly reduced fecundity. Recently, several researchers have made great progress towards uncovering the genetics behind autism and schizophrenia. By sequencing families, they have found hundreds of de novo variants occurring only in affected individuals, both large structural copy number variants and single nucleotide variants. Despite studying large cohorts there has been little recurrence among the genes implicated suggesting that many hundreds of genes may underlie these complex phenotypes. The question
    [Show full text]
  • Structure and Expression Analyses of SVA Elements in Relation to Functional Genes
    pISSN 1598-866X eISSN 2234-0742 Genomics Inform 2013;11(3):142-148 G&I Genomics & Informatics http://dx.doi.org/10.5808/GI.2013.11.3.142 ORIGINAL ARTICLE Structure and Expression Analyses of SVA Elements in Relation to Functional Genes Yun-Jeong Kwon, Yuri Choi, Jungwoo Eo, Yu-Na Noh, Jeong-An Gim, Yi-Deun Jung, Ja-Rang Lee, Heui-Soo Kim* Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Korea SINE-VNTR-Alu (SVA) elements are present in hominoid primates and are divided into 6 subfamilies (SVA-A to SVA-F) and active in the human population. Using a bioinformatic tool, 22 SVA element-associated genes are identified in the human genome. In an analysis of genomic structure, SVA elements are detected in the 5′ untranslated region (UTR) of HGSNAT (SVA-B), MRGPRX3 (SVA-D), HYAL1 (SVA-F), TCHH (SVA-F), and ATXN2L (SVA-F) genes, while some elements are observed in the 3′UTR of SPICE1 (SVA-B), TDRKH (SVA-C), GOSR1 (SVA-D), BBS5 (SVA-D), NEK5 (SVA-D), ABHD2 (SVA-F), C1QTNF7 (SVA-F), ORC6L (SVA-F), TMEM69 (SVA-F), and CCDC137 (SVA-F) genes. They could contribute to exon extension or supplying poly A signals. LEPR (SVA-C), ALOX5 (SVA-D), PDS5B (SVA-D), and ABCA10 (SVA-F) genes also showed alternative transcripts by SVA exonization events. Dominant expression of HYAL1_SVA appeared in lung tissues, while HYAL1_noSVA showed ubiquitous expression in various human tissues. Expression of both transcripts (TDRKH_SVA and TDRKH_noSVA) of the TDRKH gene appeared to be ubiquitous.
    [Show full text]
  • Chapter 2 Gene Regulation and Speciation in House Mice
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Gene regulation and the genomic basis of speciation and adaptation in house mice (Mus musculus) Permalink https://escholarship.org/uc/item/8ck133qd Author Mack, Katya L Publication Date 2018 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Gene regulation and the genomic basis of speciation and adaptation in house mice (Mus musculus) By Katya L. Mack A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Michael W. Nachman, Chair Professor Rasmus Nielsen Professor Craig T. Miller Fall 2018 Abstract Gene regulation and the genomic basis of speciation and adaptation in house mice (Mus musculus) by Katya Mack Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Michael W. Nachman, Chair Gene expression is a molecular phenotype that is essential to organismal form and fitness. However, how gene regulation evolves over evolutionary time and contributes to phenotypic differences within and between species is still not well understood. In my dissertation, I examined the role of gene regulation in adaptation and speciation in house mice (Mus musculus). In chapter 1, I reviewed theoretical models and empirical data on the role of gene regulation in the origin of new species. I discuss how regulatory divergence between species can result in hybrid dysfunction and point to areas that could benefit from future research. In chapter 2, I characterized regulatory divergence between M.
    [Show full text]
  • Gene Regulation Underlies Environmental Adaptation in House Mice
    Downloaded from genome.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Research Gene regulation underlies environmental adaptation in house mice Katya L. Mack,1 Mallory A. Ballinger,1 Megan Phifer-Rixey,2 and Michael W. Nachman1 1Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California 94720, USA; 2Department of Biology, Monmouth University, West Long Branch, New Jersey 07764, USA Changes in cis-regulatory regions are thought to play a major role in the genetic basis of adaptation. However, few studies have linked cis-regulatory variation with adaptation in natural populations. Here, using a combination of exome and RNA- seq data, we performed expression quantitative trait locus (eQTL) mapping and allele-specific expression analyses to study the genetic architecture of regulatory variation in wild house mice (Mus musculus domesticus) using individuals from five pop- ulations collected along a latitudinal cline in eastern North America. Mice in this transect showed clinal patterns of variation in several traits, including body mass. Mice were larger in more northern latitudes, in accordance with Bergmann’s rule. We identified 17 genes where cis-eQTLs were clinal outliers and for which expression level was correlated with latitude. Among these clinal outliers, we identified two genes (Adam17 and Bcat2) with cis-eQTLs that were associated with adaptive body mass variation and for which expression is correlated with body mass both within and between populations. Finally, we per- formed a weighted gene co-expression network analysis (WGCNA) to identify expression modules associated with measures of body size variation in these mice.
    [Show full text]