Spaziali" Dell'inaf Nei Campi Della Fisica Del Sistema Solare, Dell'astrofisica E Della Cosmologia

Total Page:16

File Type:pdf, Size:1020Kb

Spaziali Number 24 Publication Year 2020 Acceptance in 2020-05-21T09:43:33Z OA@INAF Title Attività "spaziali" dell'INAF nei campi della Fisica del Sistema Solare, dell'Astrofisica e della Cosmologia Authors DELLA CECA, Roberto; SANTORO, MARCO; ARGAN, ANDREA; SPINELLA, LAURA Affiliation of first O.A. Brera author Handle http://hdl.handle.net/20.500.12386/25036 Attività “spaziali” dell’INAF nei campi della Fisica del Sistema Solare, dell’Astrofisica e della Cosmologia In copertina: Illustrazione artistica presa da https://science.jpl.nasa.gov/Astrophysics/index.cfm (Courtesy of NASA/JPL-Caltech). 2 Razionale del presente documento L’Italia può vantare una lunghissima tradizione in campo spaziale essendo stata, nel lontano 1964, la terza nazione a mettere in orbita, con proprio personale, un satellite nazionale dopo USA ed Unione Sovietica. Da allora la comunità internazionale ha segnato enormi progressi in tutti i campi del settore spaziale, dalle telecomunicazioni all’osservazione della Terra, dall’esplorazione robotica del Sistema Solare all’osservazione dell’Universo lontano. Il nostro Paese, grazie al contributo della nostra Agenzia Spaziale, degli Istituti di Ricerca e delle Università italiane, ha mantenuto e consolidato nel tempo la sua posizione di primissimo ordine nelle missioni scientifiche a livello Europeo e mondiale, spesso ricoprendo posizioni di leadership riconosciute a livello internazionale. Guardando al futuro, lo spazio si presenta come una frontiera quanto mai irrinunciabile per la nuova generazione di imprese scientifiche di punta nei campi della fisica del sistema solare, dell’astrofisica, della cosmologia e della fisica fondamentale. In questo ambito la comunità scientifica italiana è principalmente sostenuta dall’Agenzia Spaziale Italiana (ASI) e comprende diverse componenti, di cui l’Istituto Nazionale di Astrofisica (INAF) rappresenta il principale stakeholder (si veda http://www.inaf.it/it/brochure-2018-19/SPAZIO-singole-pagine-A5.pdf), con il contributo determinan- te di numerose Università e il coinvolgimento significativo dell’Istituto Nazionale di Fisica Nucleare (INFN) e del Consiglio Nazionale delle Ricerche (CNR). Le conseguenti ricadute sull’industria spaziale nazionale sono di grande impatto a medio e lungo termine per l’effetto “volano” legato alle tecnologie sempre più performanti richieste dai nuovi obiettivi scientifici (si veda il recente documento “Indirizzi del Governo in materia spaziale e aerospaziale”, reperibile al seguente link: http://presidenza.governo.it/AmministrazioneTrasparente/Organizzazione/ArticolazioneUffici/UfficiD irettaPresidente/UfficiDiretta_CONTE/COMINT/DEL_20190325_aerospazio.pdf Per “fotografare” la situazione attuale (una “fotografia” analoga fu fatta a fine 2016) delle attività/progetti “spaziali” dell’INAF nei campi della Fisica del Sistema Solare, dell’Astrofisica e della Cosmologia1 abbiamo chiesto ai responsabili scientifici INAF di accordi con l’ASI (o con l’ESA) o ad esperti del campo di compilare una scheda illustrativa delle attività/progetti di maggiore interesse, rispondendo in maniera succinta a 4 semplici domande: • Finalità, obiettivi scientifici, principali risultati raggiunti per le missioni in fase operativa/post- operativa, tempistica per le missioni in fase di studio e di realizzazione. • Principale/i contributo/i Italiano/i, alla missione/attività (e.g. hardware, software, etc..). Principale/i contributo/i INAF • Collaborazioni internazionali e posizione nazionale (e.g. leadership, partnership, etc..) • Coinvolgimento industriale italiano (se presente) Per brevità abbiamo considerato solo le missioni/attività in corso, in fase operativa, in fase post- operativa (recente) o al momento approvate da agenzie spaziali (nazionali o sovranazionali) per almeno uno studio di fase A. Per questo motivo non troverete in questa Appendice nessuna delle missioni proposte a seguito di Call internazionali (di cui non si sappia l’esito), missioni che non siano su un percorso ben definito e consolidato o missioni che non coinvolgano un numero adeguato di ricercatori 1 Alle attività descritte qui dovrebbero, a rigore, essere aggiunte quelle legate allo studio dallo Spazio dei raggi cosmici, della fisica fondamentale e delle onde gravitazionali (e.g. LISAPathfinder e LISA); queste attività sono al momento maggiormente sviluppate dai nostri colleghi dell’INFN, delle Università e del CNR. 3 italiani afferenti ad INAF. Le schede sono state elaborate da ricercatori diversi, ognuno con la propria sensibilità nel tracciare, discutere e sviluppare un particolare aspetto piuttosto di un altro; noi non abbiamo fatto nessun tentativo di uniformarle. In questa edizione abbiamo anche aggiunto, se disponibile, un link ipertestuale a Media INAF; i link sono in chiaro nel box di ogni scheda che riporta il nome del progetto/attività/missione. Il materiale riportato in questo documento (46 missioni spaziali, 21 programmi di ricerca e sviluppo e 6 attività di “supporto”) rappresenta uno spaccato, seppur succinto e magari non uniforme (tutto è perfettibile..) delle attività/progetti “spaziali” dell’INAF nei campi della Fisica del Sistema Solare, dell’Astrofisica e della Cosmologia. Ne viene fuori un quadro di notevole fermento e “leadership” consolidata a livello internazionale in tutti i campi sopra menzionati, posizione assolutamente da mantenere negli anni a venire. Ringraziamo tutti i colleghi che, con entusiasmo, si sono resi disponibili alla compilazione delle schede. E’ d’obbligo ringraziare l’ASI (ed i colleghi che ci lavorano) senza il cui supporto duraturo e continuo tutto questo non sarebbe stato possibile. Ci auguriamo che il materiale qui assemblato sia fruibile all’intera comunità astronomica. Maggio 2020 Roberto Della Ceca, Marco Santoro, Andrea Argan e Laura Spinella 4 INDICE v MISSIONI IN FASE OPERATIVA § Fisica del Sistema Solare BepiColombo ……...………………..………………………………………………..pg. 7 Cluster ………………………………………………………………………………..pg. 9 Exomars 2016 -TGO………………………………………………………………….pg. 10 Hayabusa2 …..…..……………………………………………………………………pg. 11 Juno …………………………………………………………………………………..pg. 13 Mars-Express ………………………………………………………………………...pg. 15 MRO (Mars Reconnaissance Orbiter) ………..…….………………………………..pg. 17 Osiris-REx (Origins,Spectral Interpr.,Resour. Identif.,Security-Regolith Explorer)..pg. 19 Solar Orbiter (Metis, SWA, STIX) ………………………..…………….…………...pg. 20 § Astrofisica e cosmologia Agile (Astrorivelatore Gamma ad Immagini Leggero) ……………..……………....pg. 22 Chandra X-ray Observatory………………………………………………………….pg. 24 Cheops (Characterising ExOPlanet Satellite)………………………………………..pg. 26 Fermi Observatory - LAT ……………………………………………………….….pg. 28 Gaia …………..…………………..……………………………………………..….pg. 29 HST (Hubble Space Telescope) ……………………….………………………...….pg. 31 Integral (INTErnational γ -Ray Astrophysics Laboratory) ………………………....pg. 33 Neil Gehrels Swift Observatory ….……………………………………………...….pg. 35 XMM-Newton X-ray Observatory …………..……….……………………………..pg. 37 § Fisica Fondamentale Sistema GNSS (Galileo for Science)………………………………………… ..….pg. 39 v MISSIONI IN FASE DI REALIZZAZIONE § Fisica del Sistema Solare ABCS (AstroBio-CubeSat)……..…………………………..……………………….pg. 40 CSES-02/Limadou-2 ……………..……...…………………………………...…….pg. 41 ExoMars 2022 ………………………………………………………………...…….pg. 43 Juice (JUpiter ICy moons Explorer) ……………………….……………………….pg. 45 LICIACube …………………………………………………………………….……pg. 47 Proba-3/ASPIICS ……………………………………………………………….….pg. 49 § Astrofisica e cosmologia Athena .………………………..………...……………………………………….….pg. 51 Euclid ………………………..……………………………………..……………….pg. 53 Hermes ……………………………………………………………………………....pg. 55 IXPE (Imaging X-ray Polarimeter Explorer) ………………………………………..pg. 56 JWST (James Webb Space Telescope) ……..……..………………………….…….pg. 58 LSPE/STRIP (Large Scale Polarization Explorer) ……………………………...….pg. 60 Plato (PLAnetary Transits and Oscillations of stars) ………………………….…….pg. 62 v MISSIONI IN FASE DI STUDIO § Fisica del Sistema Solare Comet Interceptor ……………..…………………………..………………………....pg. 64 Solar-C_EUVSAT …………..…………………………..……………………….... pg. 66 5 § Astrofisica e cosmologia Ariel (Atmospheric Remote-Sensing Infrared Exoplanet Large survey) ……..……..pg. 68 eXTP (enhanced X-ray Timing and Polarimetry) ………………………………….pg. 70 LiteBird ……………..…………………………..……………………….................pg. 72 SPICA (SPace Infrared Telescope for Cosmology and Astrophysics) ……………..pg. 74 Theseus (Transient High-Energy Sky and Early Universe Surveyor) ……………...pg. 76 v MISSIONI IN FASE POST-OPERATIVA § Fisica del Sistema Solare Cassini-Huygens .………………………………………………………………...…pg. 78 Dawn ……………………………………………………………………………..…pg. 80 Rosetta/Philae …………..…………………………….………………………….….pg. 81 Venus-Express …………………………..……………………………………….….pg. 83 § Astrofisica e cosmologia Herschel …………………...………………………………………………………..pg. 85 Planck ………………………..……………..…………………………………...….pg. 87 RadioAstron ……………..…………………………..…………………………......pg. 89 v ATTIVITA’ DI RICERCA E SVILUPPO ADAM (Advanced Detectors for x-ray Astronomy Missions )……………………...pg. 91 AREMBES (ATHENA Rad. Envir. Models and x-ray Backgr. Effects Simulator)..pg. 93 BEATRIX ……………………………………………………………………………pg. 95 Camera VNIR per la missione ASI-JPL nel TIR …………………………...………..pg. 97 CAM (Contamination Assessment Microbalance) .……………………………….....pg. 98 CAMLAB (Contamination Assessment Microbalance for LABoratory)…………….pg. 99 Christmas …………………………………………………………………………….pg. 100 COSMITO (Compres. Sampl. Multispec. Imaging camera for remoTe Observ. ) ….pg. 101 DORA (Deployable Optics for Remote sensing Applications)……………………...pg. 102 EXACRAD ……………………………………………………………………….…pg. 103 Fibre
Recommended publications
  • The Cubesat Mission to Study Solar Particles (Cusp) Walt Downing IEEE Life Senior Member Aerospace and Electronic Systems Society President (2020-2021)
    The CubeSat Mission to Study Solar Particles (CuSP) Walt Downing IEEE Life Senior Member Aerospace and Electronic Systems Society President (2020-2021) Acknowledgements – National Aeronautics and Space Administration (NASA) and CuSP Principal Investigator, Dr. Mihir Desai, Southwest Research Institute (SwRI) Feature Articles in SYSTEMS Magazine Three-part special series on Artemis I CubeSats - April 2019 (CuSP, IceCube, ArgoMoon, EQUULEUS/OMOTENASHI, & DSN) ▸ - September 2019 (CisLunar Explorers, OMOTENASHI & Iris Transponder) - March 2020 (BioSentinnel, Near-Earth Asteroid Scout, EQUULEUS, Lunar Flashlight, Lunar Polar Hydrogen Mapper, & Δ-Differential One-Way Range) Available in the AESS Resource Center https://resourcecenter.aess.ieee.org/ ▸Free for AESS members ▸ What are CubeSats? A class of small research spacecraft Built to standard dimensions (Units or “U”) ▸ - 1U = 10 cm x 10 cm x 11 cm (Roughly “cube-shaped”) ▸ - Modular: 1U, 2U, 3U, 6U or 12U in size - Weigh less than 1.33 kg per U NASA's CubeSats are dispensed from a deployer such as a Poly-Picosatellite Orbital Deployer (P-POD) ▸NASA’s CubeSat Launch initiative (CSLI) provides opportunities for small satellite payloads to fly on rockets ▸planned for upcoming launches. These CubeSats are flown as secondary payloads on previously planned missions. https://www.nasa.gov/directorates/heo/home/CubeSats_initiative What is CuSP? NASA Science Mission Directorate sponsored Heliospheric Science Mission selected in June 2015 to be launched on Artemis I. ▸ https://www.nasa.gov/feature/goddard/2016/heliophys ics-cubesat-to-launch-on-nasa-s-sls Support space weather research by determining proton radiation levels during solar energetic particle events and identifying suprathermal properties that could help ▸ predict geomagnetic storms.
    [Show full text]
  • Solar Sail Propulsion for Deep Space Exploration
    Solar Sail Propulsion for Deep Space Exploration Les Johnson NASA George C. Marshall Space Flight Center NASA Image We tend to think of space as being big and empty… NASA Image Space Is NOT Empty. We can use the environments of space to our advantage NASA Image Solar Sails Derive Propulsion By Reflecting Photons Solar sails use photon “pressure” or force on thin, lightweight, reflective sheets to produce thrust. 4 NASA Image Real Solar Sails Are Not “Ideal” Billowed Quadrant Diffuse Reflection 4 Thrust Vector Components 4 Solar Sail Trajectory Control Solar Radiation Pressure allows inward or outward Spiral Original orbit Sail Force Force Sail Shrinking orbit Expanding orbit Solar Sails Experience VERY Small Forces NASA Image 8 Solar Sail Missions Flown Image courtesy of Univ. Surrey NASA Image Image courtesy of JAXA Image courtesy of The Planetary Society NanoSail-D (2010) IKAROS (2010) LightSail-1 & 2 CanX-7 (2016) InflateSail (2017) NASA JAXA (2015/2019) Canada EU/Univ. of Surrey The Planetary Society Earth Orbit Interplanetary Earth Orbit Earth Orbit Deployment Only Full Flight Earth Orbit Deployment Only Deployment Only Deployment / Flight 3U CubeSat 315 kg Smallsat 3U CubeSat 3U CubeSat 10 m2 196 m2 3U CubeSat <10 m2 10 m2 32 m2 9 Planned Solar Sail Missions NASA Image NASA Image NASA Image Near Earth Asteroid Scout Advanced Composite Solar Solar Cruiser (2025) NASA (2021) NASA Sail System (TBD) NASA Interplanetary Interplanetary Earth Orbit Full Flight Full Flight Full Flight 100 kg spacecraft 6U CubeSat 12U CubeSat 1653 m2 86
    [Show full text]
  • Developing Technologies for Biological Experiments in Deep Space
    Developing technologies for biological experiments in deep space Sergio R. Santa Maria Elizabeth Hawkins Ada Kanapskyte NASA Ames Research Center [email protected] NASA’s life science programs STS-1 (1981) STS-135 (2011) 1973 – 1974 1981 - 2011 2000 – 2006 – Space Shuttle International Skylab Bio CubeSats Program Space Station Microgravity effects - Nausea / vomit - Disorientation & sleep loss - Body fluid redistribution - Muscle & bone loss - Cardiovascular deconditioning - Increase pathogenicity in microbes Interplanetary space radiation What type of radiation are we going to encounter beyond low Earth orbit (LEO)? Galactic Cosmic Rays (GCRs): - Interplanetary, continuous, modulated by the 11-year solar cycle - High-energy protons and highly charged, energetic heavy particles (Fe-56, C-12) - Not effectively shielded; can break up into lighter, more penetrating pieces Challenges: biology effects poorly understood (but most hazardous) Interplanetary space radiation Solar Particle Events (SPEs) - Interplanetary, sporadic, transient (several min to days) - High proton fluxes (low and medium energy) - Largest doses occur during maximum solar activity Challenges: unpredictable; large doses in a short time Space radiation effects Space radiation is the # 1 risk to astronaut health on extended space exploration missions beyond the Earth’s magnetosphere • Immune system suppression, learning and memory impairment have been observed in animal models exposed to mission-relevant doses (Kennedy et al. 2011; Britten et al. 2012) • Low doses of space radiation are causative of an increased incidence and early appearance of cataracts in astronauts (Cuccinota et al. 2001) • Cardiovascular disease mortality rate among Apollo lunar astronauts is 4-5-fold higher than in non-flight and LEO astronauts (Delp et al.
    [Show full text]
  • KPLO, ISECG, Et Al…
    NationalNational Aeronautics Aeronautics and Space and Administration Space Administration KPLO, ISECG, et al… Ben Bussey Chief Exploration Scientist Human Exploration & Operations Mission Directorate, NASA HQ 1 Strategic Knowledge Gaps • SKGs define information that is useful/mandatory for designing human spaceflight architecture • Perception is that SKGs HAVE to be closed before we can go to a destination, i.e. they represent Requirements • In reality, there is very little information that is a MUST HAVE before we go somewhere with humans. What SKGs do is buy down risk, allowing you to design simpler/cheaper systems. • There are three flavors of SKGs 1. Have to have – Requirements 2. Buys down risk – LM foot pads 3. Mission enhancing – Resources • Four sets of SKGs – Moon, Phobos & Deimos, Mars, NEOs www.nasa.gov/exploration/library/skg.html 2 EM-1 Secondary Payloads 13 CUBESATS SELECTED TO FLY ON INTERIM EM-1 CRYOGENIC PROPULSION • Lunar Flashlight STAGE • Near Earth Asteroid Scout • Bio Sentinel • LunaH-MAP • CuSPP • Lunar IceCube • LunIR • EQUULEUS (JAXA) • OMOTENASHI (JAXA) • ArgoMoon (ESA) • STMD Centennial Challenge Winners 3 3 3 Lunar Flashlight Overview Looking for surface ice deposits and identifying favorable locations for in-situ utilization in lunar south pole cold traps Measurement Approach: • Lasers in 4 different near-IR bands illuminate the lunar surface with a 3° beam (1 km spot). Orbit: • Light reflected off the lunar • Elliptical: 20-9,000 km surface enters the spectrometer to • Orbit Period: 12 hrs distinguish water
    [Show full text]
  • Space Cubesats: a Feasibility and Performance Analysis
    Delft University of Technology Towards the Use of Commercial-off-the-Shelf Small-Satellite Components for Deep- Space CubeSats: a Feasibility and Performance Analysis Casini, S.; Fodde, I.; Engelen, S.; Monna, Bert; Cervone, A.; Gill, E.K.A. Publication date 2020 Document Version Accepted author manuscript Published in SmallSat 2020 - 34th Small Satellite Conference Citation (APA) Casini, S., Fodde, I., Engelen, S., Monna, B., Cervone, A., & Gill, E. K. A. (2020). Towards the Use of Commercial-off-the-Shelf Small-Satellite Components for Deep-Space CubeSats: a Feasibility and Performance Analysis. In SmallSat 2020 - 34th Small Satellite Conference Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. [SSC20-WP1-02] Towards the Use of Commercial-off-the-Shelf Small-Satellite Components for Deep-Space CubeSats: a Feasibility and Performance Analysis Stefano Casini
    [Show full text]
  • Space Launch System Program March 1, 2018
    https://ntrs.nasa.gov/search.jsp?R=20180003498 2019-08-31T15:55:45+00:00Z National Aeronautics and Space Administration 5 . 4 . 3 .SPACE . 2 . 1 . LAUNCH SYSTEM CubeSats - To The Moon & Beyond Scott Spearing CubeSat Subject Matter Expert Space Launch System Program March 1, 2018 www.nasa.gov/sls www.nasa.gov/sls SLS BLOCK 1 EXPLORATION MISSION-1 (EM-1) Forward Ring Launch Abort System Secondary Payloads Electrical Panels Cabling Orion Avionics Box (2 places) Interim Cryogenic Propulsion Stage Launch Vehicle Stage Adapter OSA Diaphragm Core Stage Secondary Payload Brackets (13) Boosters Isogrid Barrel Panels Access Cover Aft Ring (2 places) Orion Stage Adapter (OSA) www.nasa.gov/sls 0418 EM-1 OSA SECONDARY PAYLOAD ACCOMMODATIONS Secondary Payload Avionics Box Cabling 6U CubeSat Payload 6U CubeSat Secondary Payload Dispenser Brackets (13) (PSC) Secondary Payload Mounting Bracket LEGEND: SLS Provided PD Provided www.nasa.gov/sls 0418 EM-1 SYSTEM DESCRIPTION AND PURPOSE Expand and fully utilize the SLS capabilities for exploration purposes without causing harm or inconvenience to SLS or its primary payload. • Thirteen (max capability 17) 6U payload locations • 6U volume/mass is the current standard OSA (14 kg payload mass) Diaphragm • Payloads will be “powered off” from turnover through Orion separation and ~Ø156” (13’) payload deployment • Payload Deployment System Avionics Unit; payload deployment will begin with pre-loaded OSA ~21° sequence following Orion separation and ~22° ICPS disposal burn • Payload requirements captured in Interface
    [Show full text]
  • Space Launch System
    National Aeronautics and Space Administration 5 . 4 . 3 . 2 . 1 . SPACE LAUNCH SYSTEM A NEW OPPORTUNITY FOR SMALLSATS David Hitt NASA Space Launch System May 2016 www.nasa.gov/sls SLS BLOCK 1 CONFIGURATION SLS Block 1 Overview Capability: >70 metric tons Height: 322 feet (98 meters) • Initial configuration of vehicle optimized for near-term heavy-lift Weight: 5.75 million pounds (2.6 million kg) capability Thrust: 8.8 million pounds • Completed Critical Design Review (39.1 million Newtons) in July 2015 Available: 2018 Utilization • Initial demonstration of Space Launch System and Orion capabilities • Supports launch of Orion into distant retrograde orbit around the moon www.nasa.gov/sls 0146 iCubeSat.2 EM-1 SECONDARY PAYLOAD CAPABILITY Accommodations • SLS for Exploration Mission-1 will include thirteen 6U payload locations • 6U volume/mass is the current standard (14 kg payload mass) EM-1 Trajectory • Orion will enter Distant Retrograde Orbit around the moon • Additional cislunar trajectories being studied for future missions www.nasa.gov/sls 0146 iCubeSat.3 ONE LAUNCH, MULTIPLE DISCIPLINES Moon • Lunar Flashlight (NASA) • Lunar IceCube (Morehead Earth State University) • EQUULEUS (JAXA) • LunaH-Map (Arizona State • Skyfire (Lockheed University) Martin) • Omotenashi (JAXA) Asteroid And Beyond • NEA Scout • Biosentinel (NASA) • ArgoMoon (ESA/ASI) • Three Centennial Sun Challenge Winners (TBD) • CuSP (Southwest Research Institute) www.nasa.gov/sls 0146 iCubeSat.4 NASA CENTENNIAL CHALLENGES Ground Tournaments • Four Rounds • Purposes: 1.
    [Show full text]
  • Smallsats Supporting Deep Space Human Exploration
    National Aeronautics and Space Administration SmallSats supporting Deep Space Human Exploration August 06, 2018 Andres Martinez, Program Executive, Advanced Exploration Systems, HEOMD, NASA HQ Background about me… 2 National Advisory Committee for Aeronautics 3 National Aeronautics and Space Administration 4 NASA 5 Small Spacecraft Technology Program 6 NASA’S DEEP SPACE EXPLORATION SYSTEM The Orion spacecraft and Space Launch System rocket, launching from a modernized Kennedy spaceport is foundational to extending human presence deeper into the solar system. 7 EM-1 Secondary Payloads 13 CUBESATS SELECTED TO FLY ON EM-1 INTERIM • Lunar Flashlight CRYOGENIC • Near Earth Asteroid Scout PROPULSION STAGE • Bio Sentinel • LunaH-MAP • CuSP • Lunar IceCube • LunIR • EQUULEUS (JAXA) • OMOTENASHI (JAXA) • ArgoMoon (ESA) • STMD Centennial Challenge Winners: CU-E3, CisLunar Explorers, & Team Miles HEOMD/AES Deep Space SmallSats: SLS EM-1 Secondary Payloads Lunar IceCube Lunar Flashlight NEA Scout LunIR AES SmallSat Missions selected to contribute to key Human Exploration Strategic Knowledge Gaps and to Advance Key Technologies BioSentinel 10 HEOMD/AES Deep Space SmallSats: Deep Space Station 17 (DSS-17) LRO Demonstrations: • Routinely Tracking LRO at S-band • Intermediate Frequency (IF) Systems and DSN Downlink Equipment (DCD, MarCO Demonstrations: DTT) Verified • Downlink Using X-Band Feed and DSN Equipment • LRO Telemetry Blocks Sent Directly • Downlink Using X-Band Feed and MarCO Receiver System Expands DSN capabilities by utilizing from DSS-17 to JPL DSOC over the • OMSPA Using X-Band Feed and Custom SDR-based NASA Mission Backbone- verifying Multiple Receiver System non-NASA assets to provide DSS-17 Signal Path communication and navigation services FirstFirst OMSPA OMSPA Demonstration Demonstration to small spacecraft missions to the withwith a a CubeSat CubeSat Moon and inner solar system.
    [Show full text]
  • Space Launch System
    National Aeronautics and Space Administration 5 . 4 . 3 . 2 . 1 . SPACE LAUNCH SYSTEM DEEP-SPACE DEPLOYMENT FOR SMALLSATS Andrew Schorr NASA Space Launch System May 2017 www.nasa.gov/sls SLS BLOCK 1 CONFIGURATION SLS Block 1 Overview Capability: >70 metric tons Height: 322 feet (98 meters) CubeSat • Initial configuration of vehicle Deployers optimized for near-term heavy-lift Weight: 5.75 million pounds (2.6 million kg) capability Thrust: 8.8 million pounds • Completed Critical Design Review (39.1 million Newtons) in July 2015 Available: 2019 Secondary Paylooads On Exploration Mission-1, SLS will include thirteen 6U payload locations of up to 14kg per CubeSat www.nasa.gov/sls 0146 iCubeSat.2 EM-1 CUBESAT BUS STOPS To Helio Bus Stops Distance (approx.) Flight Time (approx.) Approx. Temp. 1 26,700 km 3 Hrs. & 34 Min. 13°C (55°F) 2 64,500 km 7 Hrs. & 51 Min. -7°C (20°F) 3 192,300 km 3 Days, 6 Hrs. & 12 Min. -29°C (- 20°F) 5 4 384,500 km 6 Days, 11 Hrs. & 57 Min. -26°C (- 15°F) 5 411,900 km 7 Days, 0 Hrs. & 16 Min. -29°C (- 20°F) Estimate; depends on mission profile 4 3 2 1 Bus Stops Description 1 First opportunity for deployment, cleared 1st radiation belt 2 Clear both radiation belts plus ~ 1 hour Van Allen Belts 3 Half way to the moon 4 At the moon, closest proximity (~250 km from surface) 5 Past the moon plus ~12 hours (lunar gravitational assist) Note: All info based on a 6.5 day trip to the moon.
    [Show full text]
  • Argomoon: the Italian Excellence at One “Click” from the Moon
    ArgoMoon: the Italian excellence at one “click” from the Moon ArgoMoon, a nanosatellite for deep space, built by Argotec and coordinated by the Italian Space Agency, has been selected by NASA as a payload for the forthcoming Exploration Mission 1. Turin/Rome, February 2, 2016 – ArgoMoon will be the Italian nanosatellite to represent Europe in the forthcoming NASA Exploration Mission. In fact, the US space agency has described the first mission of the Space Launch System (SLS), which is expected at the end of 2018. The Exploration Mission 1 (EM-1) represents the second test flight of the Orion Multi-Purpose Crew Vehicle, a spacecraft currently being developed by NASA, that will be used in the human exploration of asteroids and cislunar spaces, in view of a future landings on Mars. Among the CubeSats, chosen by NASA for the deep space exploration, there is ArgoMoon, a nanosatellite that will be entirely designed and built by Argotec, the Italian engineering company that is specialized in research and development of aerospace systems. The Italian Space Agency (ASI) will coordinate the project ArgoMoon, the only one selected by NASA among those proposed in Europe, showing the status of excellence that Italy achieved in space research. In the great challenge of exploration, which is communal to all of the space agencies in the world – says Gabriele Mascetti, head of the Human Flight and Microgravity Unity at the Italian Space Agency – such as the journey of humankind to Mars, ASI continues to stay at the forefront, promoting and supporting the scientific and technological excellences of our country.
    [Show full text]
  • Nasa's Space Launch System: Deep
    https://ntrs.nasa.gov/search.jsp?R=20180005407 2020-02-21T02:27:56+00:00Z NASA’S SPACE LAUNCH SYSTEM: DEEP-SPACE OPPORTUNITIES FOR SMALLSATS 4S Symposium Kimberly Robinson, Ph.D. Payloads Manager Carole McLemore, Ph.D. Secondary Payloads Integration Manager Space Launch System Program May 29, 2018 0496 0496 NASA’S EXPLORATION PLANS 0496 SLS – ENABLING HUMAN EXPLORATION EXPLORATION CLASS: DEEP SPACE CAPABILITIES • Five times more volume than any contemporary heavy lift vehicle VOLUME Orion 8m fairing • Only vehicle that can carry the Orion and a co- with with large manifested payload to the Moon Science aperture Missions telescope • Block 1: Can launch 60% more mass than any contemporary launch vehicle MASS • Block 2: Mars-enabling capability of greater than Contemporary SLS Block 1 SLS Block 2 Heavy Lift Exploration Exploration 45 metric tons to Trans Lunar Injection Class Class • Reduce transit times by half or greater to the outer DEPARTURE solar system ENERGY 0496 SLS BLOCK 1 CONFIGURATION FOR EM-1 Launch Abort System (LAS) Crew Module (CM) Service Module (SM) Encapsulated Service Module (ESM) Panels Spacecraft Adapter Orion Stage Adapter Orion Spacecraft Lockheed Martin 5 Segment Solid Rocket Boosters (2) Orbital ATK Interim Cryogenic Propulsion Stage (ICPS) Boeing/United Launch Alliance Launch Vehicle Stage Adapter Teledyne Brown Engineering Core Stage & Avionics Boeing RS-25 Engines (4) Aerojet Rocketdyne 0496 SOLID ROCKET BOOSTERS 0496 ENGINES 0496 CORE STAGE 0496 IN-SPACE STAGE AND ADAPTERS 0496 EXPLORATION MISSION-1 FULL SYSTEMS
    [Show full text]
  • 제15권 제2호 2017년 12월 1일
    제15권 제2호 2017년 12월 1일 제15권 제2호 1. 틸트 항공기 개발의 역사적 교훈 및 고성능 수직이착륙 무인기 개발 방향 · ···························· 3 한국항공우주연구원, 항공연구본부, 비행체계연구팀 김재무 2. 위성보험 시장 특성 및 동향 분석 · ························································································ 11 한국항공우주연구원,·위성연구본부·정지궤도복합위성사업단 박응식, 이상률 한국항공우주연구원,·경영본부·인프라관리부 이원석, 조정남 3. 중국 발사장 기술 동향 ·········································································································· 21 한국항공우주연구원,·한국형발사체개발사업본부·발사대팀 강선일, 오화영 4. 러시아 로켓엔진산업 구조개편과 엔진개발 동향 · ································································· 31 한국항공우주연구원,·한국형발사체개발사업본부·발사체엔진팀 김철웅, 정은환 5. 2016년 세계 정부 우주개발의 국가별 . 분야별 동향 분석 · ·················································· 41 한국항공우주연구원,·미래전략본부·정책협력부·우주정책팀 이준, 정서영, 임창호, 임종빈, 박정호, 김은정, 신상우 6. 지상기지 현황 및 항우연/독일 지상기지 개발 · ····································································· 66 한국항공우주연구원, 국가위성정보활용지원센터 지상체계개발팀 정대원 1. 민간 무인기 운항안전을 위한 주요국의 UTM 개발 동향 ······················································· 78 한국항공우주연구원, 항공연구본부 항공기획팀 오경륜 한국항공우주연구원, 항공연구본부 비행체계팀 구삼옥 제15권 제2호 2. 재난치안용 멀티콥터 무인기 운용 개념-임무 시나리오를 중심으로 ·································· 84 한국항공우주연구원·항공연구본부·재난치안용무인기개발사업단 김근택, 박민순, 박상욱, 박상현 3. 헬리콥터 주로터 블레이드 동적밸런싱시험의 기술 동향 · ·················································· 97 한국항공우주연구원,·항공연구본부·항공기술연구단·회전익기연구팀 송근웅, 김덕관 4. 우주용 방사차폐 구조 국내 연구 동향 · ·············································································· 109 한국과학기술원,·인공위성연구센터 장태성 한국항공우주연구원,·위성연구본부,·위성사업개발팀 이주훈 5. 심우주 기후관측 위성(DSCOVR)의 특징 · ··········································································
    [Show full text]