Access to Essential Drugs in Poor Countries a Lost Battle?

Total Page:16

File Type:pdf, Size:1020Kb

Access to Essential Drugs in Poor Countries a Lost Battle? SPECIAL COMMUNICATION Access to Essential Drugs in Poor Countries A Lost Battle? Bernard Pe´coul, MD, MPH Drugs offer a simple, cost-effective solution to many health problems, pro- Pierre Chirac, PharmD vided they are available, affordable, and properly used. However, effective treatment is lacking in poor countries for many diseases, including African Patrice Trouiller, PharmD trypanosomiasis, Shigella dysentery, leishmaniasis, tuberculosis, and bac- Jacques Pinel, PharmD terial meningitis. Treatment may be precluded because no effective drug ex- ists, it is too expensive, or it has been withdrawn from the market. More- HE EFFECTIVENESS OF DRUGS DE- over, research and development in tropical diseases have come to a near pends on a long chain of fac- standstill. This article focuses on the problems of access to quality drugs for tors: research and develop- the treatment of diseases that predominantly affect the developing world: ment (R&D) of an appropriate (1) poor-quality and counterfeit drugs; (2) lack of availability of essential Tpharmaceutical agent, production, qual- drugs due to fluctuating production or prohibitive cost; (3) need to develop ity control, distribution, inventory con- field-based drug research to determine optimum utilization and remotivate trol, reliable information for health care research and development for new drugs for the developing world; and (4) professionals and the general public, di- potential consequences of recent World Trade Organization agreements on agnosis, prescription, financial accessi- the availability of old and new drugs. These problems are not independent bility, drug dispensing, observance, and and unrelated but are a result of the fundamental nature of the pharmaceu- pharmacovigilance. At each level, those tical market and the way it is regulated. involved may have conflicting interests, JAMA. 1999;281:361-367 www.jama.com and poor populations are the first to suf- fer the effects of frail links in this long due to fluctuating production or prohibi- THE PROBLEMS chain. Today, entire populations lack ac- tive cost; (3) need to develop field-based Examples of problems related to devel- cess to essential quality drugs, and the drug research to determine optimum opment and access to drugs and the mag- situation appears to be deteriorating, fur- utilization and remotivate R&D pro- nitude of the public health problems con- ther marginalizing much of the world’s grams for new drugs for the developing cerned are given in TABLE 1. population. world; and (4) potential consequences of Essential drugs are the foundation for the recent World Trade Organization Counterfeit and nearly every public health program aimed (WTO) agreements on the availability of Substandard Products at reducing morbidity and mortality in old and new drugs. For all these issues, Drug products must be produced ac- the developing world, and pharmaceu- practical recommendations to improve cording to good manufacturing prac- tical expenditure can account for a high the situation are proposed. tices.1 Unfortunately, many developing proportion of the total health expendi- The lack of access to essential drugs countries do not have the technical, fi- ture of a country. Important health pro- or vaccines because of economic rea- nancial, or human resources required for grams that rely on essential drugs in- sons raises new human rights issues in the application of such standards, and clude child survival programs, antenatal a world that remains divided among some developed countries may be less care, treatment of enteric and respira- wealthy countries, developing coun- strict when the product being manufac- tory pathogens, and control of tubercu- tries, and the rest of the world. Yet, tured is destined for exportation. To- losis and malaria. Other major public financial access to drugs does not nec- day, the quality of drugs and, therefore, health issues exist for which there is no essarily mean correct use. Continuous their effectiveness and safety are less and effective pharmaceutical treatment. training for health care professionals, This article focuses on 4 main issues dissemination of reliable pharmacologi- Author Affiliations: Fondation Me´ decins Sans Fron- associated with the inaccessibility of cal data, and improvement of the man- tie` res, Paris, France. drugs for populations in greatest need: agement of drugs are fundamental steps Corresponding Author and Reprints: Bernard Pe´ coul, MD, MPH, Me´ decins Sans Frontie` res, (1) poor-quality and counterfeit drugs; in improving the quality of care in the 8 rue St Sabin, 75011 Paris, France (e-mail: (2) lack of availability of essential drugs developing world. [email protected]). JAMA, January 27, 1999—Vol 281, No. 4 361 ACCESS TO ESSENTIAL DRUGS IN POOR COUNTRIES Table 1. 1996 Worldwide Accessibility to Drugs or Vaccines for 10 Diseases* Incidence (I) or Diseases† Deaths† Prevalence (P)† Drugs or Vaccines Type of Problem Acute lower respiratory tract 3.9 394 (I) Ceftriaxone sodium (for severe cases Available but limited use, prohibitive infections in hospital) price Anti-Haemophilus vaccine (Hib Available but limited use, prohibitive conjugates Haemophilus) price Antipneumococcal vaccine (group A Clinical development (phase 1 trial) streptococci) Tuberculosis 3.0 7.4 (I) Isoniazid, rifampicin, pyrazinamide, Poor compliance with therapy and ethambutol hydrochloride, outbreaks of drug-resistant strains streptomycin, thiacetazone (isoniazid, rifampicin) Sodium aminosalicylate, ethionamide, Production not secured, toxic effects of capreomycin sulfate drugs Rifapentine Available but limited use BCG vaccine Effectiveness disputed Diarrhea 2.5 4000 (I) Ciprofloxacin (shigellosis) Available but limited use, prohibitive price Antirotavirus vaccine Available but limited use, prohibitive price Anticholera vaccine (whole cell B) Available but limited use Anticholera vaccine (103Hgr) Available but limited use Antishigellosis vaccine Clinical development (phase 2, 3 trials) Malaria 2.0‡ 300-500 (I) Pyronaridine Clinical development (phase 3 trial) Artemisinin derivatives Available but production not secured for substandard products Coartemether Clinical development (phase 2, 3 trials) Atovaquone-proguanil Available but limited use Antimalaria vaccine (preerythrocytic) Clinical development (phase 2, 3 trials) Antimalaria vaccine (asexual erythrocytic Clinical development (phase 2 trial) stage) Preventable diseases (pertussis, 1.7 82 (I) Pertussis whole cell, measles, diphtheria, Substitution of classic formulations by measles, diphtheria, polio, oral polio, and tetanus vaccines new formulations, prohibitive price tetanus) (eg, acellular pertussis) Human immunodeficiency virus 1.5 3.1 (I), 22.6 (P) Antiretroviral drugs Available but limited use, prohibitive price Anti-HIV vaccines Clinical development (phase 1, 2 trials) Hepatitis B 1.2 200 (P) Hepatitis B recombinant vaccine Available but limited use Human African trypanosomiasis 0.15 0.2 (I), 0.3 (P) Suramin sodium Production not secured (no commercial interest) Pentamidine isethionate Production not secured (no commercial interest) Melarsoprol Production not secured (no commercial interest) Eflornithine hydrochloride No longer produced (no commercial interest) Leishmaniasis 0.08 2 (I) Meglumine antimoniate Production not secured (no commercial interest) Amphotericin B lipid complex Limited use Aminosidine Old drug (production stopped) Meningitis 0.04 0.4 (I) Ceftriaxone sodium Available but limited use, prohibitive price Oily chloramphenicol Available but production not secured for substandard products Antipneumococcal vaccine Clinical development (phase 2, 3 trials) Anti-Haemophilus vaccine (Hib) Available but limited use, prohibitive price Meningococcal A-C conjugates vaccine Clinical development (phase 2 trial) *For these diseases, there were a total of 16.07 million deaths of 52 million worldwide. One third (17.3 million) were due to infectious diseases (.90% in developing countries). †Data, in millions, are from the World Health Organization, World Health Statistics Annual, 1996.17 ‡Data indicated in World Health Statistics Annual as 1.8/2.2.17 362 JAMA, January 27, 1999—Vol 281, No. 4 ACCESS TO ESSENTIAL DRUGS IN POOR COUNTRIES less certain, especially for the poorest Poor quality may be accidental, with somiasis shows resistance to melarso- populations, who are attracted by lower- no intention to deceive, but oversights prol, and such resistance is becoming priced drugs sold outside pharmacies. in manufacturing or neglected controls more frequent (20% in Omungo, Recent years have seen an increase in can have tragic consequences. Such was Uganda).9 This drug was sold at an ex- the prevalence of counterfeit and sub- the case in recent decades with acetami- tremely high price and is now no longer standard drugs on the market. Counter- nophen syrups that contained, by mis- manufactured. Only through a joint ef- feit drugs are those that mimic authen- take, a lethal ingredient.4,5 fort of the World Health Organization tic drugs; substandard drugs are those (WHO), nongovernmental organiza- produced with little or no attention to Fluctuating Production tions involved in fieldwork, coopera- good manufacturing practices. of Essential Drugs tive bodies, and pharmaceutical compa- For example, during the meningitis epi- Drugs necessary for the treatment of cer- nies could this drug become available and demic in Niger in 1995 (41 000 cases re- tain tropical diseases have begun to dis- affordable again. ported), Niger authorities
Recommended publications
  • Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications
    International Journal of Molecular Sciences Review Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications Daniel Fernández-Villa 1, Maria Rosa Aguilar 1,2 and Luis Rojo 1,2,* 1 Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain; [email protected] (D.F.-V.); [email protected] (M.R.A.) 2 Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain * Correspondence: [email protected]; Tel.: +34-915-622-900 Received: 18 September 2019; Accepted: 7 October 2019; Published: 9 October 2019 Abstract: Bacterial, protozoan and other microbial infections share an accelerated metabolic rate. In order to ensure a proper functioning of cell replication and proteins and nucleic acids synthesis processes, folate metabolism rate is also increased in these cases. For this reason, folic acid antagonists have been used since their discovery to treat different kinds of microbial infections, taking advantage of this metabolic difference when compared with human cells. However, resistances to these compounds have emerged since then and only combined therapies are currently used in clinic. In addition, some of these compounds have been found to have an immunomodulatory behavior that allows clinicians using them as anti-inflammatory or immunosuppressive drugs. Therefore, the aim of this review is to provide an updated state-of-the-art on the use of antifolates as antibacterial and immunomodulating agents in the clinical setting, as well as to present their action mechanisms and currently investigated biomedical applications. Keywords: folic acid antagonists; antifolates; antibiotics; antibacterials; immunomodulation; sulfonamides; antimalarial 1.
    [Show full text]
  • Pyronaridine Was Effective and Well Tolerated in African Patients with Acute, Uncomplicated Falcipamm Malaria
    Evid Based Med: first published as 10.1136/ebm.1996.1.150 on 1 August 1996. Downloaded from Pyronaridine was effective and well tolerated in African patients with acute, uncomplicated falcipamm malaria RingwaldP, BickiiJ, Basco L. Random- symptoms of severe and complicated chloroquine) to have 1 additional treat- ised trial of pyronaridine versus malaria, recent self-medication, preg- ment success, 95% CI2 to 4; the rela- chloroquine for acute uncomplicated nancy, or mixed malaria infections. 81 tive risk improvement (RBI) was 71%, fakiparum malaria in Africa. Lancet. patients (84%) were included in the CI 36% to 128%.}* Pyronaridine led 1996 Jan 6;341:24~8. on-active-treatment analysis. to 100% parasite clearance by day 14 compared with 44% clearance in the intervention chloroquine group (? < 0.001) {ARI Objective 41 patients were allocated to 25 rag/kg 56%; NNT 2, CI 1 to 2; RRI128%, To compare the effectiveness of oral of chloroquine, and 40 patients were CI 69% to 231%}*. No significant dif- pyronaridine with chloroquine for allocated to 32 mg/kg of pyronari- ferences occurred in the fever- or para- acute, uncomplicated falciparum ma- dine; both treatments were given site-clearance times between patients laria in African adults. orally in divided doses for 3 days. Pa- with favourable responses in the pyro- Design tients were followed for 14 days on an naridine group and diose with favour- Randomised controlled trial with outpatient basis. able responses in the chloroquine 14-day follow-up. group. Mild gastrointestinal symptoms Main outcome measures were common with pyronaridine, but Treatment success at day 14 (defined Setting no serious adverse effects were noted.
    [Show full text]
  • Pyramax, See the Summary of Product Characteristics (Smpc)
    EMA/3102/2016 EMEA/H/W/002319 EPAR summary for the public Pyramax pyronaridine tetraphosphate / artesunate This is a summary of the European public assessment report (EPAR) for Pyramax. It explains how the Committee for Medicinal Products for Human Use (CHMP) assessed the medicine to reach its opinion on the medicine and its recommendations on the conditions of use for Pyramax. What is Pyramax? Pyramax is a medicine that contains the active substances pyronaridine tetraphosphate and artesunate. It is available as tablets (180 mg/60 mg) and as granules (60 mg/20 mg in each sachet). What is Pyramax used for? Pyramax is used to treat uncomplicated malaria, caused by two types of malaria parasites, Plasmodium falciparum and Plasmodium vivax. ‘Uncomplicated’ means the disease does not involve severe, life- threatening symptoms. Pyramax tablets are used for adults and children weighing 20 kg or more and the granules are used for babies and children weighing between 5 and 20 kg. The medicine can only be obtained with a prescription. How is Pyramax used? Pyramax is taken once a day for three days. The daily dose depends on the patient’s weight, and for tablets it ranges from one tablet a day for patients weighing between 20 and 24 kg to four tablets a day for patients over 65 kg. Pyramax granules suspended in water are used for babies and children weighing from 5 kg to under 20 kg. The dose ranges from one sachet a day for babies and children weighing between 5 and under 8 kg to three sachets a day for children weighing between 15 and under 20 kg.
    [Show full text]
  • A Comparative Study of Aminosidine Sulfate
    Iranian Journal of Pharmaceutical Research (2007), 6 (3): 209-215 Copyright © 2007 by School of Pharmacy Received: November 2005 Shaheed Beheshti University of Medical Sciences and Health Services Accepted: March 2006 Original Article A Comparative Study of Aminosidine Sulfate, Meglomine Antimoniate, Combination of both and Glucantime in Murine Leishmaniasis Treatment of Cutaneous Leishmaniasis, Caused by Leishmania tropica, with Topical Application of Paromomycin 20% in BALB-c Mice Mohammad Shahidi Dadras a*, Afshin Mirzaei b, Bahram Kazemi c, Leyla Nabai a and Ali Sharifian a aSkin Research Center, Shohada Hospital, Shaheed Beheshti University of Medical Sciences, Tehran, Iran. bFaculty of Medicine, Rafsanjan University of Medical Science, Rafsanjan, Iran. cCellular and Molecular Biology Research Center, Faculty of Medicine, Shaheed Beheshti University of Medical Sciences, Tehran, Iran. Abstract The current treatment of choice for cutaneous leishmaniasis is either parenteral or intralesional antimonial compounds. Each of these treatments has its own downfalls which include toxic side effects with the parentral injection and pain at the site of injection with the intralesional injection. In recent years, there has been more focus on Paromomycin as an alternative drug; however, current data arose many controversies. In this study, the efficacy of different therapeutic regimens including topical paromomycin 20%, topical gentamycin 0.5%, intralesional glucantime injections, topical paromomycin 20% combine with gentamycin 0.5%, and placebo were compared. The results showed that the topical application of paromomycin had better response, less recurrence. In conclusion, topical paromomycin 20% can be an appropriate substitute for intralesional injection of glucantime, but more studies are needed to support its efficacy in human cutaneous leishmaniasis.
    [Show full text]
  • Halfanâ Brand of Halofantrine Hydrochloride Tablets
    HL:L4 PRESCRIBING INFORMATION HALFANâ brand of halofantrine hydrochloride Tablets WARNING: HALFAN HAS BEEN SHOWN TO PROLONG QTc INTERVAL AT THE RECOMMENDED THERAPEUTIC DOSE. THERE HAVE BEEN RARE REPORTS OF SERIOUS VENTRICULAR DYSRHYTHMIAS SOMETIMES ASSOCIATED WITH DEATH, WHICH MAY BE SUDDEN. HALFAN IS THEREFORE NOT RECOMMENDED FOR USE IN COMBINATION WITH DRUGS OR CLINICAL CONDITIONS KNOWN TO PROLONG QTc INTERVAL, OR IN PATIENTS WHO HAVE PREVIOUSLY RECEIVED MEFLOQUINE, OR IN PATIENTS WITH KNOWN OR SUSPECTED VENTRICULAR DYSRHYTHMIAS, A-V CONDUCTION DISORDERS OR UNEXPLAINED SYNCOPAL ATTACKS. HALFAN SHOULD BE PRESCRIBED ONLY BY PHYSICIANS WHO HAVE SPECIAL COMPETENCE IN THE DIAGNOSIS AND TREATMENT OF MALARIA, AND WHO ARE EXPERIENCED IN THE USE OF ANTIMALARIAL DRUGS. PHYSICIANS SHOULD THOROUGHLY FAMILIARIZE THEMSELVES WITH THE COMPLETE CONTENTS OF THIS LEAFLET BEFORE PRESCRIBING HALFAN. DESCRIPTION Halfan (halofantrine hydrochloride) is an antimalarial drug available as tablets containing 250 mg of halofantrine hydrochloride (equivalent to 233 mg of the free base) for oral administration. The chemical name of halofantrine hydrochloride is 1,3-dichloro-a-[2-(dibutylamino) ethyl]- 6-(trifluoromethyl)-9-phenanthrene-methanol hydrochloride. The drug, a white to off-white crystalline compound, is practically insoluble in water. Halofantrine hydrochloride has a calculated molecular weight of 536.89. The empirical formula is C26H30Cl2F3NOHCl and the structural formula is 1 Inactive Ingredients Inactive ingredients are magnesium stearate, microcrystalline cellulose, povidone, pregelatinized starch, sodium starch glycolate and talc. CLINICAL PHARMACOLOGY The interindividual variability in the pharmacokinetic parameters of halofantrine is very wide and has led to great difficulty in precisely determining the pharmacokinetic characteristics of this product. Following administration of halofantrine hydrochloride tablets in single oral doses of 250 mg to 1000 mg to healthy volunteers, peak plasma levels were reached in 5 to 7 hours.
    [Show full text]
  • Pyramax, the Liver Function Tests Be Monitored If Possible, Until Normalisation
    ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS 1 1. NAME OF THE MEDICINAL PRODUCT Pyramax 180 mg/60 mg Film-coated tablet 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each Pyramax tablet contains 180 mg Pyronaridine tetraphosphate and 60 mg Artesunate. Excipients with known effect: each tablet contains 0.11 mg Sunset yellow FCF (E110) and 0.58 mg Tartrazine (E102). For a full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Film-coated tablet Round, biconvex, orange coloured tablet 4. CLINICAL PARTICULARS 4.1 Therapeutic indications Pyramax tablets are indicated in the treatment of acute, uncomplicated malaria infection caused by Plasmodium falciparum or by Plasmodium vivax in adults and children weighing 20 kg or more. Consideration should be given to official guidance on the appropriate use of antimalarial agents (see section 4.4) 4.2 Posology and method of administration Mode of administration The dose should be taken orally once a day for three days with or without food. Posology Dosage in adults and children Pyramax tablets should be taken orally as a single daily dose for three consecutive days. Body weight Number of tablets Regimen 20 - < 24 kg 1 tablet Daily for 3 days 24 - <45 kg 2 tablets Daily for 3 days 45 - < 65 kg 3 tablets Daily for 3 days ≥ 65 kg 4 tablets Daily for 3 days A granule formulation is available for children weighing between 5 kg to under 20 kg. In the event of vomiting within 30 minutes of administration after the first dose, a repeat dose should be given. If the repeat dose is vomited, the patient should be given an alternative antimalarial drug.
    [Show full text]
  • MEPRON® (Atovaquone) Suspension
    NDA 20-500/S-010 Page 3 PRESCRIBING INFORMATION MEPRON® (atovaquone) Suspension DESCRIPTION MEPRON (atovaquone) is an antiprotozoal agent. The chemical name of atovaquone is trans- 2-[4-(4-chlorophenyl)cyclohexyl]-3-hydroxy-1,4-naphthalenedione. Atovaquone is a yellow crystalline solid that is practically insoluble in water. It has a molecular weight of 366.84 and the molecular formula C22H19ClO3. The compound has the following structural formula: MEPRON Suspension is a formulation of micro-fine particles of atovaquone. The atovaquone particles, reduced in size to facilitate absorption, are significantly smaller than those in the previously marketed tablet formulation. MEPRON Suspension is for oral administration and is bright yellow with a citrus flavor. Each teaspoonful (5 mL) contains 750 mg of atovaquone and the inactive ingredients benzyl alcohol, flavor, poloxamer 188, purified water, saccharin sodium, and xanthan gum. MICROBIOLOGY Mechanism of Action: Atovaquone is a hydroxy-1,4-naphthoquinone, an analog of ubiquinone, with antipneumocystis activity. The mechanism of action against Pneumocystis carinii has not been fully elucidated. In Plasmodium species, the site of action appears to be the cytochrome bc1 complex (Complex III). Several metabolic enzymes are linked to the mitochondrial electron transport chain via ubiquinone. Inhibition of electron transport by atovaquone will result in indirect inhibition of these enzymes. The ultimate metabolic effects of such blockade may include inhibition of nucleic acid and ATP synthesis. Activity In Vitro: Several laboratories, using different in vitro methodologies, have shown the IC50 (50% inhibitory concentration) of atovaquone against rat P. carinii to be in the range of 0.1 to 3.0 mcg/mL.
    [Show full text]
  • Estonian Statistics on Medicines 2016 1/41
    Estonian Statistics on Medicines 2016 ATC code ATC group / Active substance (rout of admin.) Quantity sold Unit DDD Unit DDD/1000/ day A ALIMENTARY TRACT AND METABOLISM 167,8985 A01 STOMATOLOGICAL PREPARATIONS 0,0738 A01A STOMATOLOGICAL PREPARATIONS 0,0738 A01AB Antiinfectives and antiseptics for local oral treatment 0,0738 A01AB09 Miconazole (O) 7088 g 0,2 g 0,0738 A01AB12 Hexetidine (O) 1951200 ml A01AB81 Neomycin+ Benzocaine (dental) 30200 pieces A01AB82 Demeclocycline+ Triamcinolone (dental) 680 g A01AC Corticosteroids for local oral treatment A01AC81 Dexamethasone+ Thymol (dental) 3094 ml A01AD Other agents for local oral treatment A01AD80 Lidocaine+ Cetylpyridinium chloride (gingival) 227150 g A01AD81 Lidocaine+ Cetrimide (O) 30900 g A01AD82 Choline salicylate (O) 864720 pieces A01AD83 Lidocaine+ Chamomille extract (O) 370080 g A01AD90 Lidocaine+ Paraformaldehyde (dental) 405 g A02 DRUGS FOR ACID RELATED DISORDERS 47,1312 A02A ANTACIDS 1,0133 Combinations and complexes of aluminium, calcium and A02AD 1,0133 magnesium compounds A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 811120 pieces 10 pieces 0,1689 A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 3101974 ml 50 ml 0,1292 A02AD83 Calcium carbonate+ Magnesium carbonate (O) 3434232 pieces 10 pieces 0,7152 DRUGS FOR PEPTIC ULCER AND GASTRO- A02B 46,1179 OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 2,3855 A02BA02 Ranitidine (O) 340327,5 g 0,3 g 2,3624 A02BA02 Ranitidine (P) 3318,25 g 0,3 g 0,0230 A02BC Proton pump inhibitors 43,7324 A02BC01 Omeprazole
    [Show full text]
  • Pyronaridine-Artesunate Combination for the Treatment of Acute Uncomplicated Plasmodium Falciparum Malaria in Paediatric Patients in Gabon
    Aus der Medizinischen Universitätsklinik und Poliklinik (Department) Tübingen Abteilung Innere Medizin VII Tropenmedizin (Schwerpunkt: Institut für Tropenmedizin, Reisemedizin, Humanparasitologie) Ärztlicher Direktor: Professor Dr. P. G. Kremsner Pyronaridine-Artesunate combination for the treatment of acute uncomplicated Plasmodium falciparum malaria in paediatric patients in Gabon Inaugural-Dissertation zur Erlangung des Doktorgrades der Medizin der Medizinischen Fakultät der Eberhard-Karls-Universität zu Tübingen vorgelegt von Annette Christina Schreier aus Stuttgart 2010 Dekan: Professor Dr. I. B. Autenrieth 1. Berichterstatter: Professor Dr. P. G. Kremsner 2. Berichterstatter: Professor Dr. C. Gleiter Parts of this work have already been published: Ramharter M, Kurth F, Schreier AC, et al., 2008 Fixed-dose pyronaridine-artesunate combination for treatment of uncomplicated falciparum malaria in pediatric patients in Gabon J Infect Dis; 198(6):911-9 Table of contents Table of contents ABBREVIATIONS.............................................................................................. 1 1 INTRODUCTION ......................................................................................... 2 1.1 Malaria .......................................................................................... 2 1.1.1 Life cycle of Plasmodium sp................................................................................ 2 1.1.2 Symptoms of Plasmodium falciparum malaria.................................................... 3 1.1.3 Socio-economic
    [Show full text]
  • Atovaquone/Proguanil Hydrochloride 250 Mg/100 Mg Film-Coated Tablets Atovaquone/Proguanil Hydrochloride
    Package Leaflet: Information for the patient Atovaquone/Proguanil hydrochloride 250 mg/100 mg film-coated tablets atovaquone/proguanil hydrochloride Read all of this leaflet carefully before you start taking this medicine because it contains important information for you. - Keep this leaflet. You may need to read it again. - If you have any further questions, ask your doctor or pharmacist. - This medicine has been prescribed for you only. Do not pass it on to others. It may harm them, even if their signs of illness are the same as yours. - If you get any side effects, talk to your doctor or pharmacist. This includes any possible side effects not listed in this leaflet. See section 4. What is in this leaflet: 1. What Atovaquone/Proguanil hydrochloride is and what it is used for 2. What you need to know before you take Atovaquone/Proguanil hydrochloride 3. How to take Atovaquone/Proguanil hydrochloride 4. Possible side effects 5. How to store Atovaquone/Proguanil hydrochloride 6. Contents of the pack and other information 1. What Atovaquone/Proguanil hydrochloride is and what it is used for Atovaquone/Proguanil hydrochloride belongs to a group of medicines called antimalarials. It contains two active substances, atovaquone and proguanil hydrochloride. Atovaquone/Proguanil hydrochloride is used to: • Prevent malaria • Treat malaria Malaria is spread by the bite of an infected mosquito, which passes the malaria parasite (Plasmodium falciparum) into the bloodstream. Atovaquone/Proguanil hydrochloride prevents malaria by killing this parasite. For people who are already infected with malaria, Atovaquone/Proguanil hydrochloride also kills these parasites. Protecting yourself from catching malaria People of any age can get malaria.
    [Show full text]
  • National Essential Medicine List of Afghanistan
    islamic republic of afghanistan ministry of public health general directorate of pharmaceutical affairs avicenna pharmaceutical institute National Essential Medicine List of Afghanistan 2014 NATIONAL ESSENTIAL MEDICINES LIST OF AFGHANISTAN 3 Contents List of Contributors and Collaborators ................................................................4 National Medicine Selection Committee members ................................................4 Contributing MoPH departments and partner institutions ........................................ 5 Abbreviations and Acronyms ..........................................................................6 Introduction ...........................................................................................8 Short History ........................................................................................8 Objectives of the Update ............................................................................8 Transparent Review Process of EML ...............................................................9 Classifications of Medicines ........................................................................9 Procedures for the Inclusion of New Products ....................................................10 Computerization ...................................................................................10 Medicine Listings in the EML ..................................................................... 11 Detailed Instructions for Use of the EML ........................................................
    [Show full text]
  • Halofantrine and Primaquine for Radical Cure of Malaria in Irian Jaya, Indonesia D
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Public Health Resources Public Health Resources 1997 Halofantrine and primaquine for radical cure of malaria in Irian Jaya, Indonesia D. J. Fryauff U.S. NAMRU-2 (Jakarta), Box 3, APO AP 96520-8132, U.S.A. J. Kevin Baird U.S. NAMRU-2 (Jakarta), Box 3, APO AP 96520-8132, U.S.A., [email protected] H. Basri U.S. NAMRU-2 (Jakarta), Box 3, APO AP 96520-8132, U.S.A. I. Wiady U.S. NAMRU-2 (Jakarta), Box 3, APO AP 96520-8132, U.S.A. U.S. NAMRU-2 (Jakarta), Box 3, APO AP 96520-8132, U.S.A. See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/publichealthresources Fryauff, D. J.; Baird, J. Kevin; Basri, H.; Wiady, I.; U.S. NAMRU-2 (Jakarta), Box 3, APO AP 96520-8132, U.S.A.; Bangs, M. J.; Subianto, B.; Harjosuwarno, S.; Tjitra, E.; Richie, T. L.; and Hoffman, S. L., "Halofantrine and primaquine for radical cure of malaria in Irian Jaya, Indonesia" (1997). Public Health Resources. 376. http://digitalcommons.unl.edu/publichealthresources/376 This Article is brought to you for free and open access by the Public Health Resources at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Public Health Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors D. J. Fryauff; J. Kevin Baird; H. Basri; I. Wiady; U.S. NAMRU-2 (Jakarta), Box 3, APO AP 96520-8132, U.S.A.; M. J.
    [Show full text]