Quick viewing(Text Mode)

Chaotic Behaviour of Atomic Energy Levels

Chaotic Behaviour of Atomic Energy Levels

Chaotic Behaviour of Atomic Levels

A. YILMAZ a, G. HACIBEKIROGLU a, E.l BOLCAL a and Y. POLATOGLU b aDepartmentof,TCĐstanbulKulturUniversity,34156Đstanbul,Turkey bDepartmentofMathematicsandComputerScience,TCĐstanbulKulturUniversity,34156Đstanbul,Turkey Abstract: TheauthorsofthispaperstudiedSchrodingerequationtoinvestiagatethechaoticbehaviorofatomic energylevelsinrelationwiththreequantumnumbersn,l,mbymeansofderivedinequality.Itcouldgiverise tothesiplittingofatomicspectrallines. Keywords:Chaos,Schrödingerwaveequation,atomicenergylevels Introduction: Inanatomicspectrathatmeasureradiationabsorbedoremittedby"jumping"fromone"quantum state"toanother,aquantumstateisrepresentedbyvaluesof n,l,and m.Socalled"selectionrules"limitwhat "jumps"arepossible.Generallyajumpor"transition"isonlyallowedifallthesethreenumberschangeinthe process.Thisisbecauseatransitionwillbeabletocausetheemissionorabsorptionofelectromagneticradiation ifitinvolvesachangeinelectromagneticdipoleofthe.Ontheotherhand,closeexaminationrevealsthat someofthespectrallinesdisplaysplittingasthefollows,

• Socalledfinestructuresplitttingoccursbecauseofaninteractionbetweentheandandof theoutermost( spinorbitcoupling ). • Somecanhavemultipleelectronconfigurationswiththesameenergylevel,thusappearsas singleline.Theinteractionofthemagneticfieldwiththeatomshiftstheseelectronconfigurationsto slightlydifferent,resultinginmultiplespectrallines(Zeemaneffect ). • Thepresenceofanexternalelectricfieldcancauseacomparablesplittingandshiftingofspectrallines bythemodifyingtheelectronenergylevels(Starkeffect ).

Itwastheefforttoexplainthisradiationthatledtothefirstsuccessfulquantumtheoryofatomicstructure, developedbyNielsBohrin1913.Bohr’sonedimensionalmodelusedonequantumnumbertodescribethe distributionofelectronsintheatom.Theonlyinformationthatwasimportantwasthesizeoftheorbit,whichwas describedbythenquantumnumber.AlthoughtheBohrtheorydoesagoodjobofpredictingenergylevelsfor thehydrogenic( oneelectron )atom,andfailsevenfor,itpredictsnothingabouttransitionratesbetween levels. In 1916 the finestructure constant wasintroducedintophysicsbyArnoldSommerfeldasameasureofthe relativisticdeviationsinatomicspectrallinesfromthe predictions of theBohrmodel.Itappearsnaturallyin Sommerfeld'sanalysisanddeterminesthesizeofthesplittingorfinestructureofthehydrogenicspectrallines. HowevertheproofofSommerfeldisnoteffectiveinaalkali. Finestructuresplittingindicatesthatuptotwoelectronscanoccupiesasingleorbital.Hovewer,twoelectrons canneverhavethesameexactquantumnumbersaccordingtoHund’srule,whichaddressesthePauli’sexclusion principle. In1925thediscoveriesofGoudsmitandUhlenbecksuggestedthattheelectronitselfmighthaveanintrinsic angular momentum that was (somehow) half as large as the smallest allowable nonzero orbital angular momentumwhatwenowcall“ spin 1/2 “. In1926SchrödingerextendedthedeBroglieconceptofmattertothewavefunctionconcept,byproviding aformalmethodoftreatingthedynamicsofphysicalintermsofassociatedwaves.todescribequatum stateofasingleelectronboundtotheatomicnucleusbymeansofquantumnumberstothethreedimensional wavefunctionmodeloftheatom. Theprincipalquantumnumber(n),aroseinthesolutionoftheradialpartofthewaveequation,theazimuthal quantumnumber(l),aroseinthesolutionofthepolarpartofthewaveequation,andthemagneticquantum number(m)aroseinthesolutionoftheazimuthalpartofthewaveequation.Physicalmeaningofthequantum numberscanbeexplainedasthefollowings: Theprincipalquantumnumber( n)( n=1,2,3,4... )describesthesizeoftheorbital.Thesetsoforbitalswith thesamenvalueareoftenreferredtoaselectronshellsorenergylevels. Theangularquantumnumber( l)(l=0,1...n−1 )describestheshapeoftheorbitalandforanatomicorbital Thevariousorbitalsrelatingtodifferentvaluesof laresometimescalledsubshells.

Themagneticquantumnumber( m),.(ml=−l,−l+1...0...l−1,l)representsthenumberofpossiblevaluesfor availableenergylevelsofasubshelll.Itdeterminestheenergyshiftofanatomicorbitalduetoanexternal magneticfield,hencethenamemagneticquantumnumber(Zeemaneffect).

Thespinquantumnumber(s)( ms=−1/2or+1/2 ),theintrinsicangularmomentumoftheelectrontoexplain the existence of two electronsinthesameorbital.Itdeterminesspinorbitcouplingeffecttoresultinfine structuresplitting.[1][2] Allthesefourquantumnumbersquantumnumbers n,l,m,and sspecifythecompleteanduniquequantumstate ofasingleelectroninanatomcalleditswavefunctionororbital.

Inthenextsection,alternatively,weproposedthatthechaoticbehavioroftheSchördingerwavefunctionrelated totheelectroninanatomwoulddeformthestructureofenergylevelsfromsinglelinetomultiplelines.Inturn thiswouldexplainthesplittingorshiftingofatomicspectrallinesinrelationwiththreequantumnumbersn,l,m throughthederivedinequality.

Calculations: Togetthenessaryconditionforthechaoticbehaviorofenergylevelsofanatomsweutilizetheradial

m M 2 Schrödingerequationofaofareducedmass µ = movingatthepotential V (r)= − Ze / r in m + M threedimensionalspaceis

d  dR  2µ 2r 2  Ze 2 (ll +1)h 2  2 + + − = (1.1) r  2 E 2 2  0 dr  dr  h  r 2µ r  Thepotential V (r) isattractive (V ≤ )0 ,thenonlytheexistenceoflinkedstatesarepossiblewhen

( E < )0 .Forthisreason,inthispaperwewillstudy(investigate)theconnectedstates.If ρ isavariableand

λ isenergyparameter,then ρ = ar Ze 2 µ (1.2) λ = − , a 2 = −8µE / h 2 , E < 0 h 2E byusingthetransformationsisdefinedbytheequation(1.2),thedifferentialequation(1.1)isdimensionlessthen itcanbedefinedas   d ρ 2 dR + λρ + 1 ρ 2 − ()−  = (1.3)    ll 1  R 0 dρ  dρ   4  Otherwise(bytheway),theasymptoticbehaviaouroftheradialfunctionisthefollowingform for small ρ values , lim R(r) ≅ r l (1.4) r → 0 d dR 1 for big ρ values , ()ρ → ∞ (ρ 2 ) − ρ 2 R ≅ 0 dρ dρ 4 r → 0 thegeneralsolutionofdifferentialequation(1.4)is

−ρ / 2 ρ / 2 R(ρ )= A.e + B.e (1.5)

Whenthesolutionfunctionisdivergentatinfinity,then B mustbeequaltozero.Ifweconsiderthisasymptotic behaviours,forthewaveequation R(ρ )wetakethefollowingsolutionsintoaccountas

l −ρ / 2 R(ρ )= ρ e L(p) (1.6)

byusingtheequation(1.6)intheradialdifferentialequation(1.3),weobtainthefollowingdifferentialequation d 2 R dL ρ + ()2l + 2 − ρ + ()λ −l −1 L = 0 (1.7) dρ 2 dρ

Ifweuseseriesmethodtosolvethedifferentialequation(1.7),forthesolutionwecandefineafollowing divergentseries ∞ ()ρ = + ρ + ρ 2 + ρ 3 + = ρ k L a0 a1 a2 a3 ... ∑ck (1.8) k =0 and

dL = + ρ + = ()+ ρ k ρ dL = ρ + ρ 2 + = ρ k a1 2a2 ... ∑ k 1 ak+1 , a1 2a2 ... ∑k ak dρ k dρ k (1.9) d 2 L d 2 L = 2.1 a + 3.2 a ρ +... = ()()k +1 k + 2 a ρ k , ρ = 2.1 a ρ + 3.2 a ρ 2 +... ρ 2 2 3 ∑ k +1 ρ 2 2 3 d k d = ()+ ρ k ∑k k 1 ak +1 k Towritetheequation(1.9)inthedifferentialequation(1.3),wecanfind k [ ( + ) ( + ) + − + (λ − − ) ] ρ = (1.10) ∑ k k 1 ak +1 2l 2 (k )1 ak +1 ka k l 1 ak 0

Fromtheequation(1.10),therecurrancyrelationis k + l +1− λ a + = a (1.11) k 1 (k +1 )(k + 2l + 2 ) k andgivenbytheequation(1.8)thatwetakeD’alembertcriteriafortheconvergencyofthesolutionwherethe coefficientsprovidestherecurrancyrelation

C + k 1 lim k 1 → = 2 (1.12) Ck k k k → ∞ thenfromtheequation(1.12)

2 k ρ ρ ρ e =1 + ρ + + ... = ∑ 2 ! k k ! bythisseriesexpansionwecanobtain

a + k ! 1 1 lim k 1 = = ≅ ()+ + a k k 1 ! k 1 k k → ∞ ρ Thisshowsus,oursolutionfunctionbehaveslike( e )seriesexpansion.Sofortheinfinityterms,theseries ρ solution( ρ → ∞ )situatedfor L(ρ)isdivergentlike( e ).Itisconnectedtothis,thewaveequation R(ρ )

ρ ρ ρ l − l − l R()ρ = ρ e 2 L()ρ = ρ e 2 ≅ ρ e 2

willbedivergent.Weremovetheconditionsoftobedivergent,forthesolutionfunctionhasafinitetermswhich meansitispolinomial.Consequentlyintherecursionrelation(1.11),thenumeratorhasbeenzeroafterbythe = definite( kmax )index.Thismeansforagiven l, forsome k kmax ,thefact = ( ) + + = n kmax l 1 and kmax 2,1,0 ,... (1.13) = − − takeseveryvalueontheequation(1.13),theorbitalquantumnumber l n 1 kmax justtaken

l = n − ,1 n − ,2 ..., 0,1,2 valuesoritmustbe l ≤ n −1.Whenweusetheequationbounding nparameterto theenergy Ze 2 µ n = − (1.14) h 2E theatomicenergylevelsareobtained,theseare ( α )2 1 2 Z E = − µ c (n= 3,2,1 ,.... ) (1.15) n 2 n 2 Ifweset λ = n ,thentherecursionrelation(1.11)aftersomecalculationsis

k+1 n − (k + l +1) n − (k + l) n − (l +1) a + = ()−1 ⋅ ⋅⋅⋅ a (1.16) k 1 (k +1 )(k + 2l + 2 ) k ()k + 2l +1 1⋅ ()2l + 2 0

andusingthepowerseriesexpansionfor(1.8),weobservethatthisequationiscalledasassociatedLaguerre polynomials[3] (ρ )= 2l +1 (ρ) H Ln−l−1 (1.17) Therefore,thesolutionof(1.17)isgivenas

−ρ ()ρ = ρ l 2 2l +1 ()ρ Rnl N nl e Ln+l (1.18) Thisradialwavefunctionsolutionwhatwelookforradialprovidingarelationbetweentheorbitalandangular quantumnumbers. Uptonow,theanswerofthefollowingquestionwasnotgiven,“Whatkindofrelationbetweenthequantum numberswilldefineachaoticbehaviourofanenergylevels?“. ReferringtothepaperbyG.Hacibekiroğlu,M.ÇağlarandY.Polatoğlu[4]andusingtherecursionrelation(1.16), thenecessaryconditiontobehavechaoticallycanbeexpressedas 2(n − l −1) + 4 a 2 − a a 〉 0 where a ≠ 0 ,and 2 2()n − l −1 + 3 1 3 1 = = a1 ck cn−l −1 = = =()()()− −1 − − + a2 ck −1 cn−l−2 1 n l 1 n l cn−l−1 − ()− 2 2 a =c − =c − − = [](n − l −1 )(n +1 ) [](n − l − 2 )(n + l −1 ) c − − 3 k 2 n l 3 2 n l 1 Aftersomearrangments,wefoundthatforagivenangularmomentumquantumnumberl,whichispermittedto takethevaluesonlyupto n − 3 ,achaoticbehaviorachieveswhenevertheprinciplequantumnumberprovides theconditionwrittenbelow:

<  − 2 (l + )(− ) n l 2 1 yi 1 (1.19)  3  where   1 −1 κ  = cosh  cosh  for l 0 =   3  yi   1 −  − cosh  cosh 1 κ  for l = ,3,2,1 L,n − 3   3  [5]and l − κ = − 27  + ⋅  1   1 27    2   2l +1

Accordingly,thechaoticbehaviorofenergylevels Encanbedeteminedbymeansofthefollowinginequality:

2 −2 2  1 2   2  > ()α µ − (l + )(− ) En Z  c  l 2 1 yi 1   2   3  Asseenin(1.15)thecontributionfromSchrödingerwaveequationto finestructurespliting ofhydrogenatomto

2 order α .SincethenonrelativistickineticeneryinHamiltonianisusedthere.However,theexpansionof

4 relativistickineticenergywillcontributetoorder α .Also,theelectronnotonlyhasorbitalangularmomentumL, intrinsicangularmomentumS,socalledspin.Therefore,theenergycorrectionfortheSchrödinger’sequationby combingthespinorbitcouplingeffectkineticenergycorrectionweneed. Conclusion:

4 Ifonewishestoquotetheenergysplittingsofthehydrogenatomaccuratetoorder α ,thecompleteenergy

4 correctionforfinestructuretoorder (Zα ) isalsotobeconsidered:     ∆ = ∆ + ∆ = −()α 4 µ 2 1  1 − 3  E fs Erel Eso Z c 2n  + 1  4n  j    2   Onecannoticethattheenergycorrection,whichiscalled thefinesturctureofthehydrogenatom,dependsonly

2 onthespinquantumnumber j,duetobeingoforder α ~10 4timessmallerthantheprincipleenergysplittings. Thiswhy α isknownasthe finesturctureconstant . Previously,thetheoryofDiractheorymodifiedtheSchrödingerEquationforrelativisticlimit.Ontheotherhandour studyanattempttoinvestigatetheSchrödingerequationatthechaoticlimit.Toconcludewederivethenecessary conditionforthechaoticbehaviorasanalternativeexplainationsomekindofforthesplittingorshiftingofatomic spectrallines.

References: 1 Eisberg,R.M.,andResnick,R.Quantumphysicsofatoms,molecules,,nuclei,andparticles,John Wiley&Sons,Inc.,NewYork,secondedition,1985. 2 Feynman,R.P.,Leighton,R.B.,andSands,M.,TheFeynmanLecturesonPhysics,AddisonWesley, Massachusetts,1965. 3 Gasiorowicz,S.,QuantumPhysics,JohnWiley&Sons,Inc.,NewYork,1974 4 G.Hacibekiroğlu,M.ÇağlarandY.Polatoğlu“TheHigherOrderSchwarzianDerivative:ItsApplicationsfor ChaoticBehaviorandNewInvariantSufficientConditionofChaos”,doi:10.1016/j.nonrwa.2008.01.004 5 Borwein,P.andErdelyi,T.,CubicEquationsinPolynomialsandPolynomialInequalities,SpringerVerlag, NewYork,1995