Pem Guide – Childhood Fractures
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transolecranon Distal Humerus Fractures: a Mini Review
Patel SS, Gatta J, Lee A, Bafus BT. Transolecranon Distal Humerus Fractures: A Mini Review. J Orthopedics & Orthopedic Surg. 2021;2(1):7-12 Mini Review Open Access Transolecranon Distal Humerus Fractures: A Mini Review Shaan S. Patel*, Julian Gatta, Adrienne Lee, Blaine T. Bafus Department of Orthopaedic Surgery, MetroHealth Medical Center, Cleveland, OH, USA Article Info Abstract Article Notes Background: Transolecranon distal humerus fractures are uncommon Received: March 13, 2021 injuries. The purpose of this study is to review the outcomes and complications Accepted: April 22, 2021 associated with transolecranon distal humerus fractures. *Correspondence: Material and Methods: We performed a systematic search of PubMed *Dr. Shaan S. Patel, Department of Orthopaedic Surgery, for articles published between 1990 and 2021. Included studies reported MetroHealth Medical Center, Cleveland, OH, USA; Telephone No: (205) 495-0460; Email: [email protected]. outcomes and complications of transolecranon distal humerus fractures. Data was extracted from the included studies to describe patient demographics, ©2021 Patel SS. This article is distributed under the terms of the injury characteristics, outcome measurements, and complications. Creative Commons Attribution 4.0 International License. Results: A total of 4 studies met inclusion criteria for data extraction and Keywords analysis. Two studies evaluated an adult cohort of a total of 18 patients. The Transolecranon average Disabilities of the Arm, Shoulder, and Hand (DASH) score was 40 (range Olecranon 4.2 – 76.5). Fifteen patients (83%) had a complication. Elbow stiffness (11/18, Distal humerus 61%) was the most common complication. Eleven patients (61%) underwent Fracture Outcomes more than one procedure. Two studies evaluated a pediatric cohort of a total Complications of 9 patients. -
Downloads As of 6/2011.) 2
CURRICULUM VITAE Michael J. Prayson, MD Department of Orthopaedic Surgery, Sports Medicine & Rehabilitation Wright State University Boonshoft School of Medicine 30 E. Apple Street, Suite 2200 Dayton, Ohio 45409 937-208-2128 937-208-2920 Fax EDUCATION Institution Concentration Degree/Date Kent State University & Combined 6-Year Program BS/MD 1989 Northeastern Ohio Universities College of Medicine Rootstown, Ohio POST GRADUATE EDUCATION Item Date Orthopaedic Surgery Internship & Residency Training 1989-1994 Akron General Medical Center, Akron, Ohio Orthopaedic Traumatology Fellowship 1994-1995 Department of Orthopaedic Surgery University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania ACADEMIC EXPERIENCE Institution Position Date Northeastern Ohio Universities College of Medicine Clinical Instructor 1993-1994 Rootstown, Ohio University of Missouri Assistant Professor 1995-1998 Department of Orthopaedic Surgery Kansas City, Missouri Akron General Medical Center Assistant Professor 1998-1999 Department of Orthopaedic Surgery Akron, Ohio University of Pittsburgh Medical Center Assistant Professor 1999-2004 Department of Orthopaedic Surgery Pittsburgh, Pennsylvania Wright State University Boonshoft School of Medicine Associate Professor 2004-2009 Department of Orthopaedic Surgery, Director of Orthopaedic Sports Medicine & Rehabilitation Undergraduate Education 2004-2006 Dayton, Ohio Trauma Fellowship Director 2006-Present Director of Orthopaedic Trauma 2004-Present Section Chair of Orthopaedic Trauma 2008-2010 Vice Chairman 2008-Present -
Greenstick Fracture Soft Cast No FU
Orthopaedic Department York Teaching Hospital This is a follow-up letter to your recent telephone consultation with the fracture care team explaining the ongoing management of your injury. Your case has been reviewed by an Orthopaedic Consultant (Bone Specialist) and Fracture Care Physiotherapist. You have sustained a greenstick fracture to your distal radius and/or ulna (forearm just before the wrist). This is a specific type of fracture that occurs in children’s bones Healing: This normally takes approximately 4 - 6 weeks to heal. It is normal for it to continue to ache a bit for a few weeks after this. Pain and swelling: Take pain killers as needed. The plaster backslab helps healing by keeping the bones in a good position. Elevate the arm to reduce swelling for the first few days Using your arm: You may use the arm as pain allows. It is important to keep the elbow moving to prevent stiffness. Follow up: There is a small chance that this fracture can displace (move). Therefore we routinely recommend a repeat x ray at 1 week after the injury and a new plaster cast. Arrangements for this appointment should have been made during your telephone consultation. Should you need to reschedule this appointment please see contact details at the top of this letter. Area of injury: If you are worried that you are unable to follow this rehabilitation plan, Or, if you are experiencing pain or symptoms, other than at the site of the original injury or surrounding area, or have any questions, then please phone the Fracture Care Team for advice. -
CASE REPORT Injuries Following Segway Personal
UC Irvine Western Journal of Emergency Medicine: Integrating Emergency Care with Population Health Title Injuries Following Segway Personal Transporter Accidents: Case Report and Review of the Literature Permalink https://escholarship.org/uc/item/37r4387d Journal Western Journal of Emergency Medicine: Integrating Emergency Care with Population Health, 16(5) ISSN 1936-900X Authors Ashurst, John Wagner, Benjamin Publication Date 2015 DOI 10.5811/westjem.2015.7.26549 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California CASE REPORT Injuries Following Segway Personal Transporter Accidents: Case Report and Review of the Literature John Ashurst DO, MSc Conemaugh Memorial Medical Center, Department of Emergency Medicine, Benjamin Wagner, DO Johnstown, Pennsylvania Section Editor: Rick A. McPheeters, DO Submission history: Submitted April 20, 2015; Accepted July 9, 2015 Electronically published October 20, 2015 Full text available through open access at http://escholarship.org/uc/uciem_westjem DOI: 10.5811/westjem.2015.7.26549 The Segway® self-balancing personal transporter has been used as a means of transport for sightseeing tourists, military, police and emergency medical personnel. Only recently have reports been published about serious injuries that have been sustained while operating this device. This case describes a 67-year-old male who sustained an oblique fracture of the shaft of the femur while using the Segway® for transportation around his community. We also present a review of the literature. [West J Emerg Med. 2015;16(5):693-695.] INTRODUCTION no parasthesia was noted. In 2001, Dean Kamen developed a self-balancing, zero Radiograph of the right femur demonstrated an oblique emissions personal transportation vehicle, known as the fracture of the proximal shaft of the femur with severe Segway® Personal Transporter (PT).1 The Segway’s® top displacement and angulation (Figure). -
Part Fracture Dislocation Due to Stress Concentration at Intramedullary Nail End 1Devendra Chouhan, 2Vishal Kumar, 3Manish Kundanmal Kothari, 4Mandeep S Dhillon
JPMER Devendra Chouhan et al 10.5005/jp-journals-10028-1142 CASE REPORT Dissociation of Shaft of Humerus from Head in Three- part Fracture Dislocation due to Stress Concentration at Intramedullary Nail End 1Devendra Chouhan, 2Vishal Kumar, 3Manish Kundanmal Kothari, 4Mandeep S Dhillon ABSTRACT authors best knowledge. We report the first such case A three-part fracture dislocation of the proximal humerus of three-part fracture dislocation involving the greater usually dissociates from the shaft at the level of the surgical tuberosity and proximal shaft of humerus with a 25 years neck or the anatomical neck. Dissociation from the shaft below old Rush nail in situ. this level has not reported in the literature before. Here we describe the injury of a middle aged patient with a three-part CASE REPORT fracture dislocation of the humerus with dissociation of the head from the shaft at the level of proximal shaft humerus with A 60-year-old male presented in the emergency depart- a 25 years old Rush nail in situ. The dislocated head was found ment with acute pain in right shoulder following road abutting the thoracic wall. This case report highlights the effect traffic accident 8 hours ago. He was travelling on a bike of stress concentration at intramedullary nail ends in the upper limb as well as the need for an extended approach when the when a car hit him from the side. He was violently thrown dislocated head appears close to the thoracic wall. off his motorcycle followed by fall on an outstretched hand. He had no other complaints. -
Vanderbilt Sports Medicine
Alabama AAP Fall Meeting Sept.19-20, 2009 Pediatric Fracture Care for the Pediatrician Andrew Gregory, MD, FAAP, FACSM Assistant Professor Orthopedics & Pediatrics Program Director, Sports Medicine Fellowship Vanderbilt University Vanderbilt Sports Medicine Disclosure No conflict of interest - unfortunately for me, I have no financial relationships with companies making products regarding this topic to disclose Objectives Review briefly the differences of pediatric bone Review Pediatric Fracture Classification Discuss subtle fractures in kids Discuss a few other pediatric only conditions 1 Pediatric Skeleton Bone is relatively elastic and rubbery Periosteum is quite thick & active Ligaments are strong relative to the bone Presence of the physis - “weak link” Ligament injuries & dislocations are rare – “kids don’t sprain stuff” Fractures heal quickly and have the capacity to remodel Anatomy of Pediatric Bone Epiphysis Physis Metaphysis Diaphysis Apophysis Pediatric Fracture Classification Plastic Deformation – Bowing usually of fibula or ulna Buckle/ Torus – compression, stable Greenstick – unicortical tension Complete – Spiral, Oblique, Transverse Physeal – Salter-Harris Apophyseal avulsion 2 Plastic deformation Bowing without fracture Often deformed requiring reduction Buckle (Torus) Fracture Buckled Periosteum – Metaphyseal/ diaphyseal junction Greenstick Fracture Cortex Broken on Only One Side – Incomplete 3 Complete Fractures Transverse – Perpendicular to the bone Oblique – Across the bone at 45-60 o – Unstable Spiral – Rotational -
Pediatric Orthopedic Injuries… … from an ED State of Mind
Traumatic Orthopedics Peds RC Exam Review February 28, 2019 Dr. Naminder Sandhu, FRCPC Pediatric Emergency Medicine Objectives to cover today • Normal bone growth and function • Common radiographic abnormalities in MSK diseases • Part 1: Atraumatic – Congenital abnormalities – Joint and limb pain – Joint deformities – MSK infections – Bone tumors – Common gait disorders • Part 2: Traumatic – Common pediatric fractures and soft tissue injuries by site Overview of traumatic MSK pain Acute injuries • Fractures • Joint dislocations – Most common in ED: patella, digits, shoulder, elbow • Muscle strains – Eg. groin/adductors • Ligament sprains – Eg. Ankle, ACL/MCL, acromioclavicular joint separation Chronic/ overuse injuries • Stress fractures • Tendonitis • Bursitis • Fasciitis • Apophysitis Overuse injuries in the athlete WHY do they happen?? Extrinsic factors: • Errors in training • Inappropriate footwear Overuse injuries Intrinsic: • Poor conditioning – increased injuries early in season • Muscle imbalances – Weak muscle near strong (vastus medialus vs lateralus patellofemoral pain) – Excessive tightness: IT band, gastroc/soleus Sever disease • Anatomic misalignments – eg. pes planus, genu valgum or varum • Growth – strength and flexibility imbalances • Nutrition – eg. female athlete triad Misalignment – an intrinsic factor Apophysitis • *Apophysis = natural protruberance from a bone (2ndary ossification centres, often where tendons attach) • Examples – Sever disease (Calcaneal) – Osgood Schlatter disease (Tibial tubercle) – Sinding-Larsen-Johansson -
Metacarpal Fractures
METACARPAL FRACTURES BY LORYN P. WEINSTEIN, MD, AND DOUGLAS P. HANEL, MD The majority of metacarpal fractures are closed injuries amenable to conservative treatment with external immobilization and subsequent rehabilitation. Internal fixation is favored for unstable fracture patterns and patients who require early motion. Percutaneous pinning usually is successful for metacarpal neck fractures and comminuted head fractures. Shaft and base fractures can be treated with pinning or open reduction and internal fixation; the latter, being more rigid, allows early rehabilitation. External fixation has a limited yet defined role for metacarpal fractures with complex soft-tissue injury and/or segmental bone loss. The recent development of bioabsorbable implants holds promise for skeletal rigidity with minimal soft-tissue morbidity, but long-term in vivo data support- ing the use of these implants is not currently available. Copyright © 2002 by the American Society for Surgery of the Hand arly treatment of metacarpal fractures was lim- Surgical techniques rapidly expanded to include ret- ited to the only tools available: manipulation rograde fracture pinning, intramedullary pinning, and Eand casting. The discovery of percutaneous transfixion pinning. Many of the K-wires in use today fracture fixation near the turn of the century opened have the same diamond-shaped tip and sizing speci- up a new world of possibilities. It was 25 years after fications as the original design. Bennett’s original manuscript that Lambotte de- The first plate and screw set for the hand was scribed the first surgical stabilization of a basilar introduced in the late 1930s. By today’s standards, the thumb fracture by using a thin carpenter’s nail.1 By Hermann Metacarpal Bone Set was quite lean; it 1913, Lambotte had authored a fracture text with included 3 longitudinal plates of 2, 3, and 4 holes, a multiple examples of pinning, wiring, and plating of drill, screwdriver, and 9 screws.1 Improvements in hand fractures. -
University of Washington Orthopaedics & Sports Medicine
Discoveries 2018 University of Washington Orthopaedics & Sports Medicine University of Washington Department of Orthopaedics and Sports Medicine Discoveries 2018 Department of Orthopaedics and Sports Medicine University of Washington Seattle, WA 98195 EDITOR-IN-CHIEF: Howard A. Chansky, MD [email protected] ASSISTANT EDITORS: Christopher H. Allan, MD [email protected] Stephen A. Kennedy, MD, FRCSC [email protected] Adam A. Sassoon, MD, MS [email protected] MANAGING EDITOR: Fred Westerberg [email protected] Front Cover Illustration: Angie Kennedy, MSc, is a Seattle-based mixed media artist. She specializes in custom collage pieces that use mementos and artifacts to celebrate people and special life events. She drew on her experience as a former scientific researcher to create this collage of images from the pages of the current publication. The ‘W’ in the background is a nod to the University of Washington with an overlay of the current imagery arranged in an abstract assemblage. For more information www.americanheavyweight.com A pdf of this publication is available at our website: www.orthop.washington.edu. Permission Requests: All inquiries should be directed to the Managing Editor, University of Washington, Department of Orthopaedics and Sports Medicine, 1959 NE Pacific Street, Box 356500, Seattle, WA 98195-6500, or at the email address above. Contents 1 Foreword 2 From The Assistant Editors: The Modern Art of Musculoskeletal Research, Education, and Clinical Care 3 2018 Distinguished Alumnus, David J. Belfie, MD 4 New Faculty 6 Department of Orthopaedics and Sports Medicine Faculty 12 Visiting Lecturers Validation of a Rabbit Model of Trauma-Induced 14 Brandon J. Ausk, PhD, Philippe Huber, BS, Heterotopic Ossification Ted S. -
Proximal Humerus Fracture After Keyhole Biceps Tenodesis
A Case Report & Literature Review Proximal Humerus Fracture After Keyhole Biceps Tenodesis Stefanie N. Reiff, BA, Shane J. Nho, MD, MS, and Anthony A. Romeo, MD is the only one published in English. The patient pro- Abstract vided written informed consent for print and electronic A biceps tenodesis is a common surgical procedure that publication of this case report. is often carried out in conjunction with other surgical shoulder repairs to relieve biceps tendonitis. This case CASE REPORT presents a 50-year-old woman who suffered a humerus The patient, a 50-year-old woman, underwent left shoul- fracture following an open keyhole biceps tenodesis. The potential reasons for the fracture as well as a brief der revision arthroscopic subacromial decompression analysis of the technique itself are presented. To our and open biceps tenodesis. Past medical history was sig- knowledge, this is the first case report of a humerus frac- nificant for insulin-dependent diabetes mellitus (onset age, ture following keyhole biceps tenodesis in the English- 15 years) and hypothyroidism. Past surgical history was language literature. notable for left shoulder os acromiale with arthroscopic subacromial decompression performed 7 months before iceps tendonitis, a relatively common condition the revision surgery pertinent to this case. Tenodesis of the that affects the shoulder, causes pain over its biceps tendon was indicated on the basis of past surgical anterior aspect, near the bicipital groove and history, clinical examination in the office, and intraopera- -
Upper Extremity Fractures
Department of Rehabilitation Services Physical Therapy Standard of Care: Distal Upper Extremity Fractures Case Type / Diagnosis: This standard applies to patients who have sustained upper extremity fractures that require stabilization either surgically or non-surgically. This includes, but is not limited to: Distal Humeral Fracture 812.4 Supracondylar Humeral Fracture 812.41 Elbow Fracture 813.83 Proximal Radius/Ulna Fracture 813.0 Radial Head Fractures 813.05 Olecranon Fracture 813.01 Radial/Ulnar shaft fractures 813.1 Distal Radius Fracture 813.42 Distal Ulna Fracture 813.82 Carpal Fracture 814.01 Metacarpal Fracture 815.0 Phalanx Fractures 816.0 Forearm/Wrist Fractures Radius fractures: • Radial head (may require a prosthesis) • Midshaft radius • Distal radius (most common) Residual deformities following radius fractures include: • Loss of radial tilt (Normal non fracture average is 22-23 degrees of radial tilt.) • Dorsal angulation (normal non fracture average palmar tilt 11-12 degrees.) • Radial shortening • Distal radioulnar (DRUJ) joint involvement • Intra-articular involvement with step-offs. Step-off of as little as 1-2 mm may increase the risk of post-traumatic arthritis. 1 Standard of Care: Distal Upper Extremity Fractures Copyright © 2007 The Brigham and Women's Hospital, Inc. Department of Rehabilitation Services. All rights reserved. Types of distal radius fracture include: • Colle’s (Dinner Fork Deformity) -- Mechanism: fall on an outstretched hand (FOOSH) with radial shortening, dorsal tilt of the distal fragment. The ulnar styloid may or may not be fractured. • Smith’s (Garden Spade Deformity) -- Mechanism: fall backward on a supinated, dorsiflexed wrist, the distal fragment displaces volarly. • Barton’s -- Mechanism: direct blow to the carpus or wrist. -
Ankle Injuries
Pediatric Fractures of the Ankle Nicholas Frane DO Zucker/Hofstra School of Medicine Northwell Health Core Curriculum V5 Disclosure • Radiographic Images Courtesy of: Dr. Jon-Paul Dimauro M.D or Christopher D Souder, MD, unless otherwise specified Core Curriculum V5 Outline • Epidemiology • Anatomy • Classification • Assessment • Treatment • Outcomes Core Curriculum V5 Epidemiology • Distal tibial & fibular physeal injuries 25%-38% of all physeal fractures • Ankle is the 2nd most common site of physeal Injury in children • Most common mechanism of injury Sports • 58% of physeal ankle fractures occur during sports activities • M>F • Commonly seen in 8-15y/o Hynes D, O'Brien T. Growth disturbance lines after injury of the distal tibial physis. Their significance in prognosis. J Bone Joint Surg Br. 1988;70:231–233 Zaricznyj B, Shattuck LJ, Mast TA, et al. Sports-related injuries in school-aged children. Am J Sports Med. 1980;8:318–324. Core Curriculum V5 Epidemiology Parikh SN, Mehlman CT. The Community Orthopaedic Surgeon Taking Trauma Call: Pediatric Ankle Fracture Pearls and Pitfalls. J Orthop Trauma. 2017;31 Suppl 6:S27-S31. doi:10.1097/BOT.0000000000001014 Spiegel P, et al. Epiphyseal fractures of the distal ends of the tibia and fibula. J Bone Joint Surg Am. 1978;60(8):1046-50. Core Curriculum V5 Anatomy • Ligamentous structures attach distal to the physis • Growth plate injury more likely than ligament failure secondary to tensile weakness in physis • Syndesmosis • Anterior Tibio-fibular ligament (AITFL) • Posterior Inferior Tibio-fibular