Evolution of Middle America and the in Situ Caribbean Plate Model

Total Page:16

File Type:pdf, Size:1020Kb

Evolution of Middle America and the in Situ Caribbean Plate Model Evolution of Middle America and the in situ Caribbean Plate model KEITH H. JAMES Institute of Geography and Earth Sciences, Aberystwyth, Wales, UK and Consultant Geologist, Plaza de la Cebada 3, 09346 Covarrubias, Burgos, Spain (e-mail: [email protected]) Abstract: Regional geological data and global analogues suggest Caribbean Plate geology con- tinues that seen along the margin of eastern North America in a more extensional setting, between the diverging Americas. From west to east there are continental masses with Triassic rifts, proximal continental blocks with kilometres-thick Mesozoic carbonates, more distal areas of Palaeozoic horsts flanked by Triassic–Jurassic dipping wedges of sediments, including salt and overlain by Cretaceous basalts, and most distal areas of serpentinized upper mantle. Plate history began along with the Late Triassic formation of the Central Atlantic Magmatic Province and involved Triassic–Jurassic rifting, Jurassic–Early Cenozoic extension and Oligocene– Recent strike–slip. Great extension promoted volcanism, foundering, eastward growth of the plate by backarc spreading and distribution of continental fragments on the plate interior and along its margins. Hydrocarbons probably are present. Caribbean geology has important implica- tions for understanding of oceanic plateaus, intra-oceanic volcanic arcs, the ‘andesite problem’ and genesis of ‘subduction’ HP/LT metamorphic rocks. The model can be tested by re-examination of existing samples and seismic data and by deep sea drilling. Middle America – crustal makeup as Triassic–Jurassic rifts with dextral component of movement; (b) generated N608E extensional Based upon data discussed in a sister article this faults such as the Hess and NW Campeche escarp- paper suggests an in situ evolution of the Caribbean ments; and (c) generated the Florida Arch. Curved Plate between North and South America. The data faults in northern Central America reflect oroclinal indicate that Middle America is built mainly of bending and shortening during Cenozoic sinistral extended/distributed continental crust and smaller reactivation of N358E trends (James 2007). areas of pseudo-oceanic crust (serpentinized mantle) The following sketches suggest a Pangaean recon- (the only recognized spreading crust, with magnetic struction and the evolution of Middle America. anomalies, lies in the centre of the Cayman Trough; They do not pretend to be quantitative. Fig. 1). The geology continues that along the eastern margin of North America but in a more extensional Pangaean reconstruction setting between the diverging Americas. Rifted and extended continent with thick Mesozoic carbonate Pre-drift restoration of Middle America (Fig. 3a) cover recording subsidence surrounds the Gulf requires removal of sinistral offset and extension of Mexico and Yucata´n basins and underpins the between North and South America and removal of Florida–Bahamas platform and the submerged volcanic-arc crust and serpentinized mantle (Fig. 1). extension, as far as Jamaica, of continental Chortı´s The Gulf of Mexico (NAm) is closed up around the along the Nicaragua Rise. The internal Gulf of Maya Block. Maya and Chortı´s are united (removal Mexico, Yucata´n, Colombian, Venezuelan and of c. 900 km of Jurassic–Cretaceous, early Cayman Grenada basins carry extended continental blocks offset and 300 km of Oligocene–Recent Cayman flanked by half-grabens with wedge-shape fill, offset) by aligning their faulted eastern margins bounded by areas of thin (c. 3 km) pseudo oceanic and Jurassic rifts associated with the Rı´o Hondo crust of serpentinized mantle. and Guayape´ faults (Fig. 2). This also restores Cuba north of Hispaniola and Puerto Rico, them- Tectonic fabric selves closed up by removal of Cenozoic pull-apart. Thick crust of the Caribbean ‘Plateau’, western Middle America manifests a regional tectonic Venezuela Basin, lies close to South America. fabric (Fig. 2) that demonstrates regional geological Similar crust seems to be present in the Yucata´n coherence and shows that no major block rotations and Colombian basins. Cenozoic oroclinal or plate migration occurred. The stress–strain bending of the Motagua and Agalta areas and ellipse (inset) for sinistral movement of North western Cuba (James 2007) is removed. The Hess America away from South America along N608W Escarpment/southern limit of the Nicaragua Rise fractures (a) reactivated N358E Palaeozoic sutures restores against the Me´rida trend of NW Venezuela. From:JAMES, K. H., LORENTE,M.A.&PINDELL, J. L. (eds) The Origin and Evolution of the Caribbean Plate. Geological Society, London, Special Publications, 328, 127–138. DOI: 10.1144/SP328.4 0305-8719/09/$15.00 # The Geological Society of London 2009. 128 K. H. JAMES Fig. 1. Middle America crustal types/distribution. Continental blocks, indicated by crustal thickness (gravity, seismic), high silica rocks and dredge samples, beneath southern Central America (SCA) and the Greater Antilles–northern Lesser Antilles (NLA) are hidden beneath obducted volcanic arc/oceanic crust. Thick crustal areas on the Lower Nicaragua Rise (LNR), eastern Yucata´n Basin (EYB), Caribbean ‘Plateau’ (CP) and west Colombia Basin (WCB) are underpinned by extended continent and locally overlain by Upper Cretaceous basalts. Serpentinized mantle possibly includes extremely attenuated continental crust. The Oligocene–Recent area in the Cayman Trough (red) is the only area with spreading magnetic anomalies. Northwestern South America – the ‘Bolivar Block’ continental margin. Here, asymmetric basins is restored several hundred kilometres to the SW accommodated red beds, carbonates and evaporites along the Me´rida Andes – Eastern Cordillera of as seaward-dipping wedges along the eastern sea- Venezuela–Colombia. The Aruba–Blanquilla island board of North America to Caribbean latitudes. chain does not exist at this time. Southern Central Major N608E trending features such as the Hess America (Chorotega–Choco´) restores to the SW and NW Campeche escarpments and the La of Chortı´s (present day Gulf of Tehuantepec, Trocha F. formed as the extensional strain within James 2007). the regional N608W sinistral system of offset This schematic reconstruction suggests continu- between North and South America (Fig. 2). The ity of major faults crossing Maya and Chortı´s with resultant new basins accommodated salt deposition. southern Florida and the eastern seaboard of North Since salt diapirs and ultramafic rocks are seen America and its continuation into NW South along northern Honduras (Pinet 1971, 1972) and America, possibly through the Sierra Nevada de since serpentinites occur in the Motagua fault zone Santa Marta in Colombia. in the Cretaceous (Harlow et al. 2004), this paper suggests that the early Cayman Trough extended Geological evolution between Maya and Chortı´s as a salt basin at this time (Figs 4 & 5). Triassic–Early Jurassic rifting (Fig. 3b) reactivated Late Jurassic–Early Cretaceous spreading in Palaeozoic continental sutures as rifts, accommo- the Central Atlantic resulted in WNW drift of North dating red beds and basalts (Manspeizer 1988; for America from Gondwana (South America–Africa) a more regional vision of the Central Atlantic Mag- and great extension in Middle America (Fig. 4a, matic Province and continental margin wedges James 2009, fig. 4). Slip along major NW transfer see McHone et al. 2005, Fig. 1). Inboard basins faults within southern North America continued, off- were then abandoned as extension moved to the setting the formerly linear Appalachian–Ouachita IN SITU CARIBBEAN PLATE MODEL 129 Fig. 2. Interpretation of Middle America tectonic fabric as the result of (1) reactivation of ancient lineaments (N358E), (2) extension (N608E) and strike–slip (east–west) strain within the sinistral offset (N608W) of North from South America. AI, Aklins–Inagua–Caicos; BF, Beata F; BR, Beata Ridge; BRR, Blue Ridge Rift; CE, Campeche Escarpment; CT, Catoche Tongue; EG, Espino Graben; GF, Guayape FM; HE, Hess Escarpment; LT, La Trocha FM; MG, Me´rida Graben; MiG, Mississippi Graben; M-SF, Motagua–Swan FM; OR, Oachita Rift; PF, Patuca FM; PG, Perija´ Graben – Urdaneta; RBFZ, Rı´o Bravo fault zone; RGR, Rı´o Grande Rift; RHF, Rı´o Hondo FM; SAL, San Andre´s Lineament; TF, Ticul FM; TG, Takutu Graben; TT, Texas Transform; TSZ, Tenochtitlan Shear Zone; TZR, Tepic– Zacoalco Rift; VF, Veracruz FM; YC, Yucata´n Channel. Red line, SE limit of Caribbean Plateau, the Central Venezuela FZ. Green lines, magnetic anomalies. Compiled from many sources. trend and opening the Gulf of Mexico as the conti- introduced strike–slip along the southern Caribbean nent interior pulled away from the Maya Block Plate boundary, possibly provoking HP/LT and the NW Campeche Escarpment. metamorphism in rapidly subsiding/filling deeps, Maya moved west relative to Chortı´s by some enhanced Caribbean extension and resulted in a 900 km (early Cayman displacement). Chortı´s first phase of basalt extrusion (120 Ma). Atlantic– moved around 900 km NW relative to South Caribbean convergence resulted in subduction America and 400 km NW relative to Chorotega/ below dispersed continental fragments along the Choco´. Marginal areas subsided to accommodate Lesser Antilles with resultant volcanism. Uplift to platform carbonates several kilometres thick wave base, formation of an unconformity capped (Florida–Bahamas platform–Greater Antilles, by shallow marine limestones and change of Limestone Caribbees, Campeche–Yucata´n– arc chemistry from primitive to calc-alkaline Nicaragua Rise).
Recommended publications
  • Shrimp Fishing in Mexico
    235 Shrimp fishing in Mexico Based on the work of D. Aguilar and J. Grande-Vidal AN OVERVIEW Mexico has coastlines of 8 475 km along the Pacific and 3 294 km along the Atlantic Oceans. Shrimp fishing in Mexico takes place in the Pacific, Gulf of Mexico and Caribbean, both by artisanal and industrial fleets. A large number of small fishing vessels use many types of gear to catch shrimp. The larger offshore shrimp vessels, numbering about 2 212, trawl using either two nets (Pacific side) or four nets (Atlantic). In 2003, shrimp production in Mexico of 123 905 tonnes came from three sources: 21.26 percent from artisanal fisheries, 28.41 percent from industrial fisheries and 50.33 percent from aquaculture activities. Shrimp is the most important fishery commodity produced in Mexico in terms of value, exports and employment. Catches of Mexican Pacific shrimp appear to have reached their maximum. There is general recognition that overcapacity is a problem in the various shrimp fleets. DEVELOPMENT AND STRUCTURE Although trawling for shrimp started in the late 1920s, shrimp has been captured in inshore areas since pre-Columbian times. Magallón-Barajas (1987) describes the lagoon shrimp fishery, developed in the pre-Hispanic era by natives of the southeastern Gulf of California, which used barriers built with mangrove sticks across the channels and mouths of estuaries and lagoons. The National Fisheries Institute (INP, 2000) and Magallón-Barajas (1987) reviewed the history of shrimp fishing on the Pacific coast of Mexico. It began in 1921 at Guaymas with two United States boats.
    [Show full text]
  • Kinematic Reconstruction of the Caribbean Region Since the Early Jurassic
    Earth-Science Reviews 138 (2014) 102–136 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Kinematic reconstruction of the Caribbean region since the Early Jurassic Lydian M. Boschman a,⁎, Douwe J.J. van Hinsbergen a, Trond H. Torsvik b,c,d, Wim Spakman a,b, James L. Pindell e,f a Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands b Center for Earth Evolution and Dynamics (CEED), University of Oslo, Sem Sælands vei 24, NO-0316 Oslo, Norway c Center for Geodynamics, Geological Survey of Norway (NGU), Leiv Eirikssons vei 39, 7491 Trondheim, Norway d School of Geosciences, University of the Witwatersrand, WITS 2050 Johannesburg, South Africa e Tectonic Analysis Ltd., Chestnut House, Duncton, West Sussex, GU28 OLH, England, UK f School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff CF10 3YE, UK article info abstract Article history: The Caribbean oceanic crust was formed west of the North and South American continents, probably from Late Received 4 December 2013 Jurassic through Early Cretaceous time. Its subsequent evolution has resulted from a complex tectonic history Accepted 9 August 2014 governed by the interplay of the North American, South American and (Paleo-)Pacific plates. During its entire Available online 23 August 2014 tectonic evolution, the Caribbean plate was largely surrounded by subduction and transform boundaries, and the oceanic crust has been overlain by the Caribbean Large Igneous Province (CLIP) since ~90 Ma. The consequent Keywords: absence of passive margins and measurable marine magnetic anomalies hampers a quantitative integration into GPlates Apparent Polar Wander Path the global circuit of plate motions.
    [Show full text]
  • Caribbean Plate Tilted and Actively Dragged Eastwards by Low-Viscosity Asthenospheric flow ✉ Yi-Wei Chen 1 , Lorenzo Colli1, Dale E
    ARTICLE https://doi.org/10.1038/s41467-021-21723-1 OPEN Caribbean plate tilted and actively dragged eastwards by low-viscosity asthenospheric flow ✉ Yi-Wei Chen 1 , Lorenzo Colli1, Dale E. Bird1,2, Jonny Wu 1 & Hejun Zhu 3 The importance of a low-viscosity asthenosphere underlying mobile plates has been high- lighted since the earliest days of the plate tectonics revolution. However, absolute asthe- nospheric viscosities are still poorly constrained, with estimates spanning up to 3 orders of 1234567890():,; magnitude. Here we follow a new approach using analytic solutions for Poiseuille-Couette channel flow to compute asthenospheric viscosities under the Caribbean. We estimate Caribbean dynamic topography and the associated pressure gradient, which, combined with flow velocities estimated from geologic markers and tomographic structure, yield our best- estimate asthenospheric viscosity of (3.0 ± 1.5)*1018 Pa s. This value is consistent with independent estimates for non-cratonic and oceanic regions, and challenges the hypothesis that higher-viscosity asthenosphere inferred from postglacial rebound is globally- representative. The active flow driven by Galapagos plume overpressure shown here con- tradicts the traditional view that the asthenosphere is only a passive lubricating layer for Earth’s tectonic plates. 1 Department of Earth and Atmospheric Science, University of Houston, Houston, USA. 2 Bird Geophysical, Houston, USA. 3 Department of Geosciences, ✉ University of Texas at Dallas, Richardson, USA. email: [email protected] NATURE COMMUNICATIONS | (2021) 12:1603 | https://doi.org/10.1038/s41467-021-21723-1 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21723-1 he concept of a weak asthenosphere sandwiched between Eastward asthenospheric flow under the Caribbean (Fig.
    [Show full text]
  • 1. Introduction1
    Kimura, G., Silver, E.A., Blum, P., et al., 1997 Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 170 1. INTRODUCTION1 Shipboard Scientific Party2 The planet is profoundly affected by the distributions and rates of al., 1990), which extends from the Caribbean coast of Colombia to materials that enter subduction zones. The material that is accreted to Limon, Costa Rica. In Costa Rica, the boundary consists of a diffuse the upper plate results in growth of the continental mass, and fluids left lateral shear zone from Limon to the Middle America Trench squeezed out of this accreted mass have significance for biologic and (Ponce and Case, 1987; Jacob and Pacheco, 1991; Guendel and geochemical processes occurring on the margins. Material that is not Pacheco, 1992; Goes et al., 1993; Fan et al., 1993; Marshall et al., accreted or underplated to the margin bypasses surface residency and 1993; Fisher et al., 1994; Protti and Schwartz, 1994). The north- descends into the mantle, chemically affecting both the mantle and trending boundary between the Cocos and Nazca Plates is the right- magmas generated therefrom. Subduction of the igneous ocean crust lateral Panama fracture zone. West of this fracture zone is the Cocos returns rocks to the mantle that earlier had been fractionated from it Ridge, a trace of the Galapagos Hotspot, which subducts beneath the in spreading centers, along with products of chemical alteration that Costa Rican segment of the Panama Block. occur on the seafloor. Sediments that are subducted include biogenic, The Nicoya Peninsula is composed of Late Jurassic to Late Creta- volcanogenic, authigenic, and terrigenous debris.
    [Show full text]
  • Tectonic Segmentation of the North Andean Margin: Impact of the Carnegie Ridge Collision
    ELSEVIER Earth and Planetary Science Letters 168 (1999) 255±270 Tectonic segmentation of the North Andean margin: impact of the Carnegie Ridge collision M.-A. Gutscher a,Ł, J. Malavieille a, S. Lallemand a, J.-Y. Collot b a Laboratoire de GeÂophysique et Tectonique, UMR 5573, Universite Montpellier II, Place E. Bataillon, F-34095 Montpellier, Cedex 5, France b IRD, Geosciences Azur, Villefranche-sur-Mer, France Received 17 July 1998; accepted 2 March 1999 Abstract The North Andean convergent margin is a region of intense crustal deformation, with six great subduction earthquakes Mw ½ 7:8 this century. The regional pattern of seismicity and volcanism shows a high degree of segmentation along strike of the Andes. Segments of steep slab subduction alternate with aseismic regions and segments of ¯at slab subduction. This segmentation is related to heterogeneity on the subducting Nazca Plate. In particular, the in¯uence of the Carnegie Ridge collision is investigated. Four distinct seismotectonic regions can be distinguished: Region 1 ± from 6ëN to 2.5ëN with steep ESE-dipping subduction and a narrow volcanic arc; Region 2 ± from 2.5ëN to 1ëS showing an intermediate-depth seismic gap and a broad volcanic arc; Region 3 ± from 1ëS to 2ëS with steep NE-dipping subduction, and a narrow volcanic arc; Region 4 ± south of 2ëS with ¯at subduction and no modern volcanic arc. The Carnegie Ridge has been colliding with the margin since at least 2 Ma based on examination of the basement uplift signal along trench-parallel transects. The subducted prolongation of Carnegie Ridge may extend up to 500 km from the trench as suggested by the seismic gap and the perturbed, broad volcanic arc.
    [Show full text]
  • 22. Structural Geology of the Décollement at the Toe of the Barbados Accretionary Prism1
    Shipley, T.H., Ogawa, Y., Blum, P., and Bahr, J.M. (Eds.), 1997 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 156 22. STRUCTURAL GEOLOGY OF THE DÉCOLLEMENT AT THE TOE OF THE BARBADOS ACCRETIONARY PRISM1 Alex Maltman,2 Pierre Labaume,3 and Bernard Housen4 ABSTRACT The base of the Barbados accretionary prism is defined by a décollement, which separates material accreting to the Carib- bean Plate from underthrusting Atlantic Ocean sediment. A three-dimensional seismic survey has shown the structure to con- tain intervals of negative polarity, interpreted as representing pockets of overpressured fluid. Consequently, Ocean Drilling Program Leg 156 was designed specifically to investigate the hydrogeological and deformational behavior of the décollement. Analysis of recovered cores shows the structure to comprise a zone of intensified but heterogeneous deformation, 31 m thick, but 39 m thick if suprajacent breccia and various physico-chemical anomalies are included. The top of the décollement shows a pronounced change in the orientation of magnetic anisotropy, indicating efficient decoupling between the prism and the lower material. Core-scale deformation features consist principally of fracture networks, stratal disruption and, most espe- cially, zones of scaly fabric. On the basis of thin-section and scanning electron microscope/transmission electron microscopy observations, the scaly fabric is fractal-like, with zones of sheared clay wrapping around relatively undeformed lenses, at all scales down to that of the individual particles. The scaly zones, consisting of a combination of a pervasive flattening fabric and distributed slip surfaces, are viewed as S-C structures. These develop as shear strains supplant initial flattening microstructures, which is termed spaced foliation.
    [Show full text]
  • Sea Level Rise and Land Use Planning in Barbados, Trinidad and Tobago, Guyana, and Pará
    Water, Water Everywhere: Sea Level Rise and Land Use Planning in Barbados, Trinidad and Tobago, Guyana, and Pará Thomas E. Bassett and Gregory R. Scruggs © 2013 Lincoln Institute of Land Policy Lincoln Institute of Land Policy Working Paper The findings and conclusions of this Working Paper reflect the views of the author(s) and have not been subject to a detailed review by the staff of the Lincoln Institute of Land Policy. Contact the Lincoln Institute with questions or requests for permission to reprint this paper. [email protected] Lincoln Institute Product Code: WP13TB1 Abstract The Caribbean and northern coastal Brazil face severe impacts from climate change, particularly from sea-level rise. This paper analyses current land use and development policies in three Caribbean locations and one at the mouth of the Amazon River to determine if these policies are sufficient to protect economic, natural, and population resources based on current projections of urbanization and sea-level rise. Where policies are not deemed sufficient, the authors will address the question of how land use and infrastructure policies could be adjusted to most cost- effectively mitigate the negative impacts of climate change on the economies and urban populations. Keywords: sea-level rise, land use planning, coastal development, Barbados, Trinidad and Tobago, Guyana, Pará, Brazil About the Authors Thomas E. Bassett is a senior program associate at the American Planning Association. He works on the Energy and Climate Partnership of the Americas grant from the U.S. Department of State as well as the domestic Community Assistance Program. Thomas E. Bassett 1030 15th Street NW Suite 750W Washington, DC 20005 Phone: 202-349-1028 Email: [email protected]; [email protected] Gregory R.
    [Show full text]
  • Caribbean Tsunami Hazard
    ESTIMATING THE THREAT OF TSUNAMIGENIC EARTHQUAKES AND EARTHQUAKE INDUCED-LANDSLIDE TSUNAMI IN THE CARIBBEAN WILLIAM R. MCCANN Earth Scientific Consultants Westminster, CO 80021, USA Deformation along the margin of the Caribbean Plate is the principal cause of the tsunami threat in the Caribbean. That margin parallels the northern coast of South America, the Lesser Antilles, and extends along the Greater Antilles from Puerto Rico through Jamaica. The eastern boundary of the Caribbean plate near the Lesser Antilles is the locus of subduction of Atlantic seafloor. At least three distinct, shallow tectonic regimes parallel the margin. They are: an outer tectonic belt where the North America Plate bends to enter the subduction zone, the main interface or zone of contact between the plates, and an inner zone of intraplate activity in the overriding Caribbean Plate. The level of seismic activity and tsunami potential in each of these zones is influenced by the presence of aseismic ridges on the downgoing plate. Ridges may increase the probability of tsunami or slow earthquakes, by reactivating thrust faults in the accretionary prism. The northeastern corner of the Caribbean Plate margin has a smooth transition from the relatively simple subduction zone in the Northern Lesser Antilles into a region of oblique convergence. It is a complex margin dominated by microplate tectonics from near Puerto Rico through Hispaniola. Here too the same three tectonic zones can be defined, but the third zone, “intraplate activity in the Caribbean Plate”, is more clearly delineated as microplate deformation in a wide plate boundary zone. Strike-slip tectonics dominates the region from Haiti westward to the northern coast of Honduras.
    [Show full text]
  • Nazca Plate Region) GRENADA 80°W 60°W 40°W 11900900 a A' 1 1 1 2 0 200 400 600 800 1,000 1,200 BARBADOS Compiled by Gavin P
    U.S. DEPARTMENT OF THE INTERIOR OPEN-FILE REPORT 2015–1031-E U.S. GEOLOGICAL SURVEY This report supplements Open-File Report 2010–1083-E 80°W 70°W 60°W 50°W PRE-INSTRUMENTAL SEISMICITY 1500 – 1899 SAINT LUCIA Seismicity of the Earth 1900–2013 BARBADOS Deaths, tsunami, MMI VIII+, or M 8 SAINT VINCENT AND THE GRENADINES HONDURAS M 8.5 labeled with year ARUBA CURAÇAO Seismotectonics of South America (Nazca Plate Region) GRENADA 80°W 60°W 40°W 11900900 A A' 1 1 1 2 0 200 400 600 800 1,000 1,200 BARBADOS Compiled by Gavin P. Hayes, Gregory M. Smoczyk, Harley M. Benz, Antonio Villaseñor, TRINIDAD AND TOBAGO CURAÇAO NICARAGUA Barranquilla Maracaibo Caracas HONDURAS GRENADA 3 Valencia Maracay Demerara Plain and Kevin P. Furlong Cartagena TRENCH AXIS Managua Barquisimeto NICARAGUA 19921992 0 2014 11950950 Clark Basin 10° COSTA RICA PANAMA 1U.S. Geological Survey VENEZUELA 2 GUYANA Institute of Earth Sciences, Consejo Superior de Investigaciones Científicas, (CSIC), Barcelona, Spain COSTA RICA Panama FRENCH 3Department of Geosciences, Pennsylvania State University, University Park, Pa., USA San Jose Cucuta VENEZUELA SURINAME GUIANA 10°N 11983983 PANAMA –200 COLOMBIA Bucaramanga TECTONIC SUMMARY 19341934 GUYANA Equator The South American arc extends over 7,000 kilometers (km), from the Chilean margin triple junction offshore of southern Chile, to Medellin Equator ECUADOR its intersection with the Panama fracture zone, offshore of the southern coast of Panama in Central America. It marks the plate –400 Manizales FRENCH boundary between the subducting Nazca plate and the South America plate, where the oceanic crust and lithosphere of the Nazca Bogota SURINAME PROFILE A plate begin their descent into the mantle beneath South America.
    [Show full text]
  • NICARAGUA RISE Ca. 1 Ga Basement MAYA Mixteca Terrane
    The Guayape-Papalutla fault system: A continuous Cretaceous structure from southern Mexico to the Chortís block? Tectonic implications: COMMENT and REPLY COMMENT: doi: 10.1130/G24949C.1 ently lies on the Caribbean plate, is generally located along the ENE- trending Cayman transform faults (Leroy et al., 2000). The latter J. Duncan Keppie boundary lies ~20° clockwise of the Guayape Fault, which, if pro- Departamento de Geologia Regional, Instituto de Geologia, Universidad jected northeastwards, would intersect the Cayman Trough at 80°W, Nacional Autonoma de Mexico, 04510 Mexico D.F., Mexico not 85°W as shown by Silva-Romo. The use of piercing points in making paleogeographic reconstruc- PROBLEMATICAL STATEMENTS tions greatly adds to their accuracy beyond that available using other Silva-Romo makes the following problematic statements: techniques. Thus, Silva-Romo’s (2008) proposal that the Papalutla fault 1. “The Papalutla fault represents the eastern limit of the Guerrero- in southern Mexico and the Guayape fault in Honduras provide piercing Morelos Platform” (p.76), which is characterized by Cretaceous shelf points to constrain a Late Cretaceous reconstruction (Fig. 1) of the alloch- carbonates (Centeno-Garcia et al., 2008). Such carbonates represent an thonous Chortís block is a worthwhile objective. However, such a correla- overstep sequence that extends from the eastern boundary of the Guer- tion raises more questions than it solves. rero terrane (located west of the Papalutla fault) across the Mixteca, Oaxaquia, and Maya terranes (Keppie, 2004). This suggests that the QUESTIONS Papalutla fault lies within the Paleozoic Mixteca terrane (comprising 1. What Euler pole was used? Silva-Romo (2008, p.
    [Show full text]
  • C-Map by Jeppesen Mm3d Coverage
    C-MAP BY JEPPESEN MM3D COVERAGE NORTH AMERICA WVJNAM021MAP – Canada North & East MM3D File Name: SDVJNAM021MAP0x.dbv Retail Price: $300.00 – Wide WVJNAM022MAP – USA East Coast and Bahamas MM3D File Name: SDVJNAM022MAP0x.dbv Retail Price: $300.00 – Wide 9 WVJNAM023MAP – Gulf of Mexico, Great Lakes & Rivers MM3D File Name: SDVJNAM023MAP0x.dbv Retail Price: $300.00 – Wide WVJNAM024MAP – West Coast & Hawaii MM3D File Name: SDVJNAM024MAP0x.dbv Retail Price: $300.00 – Wide 10 WVNJNAM025MAP – Canada West MM3D File Name: SDVJNAM025MAP0x.dbv Retail Price: $300.00 – Wide WVJNAM026MAP – Great Lakes & Canadian Maritimes MM3D File Name: SDVJNAM026MAP0x.dbv Retail Price: $300.00 – Wide 11 WVJNAM027MAP – Central America & Caribbean MM3D File Name: SDVJNAM027MAP0x.dbv Retail Price: $300.00 – Wide WVJNAM028MAP - Alaska MM3D File Name: SDVJNAM028MAP0x.dbv Retail Price: $300.00 – Wide 12 MWVJNAM033MAP – Atl. Coast, Gulf of MX & Caribbean MM3D File Name: (2files) SDVJNAM033NMAP0x.dbv and SDVJNAM033SMAP0x.dbv Retail Price: $600.00 – MegaWide MWVJNAM035MAP – Pacific Coast and Central America MM3D File Name: SDVJNAM035NMAP0x.dbv Retail Price: $600.00 –MegaWide 13 SOUTH AMERICA WVJSAM500MAP – Costa Rica to Chile to Falklands MM3D File Name: SDVJSAM500MAP0x.dbv Retail Price: $300.00 –Wide WVJSAM501MAP – Gulf of Paria to Cape Horn MM3D File Name: SDVJSAM501MAP0x.dbv Retail Price: $300.00 –Wide 14 MWVJSAM504MAP – South America & US Gulf Coast MM3D File Name: SDVJSAM504MAP0x.dbv Retail Price: $600.00 –MegaWide MAX LAKES WVJNAM017MAP – MAX Lakes North MM3D File Name:
    [Show full text]
  • View the Energy Map of Trinidad and Tobago, 2017 Edition
    Trinidad and Tobago LNG export destinations 2015 (million m3 of LNG) Trinidad and Tobago deepwater area for development 60°W 59°W 58°W Trinidad and Tobago territorial waters ENERGY MAP OF TRINIDAD AND TOBAGO 1000 2000 m m 2017 edition GRENADA BARBADOS Trinidad and Tobago 2000m LNG to Europe A tlantic Ocean 2.91 million m3 LNG A TLANTIC Caribbean 2000m 20 Produced by Petroleum Economist, in association with 00 O CEAN EUROPE Sea m Trinidad and Tobago 2000m LNG to North America NORTH AMERICA Trinidad and Tobago 5.69 million m3 LNG LNG to Asia 3 GO TTDAA 30 TTDAA 31 TTDAA 32 BA 1.02 million m LNG TO Trinidad and Tobago OPEN OPEN OPEN 12°N LNG to MENA 3 1.90 million m LNG ASIA Trinidad and Tobago CARIBBEAN TRINIDAD AND TOBAGO 2000m LNG to Caribbean Atlantic LNG Company profile Company Profile Company profile Company Profile 3 Established by the Government of Trinidad and Tobago in August 1975, The National Gas Company of Trinidad and Tobago Limited (NGC) is an BHP Billiton is a leading global resources company with a Petroleum Business that includes exploration, development, production and marketing Shell has been in Trinidad and Tobago for over 100 years and has played a major role in the development of its oil and gas industry. Petroleum Company of Trinidad and Tobago Limited (Petrotrin) is an integrated Oil and Gas Company engaged in the full range of petroleum 3.84 million m LNG internationally investment-graded company that is strategically positioned in the midstream of the natural gas value chain.
    [Show full text]