Infinity-A Simple, but Not Too Simple Introduction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Modal Logic of Potential Infinity, with an Application to Free Choice
The Modal Logic of Potential Infinity, With an Application to Free Choice Sequences Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ethan Brauer, B.A. ∼6 6 Graduate Program in Philosophy The Ohio State University 2020 Dissertation Committee: Professor Stewart Shapiro, Co-adviser Professor Neil Tennant, Co-adviser Professor Chris Miller Professor Chris Pincock c Ethan Brauer, 2020 Abstract This dissertation is a study of potential infinity in mathematics and its contrast with actual infinity. Roughly, an actual infinity is a completed infinite totality. By contrast, a collection is potentially infinite when it is possible to expand it beyond any finite limit, despite not being a completed, actual infinite totality. The concept of potential infinity thus involves a notion of possibility. On this basis, recent progress has been made in giving an account of potential infinity using the resources of modal logic. Part I of this dissertation studies what the right modal logic is for reasoning about potential infinity. I begin Part I by rehearsing an argument|which is due to Linnebo and which I partially endorse|that the right modal logic is S4.2. Under this assumption, Linnebo has shown that a natural translation of non-modal first-order logic into modal first- order logic is sound and faithful. I argue that for the philosophical purposes at stake, the modal logic in question should be free and extend Linnebo's result to this setting. I then identify a limitation to the argument for S4.2 being the right modal logic for potential infinity. -
Cantor on Infinity in Nature, Number, and the Divine Mind
Cantor on Infinity in Nature, Number, and the Divine Mind Anne Newstead Abstract. The mathematician Georg Cantor strongly believed in the existence of actually infinite numbers and sets. Cantor’s “actualism” went against the Aristote- lian tradition in metaphysics and mathematics. Under the pressures to defend his theory, his metaphysics changed from Spinozistic monism to Leibnizian volunta- rist dualism. The factor motivating this change was two-fold: the desire to avoid antinomies associated with the notion of a universal collection and the desire to avoid the heresy of necessitarian pantheism. We document the changes in Can- tor’s thought with reference to his main philosophical-mathematical treatise, the Grundlagen (1883) as well as with reference to his article, “Über die verschiedenen Standpunkte in bezug auf das aktuelle Unendliche” (“Concerning Various Perspec- tives on the Actual Infinite”) (1885). I. he Philosophical Reception of Cantor’s Ideas. Georg Cantor’s dis- covery of transfinite numbers was revolutionary. Bertrand Russell Tdescribed it thus: The mathematical theory of infinity may almost be said to begin with Cantor. The infinitesimal Calculus, though it cannot wholly dispense with infinity, has as few dealings with it as possible, and contrives to hide it away before facing the world Cantor has abandoned this cowardly policy, and has brought the skeleton out of its cupboard. He has been emboldened on this course by denying that it is a skeleton. Indeed, like many other skeletons, it was wholly dependent on its cupboard, and vanished in the light of day.1 1Bertrand Russell, The Principles of Mathematics (London: Routledge, 1992 [1903]), 304. -
Leibniz and the Infinite
Quaderns d’Història de l’Enginyeria volum xvi 2018 LEIBNIZ AND THE INFINITE Eberhard Knobloch [email protected] 1.-Introduction. On the 5th (15th) of September, 1695 Leibniz wrote to Vincentius Placcius: “But I have so many new insights in mathematics, so many thoughts in phi- losophy, so many other literary observations that I am often irresolutely at a loss which as I wish should not perish1”. Leibniz’s extraordinary creativity especially concerned his handling of the infinite in mathematics. He was not always consistent in this respect. This paper will try to shed new light on some difficulties of this subject mainly analysing his treatise On the arithmetical quadrature of the circle, the ellipse, and the hyperbola elaborated at the end of his Parisian sojourn. 2.- Infinitely small and infinite quantities. In the Parisian treatise Leibniz introduces the notion of infinitely small rather late. First of all he uses descriptions like: ad differentiam assignata quavis minorem sibi appropinquare (to approach each other up to a difference that is smaller than any assigned difference)2, differat quantitate minore quavis data (it differs by a quantity that is smaller than any given quantity)3, differentia data quantitate minor reddi potest (the difference can be made smaller than a 1 “Habeo vero tam multa nova in Mathematicis, tot cogitationes in Philosophicis, tot alias litterarias observationes, quas vellem non perire, ut saepe inter agenda anceps haeream.” (LEIBNIZ, since 1923: II, 3, 80). 2 LEIBNIZ (2016), 18. 3 Ibid., 20. 11 Eberhard Knobloch volum xvi 2018 given quantity)4. Such a difference or such a quantity necessarily is a variable quantity. -
The Axiom of Infinity and the Natural Numbers
Axiom of Infinity Natural Numbers Axiomatic Systems The Axiom of Infinity and The Natural Numbers Bernd Schroder¨ logo1 Bernd Schroder¨ Louisiana Tech University, College of Engineering and Science The Axiom of Infinity and The Natural Numbers 1. The axioms that we have introduced so far provide for a rich theory. 2. But they do not guarantee the existence of infinite sets. 3. In fact, the superstructure over the empty set is a model that satisfies all the axioms so far and which does not contain any infinite sets. (Remember that the superstructure itself is not a set in the model.) Axiom of Infinity Natural Numbers Axiomatic Systems Infinite Sets logo1 Bernd Schroder¨ Louisiana Tech University, College of Engineering and Science The Axiom of Infinity and The Natural Numbers 2. But they do not guarantee the existence of infinite sets. 3. In fact, the superstructure over the empty set is a model that satisfies all the axioms so far and which does not contain any infinite sets. (Remember that the superstructure itself is not a set in the model.) Axiom of Infinity Natural Numbers Axiomatic Systems Infinite Sets 1. The axioms that we have introduced so far provide for a rich theory. logo1 Bernd Schroder¨ Louisiana Tech University, College of Engineering and Science The Axiom of Infinity and The Natural Numbers 3. In fact, the superstructure over the empty set is a model that satisfies all the axioms so far and which does not contain any infinite sets. (Remember that the superstructure itself is not a set in the model.) Axiom of Infinity Natural Numbers Axiomatic Systems Infinite Sets 1. -
Equivalents to the Axiom of Choice and Their Uses A
EQUIVALENTS TO THE AXIOM OF CHOICE AND THEIR USES A Thesis Presented to The Faculty of the Department of Mathematics California State University, Los Angeles In Partial Fulfillment of the Requirements for the Degree Master of Science in Mathematics By James Szufu Yang c 2015 James Szufu Yang ALL RIGHTS RESERVED ii The thesis of James Szufu Yang is approved. Mike Krebs, Ph.D. Kristin Webster, Ph.D. Michael Hoffman, Ph.D., Committee Chair Grant Fraser, Ph.D., Department Chair California State University, Los Angeles June 2015 iii ABSTRACT Equivalents to the Axiom of Choice and Their Uses By James Szufu Yang In set theory, the Axiom of Choice (AC) was formulated in 1904 by Ernst Zermelo. It is an addition to the older Zermelo-Fraenkel (ZF) set theory. We call it Zermelo-Fraenkel set theory with the Axiom of Choice and abbreviate it as ZFC. This paper starts with an introduction to the foundations of ZFC set the- ory, which includes the Zermelo-Fraenkel axioms, partially ordered sets (posets), the Cartesian product, the Axiom of Choice, and their related proofs. It then intro- duces several equivalent forms of the Axiom of Choice and proves that they are all equivalent. In the end, equivalents to the Axiom of Choice are used to prove a few fundamental theorems in set theory, linear analysis, and abstract algebra. This paper is concluded by a brief review of the work in it, followed by a few points of interest for further study in mathematics and/or set theory. iv ACKNOWLEDGMENTS Between the two department requirements to complete a master's degree in mathematics − the comprehensive exams and a thesis, I really wanted to experience doing a research and writing a serious academic paper. -
Axioms of Set Theory and Equivalents of Axiom of Choice Farighon Abdul Rahim Boise State University, [email protected]
Boise State University ScholarWorks Mathematics Undergraduate Theses Department of Mathematics 5-2014 Axioms of Set Theory and Equivalents of Axiom of Choice Farighon Abdul Rahim Boise State University, [email protected] Follow this and additional works at: http://scholarworks.boisestate.edu/ math_undergraduate_theses Part of the Set Theory Commons Recommended Citation Rahim, Farighon Abdul, "Axioms of Set Theory and Equivalents of Axiom of Choice" (2014). Mathematics Undergraduate Theses. Paper 1. Axioms of Set Theory and Equivalents of Axiom of Choice Farighon Abdul Rahim Advisor: Samuel Coskey Boise State University May 2014 1 Introduction Sets are all around us. A bag of potato chips, for instance, is a set containing certain number of individual chip’s that are its elements. University is another example of a set with students as its elements. By elements, we mean members. But sets should not be confused as to what they really are. A daughter of a blacksmith is an element of a set that contains her mother, father, and her siblings. Then this set is an element of a set that contains all the other families that live in the nearby town. So a set itself can be an element of a bigger set. In mathematics, axiom is defined to be a rule or a statement that is accepted to be true regardless of having to prove it. In a sense, axioms are self evident. In set theory, we deal with sets. Each time we state an axiom, we will do so by considering sets. Example of the set containing the blacksmith family might make it seem as if sets are finite. -
Insight Into Pupils' Understanding of Infinity In
INSIGHT INTO PUPILS’ UNDERSTANDING OF INFINITY IN A GEOMETRICAL CONTEXT Darina Jirotková Graham Littler Charles University, Prague, CZ University of Derby, UK Abstract. School students’ intuitive concepts of infinity are gained from personal experiences and in many cases the tacit models built up by them are inconsistent. The paper describes and analyses a series of tasks which were developed to enable the researchers to look into the mental processes used by students when they are thinking about infinity and to help the students to clarify their thoughts on the topic. INTRODUCTION Students’ understanding of infinity is determined by life experiences, on the base of which they have developed tacit models of infinity in their minds. These tacit models (Fischbein, 2001) deal with repeated, everlasting processes, such as going on forever, continued sub-division etc. which are considered mathematically as potential infinity, or by the consideration of a sequence Boero et al (2003) called sequential infinity. Basic concepts of mathematical analysis are usually introduced through limiting processes, which also reinforces the idea of infinity as a process. However, the symbol � is used as a number when tasks about limits and some other concepts of mathematical analysis are solved. When we consider the historical development of infinity, philosophers and mathematicians were dealing with this concept only in its potential form for over 1500 years. Moreno and Waldegg (1991) noted how a grammatical analysis of the use of infinity could be applied to Greek culture. The Greeks used the word ‘infinity’ in a mathematical context only as an adverb, indicating an infinitely continuing action, which is an expression of potential infinity and it was not until 1877that actual infinity, expressed as a noun in mathematics, was defined by Cantor. -
Chapter 1. Informal Introdution to the Axioms of ZF.∗
Chapter 1. Informal introdution to the axioms of ZF.∗ 1.1. Extension. Our conception of sets comes from set of objects that we know well such as N, Q and R, and subsets we can form from these determined by their properties. Here are two very simple examples: {r ∈ R | 0 ≤ r} = {r ∈ R | r has a square root in R} {x | x 6= x} = {n ∈ N | n even, greater than two and a prime}. (This last example gives two definitions of the empty set, ∅). The notion of set is an abstraction of the notion of a property. So if X, Y are sets we have that ∀x ( x ∈ X ⇐⇒ x ∈ Y ) =⇒ X = Y . One can immediately see that this implies that the empty set is unique. 1.2. Unions. Once we have some sets to play with we can consider sets of sets, for example: {xi | i ∈ I } for I some set of indices. We also have the set that consists of all objects that belong S S to some xi for i ∈ I. The indexing set I is not relevant for us, so {xi | i ∈ I } = xi can be S i∈I written X, where X = {xi | i ∈ I }. Typically we will use a, b, c, w, x, z, ... as names of sets, so we can write [ [ x = {z | z ∈ x} = {w | ∃z such that w ∈ z and z ∈ x}. Or simply: S x = {w | ∃z ∈ x w ∈ z }. (To explain this again we have [ [ [ y = {y | y ∈ x} = {z | ∃y ∈ x z ∈ y }. y∈x So we have already changed our way of thinking about sets and elements as different things to thinking about all sets as things of the same sort, where the elements of a set are simply other sets.) 1.3. -
On Cantor's Uncountability Proofs
The Meaning of Infinity W. Mückenheim University of Applied Sciences, Baumgartnerstraße 16, D-86161 Augsburg, Germany [email protected] ____________________________________________________________________ Abstract. The notions of potential infinity (understood as expressing a direction) and actual infinity (expressing a quantity) are investigated. It is shown that the notion of actual infinity is inconsistent, because the set of all (finite) natural numbers which it is ascribed to, cannot contain an actually infinite ¡0 number of elements. Further the basic inequality of transfinite set theory ¡0 < 2 is found invalid, and, consequently, the set of real numbers is proven denumerable by enumerating it. 1. Introduction Infinity has fascinated philosophers and mathematicians at all times. So it is not surprising that the ideas concerning this problem evolved quite differently, not only with respect to the fundamental question whether its meaning is a potential one or an actual one, but also with respect to the rules to be observed in the infinite. The fathers of calculus had to struggle with infinitely small quantities which, however, were not zero, so that bishop Berkeley ironically remarked: "They are neither finite quantities, nor quantities infinitely small, nor yet nothing. May we not call them the ghosts of departed quantities?" But more than the infinitely small, which could successfully be dealt with, at least in applying the calculus, the infinitely large resisted the human mind. While, according to Galilei, the infinite should obey another arithmetic than the finite, Leibniz, on the contrary, expected the rules of finite mathematics to remain valid in the infinite. It seems reasonable, to a certain degree, to maintain approved rules because (1) this method always has turned out fruitful in history of mathematics when numbers and notions had to be generalised, and because (2) we have no a priori knowledge or imagination of the actual infinite, so we would be helpless without relying to the firm rules of finite mathematics. -
SET THEORY Andrea K. Dieterly a Thesis Submitted to the Graduate
SET THEORY Andrea K. Dieterly A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF ARTS August 2011 Committee: Warren Wm. McGovern, Advisor Juan Bes Rieuwert Blok i Abstract Warren Wm. McGovern, Advisor This manuscript was to show the equivalency of the Axiom of Choice, Zorn's Lemma and Zermelo's Well-Ordering Principle. Starting with a brief history of the development of set history, this work introduced the Axioms of Zermelo-Fraenkel, common applications of the axioms, and set theoretic descriptions of sets of numbers. The book, Introduction to Set Theory, by Karel Hrbacek and Thomas Jech was the primary resource with other sources providing additional background information. ii Acknowledgements I would like to thank Warren Wm. McGovern for his assistance and guidance while working and writing this thesis. I also want to thank Reiuwert Blok and Juan Bes for being on my committee. Thank you to Dan Shifflet and Nate Iverson for help with the typesetting program LATEX. A personal thank you to my husband, Don, for his love and support. iii Contents Contents . iii 1 Introduction 1 1.1 Naive Set Theory . 2 1.2 The Axiom of Choice . 4 1.3 Russell's Paradox . 5 2 Axioms of Zermelo-Fraenkel 7 2.1 First Order Logic . 7 2.2 The Axioms of Zermelo-Fraenkel . 8 2.3 The Recursive Theorem . 13 3 Development of Numbers 16 3.1 Natural Numbers and Integers . 16 3.2 Rational Numbers . 20 3.3 Real Numbers . -
How Set Theory Impinges on Logic
1 Jesús Mosterín HOW SET THEORY IMPINGES ON LOGIC The set-theoretical universe Reality often cannot be grasped and understood in its unfathomable richness and mind-blowing complexity. Think only of the trivial case of the shape of the Earth. Every time the wind blows, a bird flies, a tree drops a leave, every time it rains, a car moves or we get a haircut, the form of the Earth changes. No available or conceivable geometry can describe the ever changing form of the surface of our planet. Sometimes the best we can do is to apply the method of theoretical science: to pick up a mathematical structure from the set-theoretical universe, a structure that has some formal similarities with some features of the real world situation we are interested in, and to use that structure as a model of that parcel of the world. In the case of the Earth, the structure can be an Euclidean sphere, or a sphere flattened at the poles, or an ellipsoid, but of course these structures do not represent the car and the hair, and so are realistic only up to a point. The largest part of scientific activity results in data, in contributions to history (in a broad sense). Only exceptionally does scientific activity result in abstract schemata, in formulas, in theories. In history there is truth and falsity, but we are not sure whether it makes sense to apply these same categories to an abstract theory. We pick up a mathematical structure and construct a theory. We still have to determine its scope of application or validity, the range of its realizations. -
1. the Zermelo Fraenkel Axioms of Set Theory
1. The Zermelo Fraenkel Axioms of Set Theory The naive definition of a set as a collection of objects is unsatisfactory: The objects within a set may themselves be sets, whose elements are also sets, etc. This leads to an infinite regression. Should this be allowed? If the answer is “yes”, then such a set certainly would not meet our intuitive expectations of a set. In particular, a set for which A A holds contradicts our intuition about a set. This could be formulated as a first∈ axiom towards a formal approach towards sets. It will be a later, and not very essential axiom. Not essential because A A will not lead to a logical contradiction. This is different from Russel’s paradox:∈ Let us assume that there is something like a universe of all sets. Given the property A/ A it should define a set R of all sets for which this property holds. Thus R = A∈ A/ A . Is R such a set A? Of course, we must be able to ask this { | ∈ } question. Notice, if R is one of the A0s it must satisfy the condition R/ R. But by the very definition of R, namely R = A A/ A we get R R iff R/∈ R. Of course, this is a logical contradiction. But{ how| can∈ } we resolve it?∈ The answer∈ will be given by an axiom that restricts the definition of sets by properties. The scope of a property P (A), like P (A) A/ A, must itself be a set, say B. Thus, instead of R = A A/ A we define≡ for any∈ set B the set R(B) = A A B, A / A .