Ferromagnetic Resonance of Magnetite Biominerals Traces Redox Changes ∗ Thomas M

Total Page:16

File Type:pdf, Size:1020Kb

Ferromagnetic Resonance of Magnetite Biominerals Traces Redox Changes ∗ Thomas M Earth and Planetary Science Letters 545 (2020) 116400 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Ferromagnetic resonance of magnetite biominerals traces redox changes ∗ Thomas M. Blattmann a,b, , Barbara Lesniak c, Inés García-Rubio d,e, Michalis Charilaou f, ∗∗ Martin Wessels g, Timothy I. Eglinton b, Andreas U. Gehring c, a Biogeochemistry Research Center, JAMSTEC, 237-0061 Yokosuka, Japan b Geological Institute, ETH Zurich, 8092 Zurich, Switzerland c Institute of Geophysics, ETH Zurich, 8092 Zurich, Switzerland d Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland e Centro Universitario de la Defensa, 50090 Zaragoza, Spain f Department of Physics, University of Louisiana at Lafayette, Lafayette, LA 70504, USA g Institut für Seenforschung, Landesanstalt für Umwelt Baden-Württemberg, 88085 Langenargen, Germany a r t i c l e i n f o a b s t r a c t Article history: Redox variations govern a multitude of key geochemical and microbiological processes within lacustrine Received 18 October 2019 and marine systems, yet the interpretation of these geological archives can be limited because redox- Received in revised form 12 May 2020 sensitive microorganisms leave behind sparse fossil evidence. Here, we assess a biologically controlled Accepted 5 June 2020 magnetic proxy through investigation of a well-constrained sedimentary record covering a perturbation Available online 16 June 2020 of redox-conditions driven by a complete trophic cycle in Lake Constance. Ferromagnetic resonance Editor: I. Halevy spectroscopy of sediments reveals strong uniaxial anisotropy, indicative of single-domain magnetite Keywords: particles in intact or fragmentary chain arrangements, which are an unambiguous trait of magnetotactic magnetotactic bacteria bacteria (MTB) and their magnetofossil remains. We show that biogenic magnetite formed intra-cellularly magnetofossil in MTB faithfully records changing redox-conditions at or close to the sediment water-interface. Biogenic anoxia magnetite within sedimentary records points to the proliferation of MTB parallel to a decline in water sediment column dissolved oxygen and the formation of sulfidic surface sediments in Lake Constance associated redox gradient with an episode of eutrophication (1955–1991). We conclude that magnetofossils may serve as a sensitive eutrophication geological proxy to reconstruct dynamic redox-changes along the sediment-water interface and bottom waters. © 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 1. Introduction existence in sediments in the form of magnetofossils (Hesse, 1994; Kind et al., 2012; Kodama et al., 2013; Kopp and Kirschvink, 2008; Understanding the impact of redox dynamics within aquatic Roberts et al., 2012). These intracellularly produced ferrimagnetic 2+ 3+ systems is important for reconstructing biogeochemical processes nanoparticles, generally composed of magnetite (Fe Fe2 O4), de- in marine and lacustrine sedimentary records. Changing redox con- noted magnetosomes, are characterized by genetically-determined, ditions can drive faunal changes, which in turn critically affect well-defined sizes (typically 35-120 nm) with narrow shape dis- fossil assemblages and molecular (biomarker) signatures preserved tributions in the single-domain (SD) magnetic state (Bazylinski et in the geological record (Gambacorta et al., 2016). Redox-sensitive al., 1988; Devouard et al., 1998). Magnetosomes are aligned in microorganisms such as magnetotactic bacteria (MTB), which are chains along a cytoskeletal filament that stabilizes their arrange- present in freshwater and marine settings, are of special interest ment and prevents clumping (Kopp et al., 2006; Scheffel et al., because they may play an appreciable role in the cycling of iron in 2006). This linear arrangement generates a magnetic dipole that is aquatic systems (Chen et al., 2014) and can leave evidence of their used by MTB as a compass to navigate along Earth’s magnetic field (i.e., magnetotaxis) toward favored habitats around the oxic-anoxic transition zone (OATZ) (e.g., Spormann and Wolfe, 1984). MTB and Corresponding author at: Biogeochemistry Research Center, JAMSTEC, 237-0061 * their remains have been reported from Quaternary deposits (Kind Yokosuka, Japan. et al., 2012; Kodama et al., 2013), but magnetofossil evidence ex- ** Corresponding author. E-mail addresses: [email protected] (T.M. Blattmann), [email protected] tends back to the Cretaceous (Kopp and Kirschvink, 2008), with (A.U. Gehring). genes associated with magnetosome formation originating in the https://doi.org/10.1016/j.epsl.2020.116400 0012-821X/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 2 T.M. Blattmann et al. / Earth and Planetary Science Letters 545 (2020) 116400 Archean (Lin et al., 2017). Paleomagnetic studies are increasingly considering and seeking to extract paleoenvironmental informa- tion (e.g., nutrient availability, dissolved iron availability, oxygen concentrations) from magnetofossils embedded within a complex matrix of magnetic minerals in sedimentary records (Larrasoaña et al., 2003; Passier et al., 2001; Roberts et al., 2011, 2012; Sa- vian et al., 2014; Suk, 2016). Given the OATZ habitat of MTB and the stability of magnetosomes, magnetofossils may serve as ideal redox-sensitive proxies in geological archives as postulated previ- ously (Chang et al., 2018; Hawthorne and McKenzie, 1993; Larra- soaña et al., 2014). In recent years, ferromagnetic resonance (FMR) spectroscopy has been established as a powerful tool to quanti- tatively analyze the magnetic traits of cultured MTB (Charilaou, 2017; Kopp et al., 2006), and this in turn opened the door to de- tect MTB and magnetofossils in geological samples (Gehring et al., 2011a). Moreover, the FMR spectral response allows the essential discrimination between biogenic and detrital magnetite character- ized by SD and multi-domain, respectively (e.g., Gehring et al., 2009; Griscom, 1980), paving the way for magnetofossil identifica- tion in sedimentary records and extracting environmental changes. Here, we present the FMR spectral evolution yielded from a his- torically chronicled redox perturbation recorded in a sediment core th st from Lake Constance spanning the mid-19 to early 21 Century as a testbed to decipher the response of MTB. The rise and fall of MTB as witnessed by their magnetofossil legacy in sediments is proposed as a proxy for past water column and sediment-water interface redox changes. Fig. 1. Lake Constance sediment profile with chronology, organic carbon content, total sulfur content, and normalized magnetic susceptibility. 2. Materials and methods 1966). In recent years, it has been successfully applied to quantita- 2.1. Study site and sampling tively analyze the magnetic properties of cultured MTB (Charilaou et al., 2011a, 2015) and to detect magnetofossils in sedimentary Lake Constance, bordering Switzerland, Austria, and Germany, deposits (Gehring et al., 2011a; Kind et al., 2012; Kopp et al., 2006; is the second largest peri-alpine lake in Central Europe and in- Roberts et al., 2011). In the following, we summarize the basic FMR cludes a shelf, margin, and abyssal plain similar to ocean basin principles to justify the concept of spectral analysis in our study. In bathymetry (IGKB, 2016; Müller, 1966b; Wessels, 1998a). The ◦ ◦ an FMR experiment, the sample is subjected to a DC external mag- study site (47.5997 N 9.3581 E) on the southern slope of the netic field and an orthogonal microwave field. The DC field drives lake at a water depth of 100 m and sedimentation rate of 1-2 the magnetic moment of the sample to a precession around the mm/y, is a reference locality for monitoring of lacustrine primary field axis at a frequency that increases linearly with the strength productivity (Blattmann et al., 2019; Fuentes et al., 2013; IGKB, of the external field, i.e., the Larmor frequency, ωL = gμB Beff/, 2009; Wessels et al., 1999) and is representative of environmen- where is the reduced Planck constant, g is the Landé spectro- tal changes since the Late Glacial period (Wessels, 1998b). For this scopic splitting factor, μB is the Bohr magneton, and Beff is the study, a ∼1m gravity core (BO12-111) was retrieved in December effective magnetic field in the sample, consisting of both internal 2012, extruded, split in sections based on color (Fig. 1) and trans- (exchange and anisotropy) and external fields (DC field and mi- ferred to polyethylene bags. Each sample was homogenized, frozen ◦ crowave field). Once the precession frequency matches that of the at −20 C, and freeze-dried prior to analysis. incident microwave radiation, i.e., ωL = ωmw , resonance occurs and the sample absorbs microwave radiation as the magnetic moments 2.2. Sedimentary sulfur and organic carbon precess at maximum amplitude. In a FMR spectrum, the resonance Carbon and sulfur contents were determined using an ele- event is recorded as the absorption of microwaves that results in a mental analyzer (including an acidification module and furnace) resonance field, as a function of the external magnetic field. When coupled to an infrared detector (Analytik Jena multiEA 4000). To- the resonance condition is fulfilled, the absorption exhibits a max- tal inorganic carbon content was quantified using an acidification
Recommended publications
  • Life with Compass: Diversity and Biogeography of Magnetotactic Bacteria
    bs_bs_banner Environmental Microbiology (2014) 16(9), 2646–2658 doi:10.1111/1462-2920.12313 Minireview Life with compass: diversity and biogeography of magnetotactic bacteria Wei Lin,1,2 Dennis A. Bazylinski,3 Tian Xiao,2,4 the present-day biogeography of MTB, and the ruling Long-Fei Wu2,5 and Yongxin Pan1,2* parameters of their spatial distribution, will eventu- 1Biogeomagnetism Group, Paleomagnetism and ally help us predict MTB community shifts with envi- Geochronology Laboratory, Key Laboratory of the ronmental changes and assess their roles in global Earth’s Deep Interior, Institute of Geology and iron cycling. Geophysics, Chinese Academy of Sciences, Beijing 100029, China. 2France-China Bio-Mineralization and Nano-Structures Introduction Laboratory, Chinese Academy of Sciences, Beijing Iron is the fourth most common element in the Earth’s 100029, China. crust and a crucial nutrient for almost all known organ- 3 School of Life Sciences, University of Nevada at Las isms. The cycling of iron is one of the key processes in the Vegas, Las Vegas, NV, USA. Earth’s biogeochemical cycles. A number of organisms 4 Key Laboratory of Marine Ecology & Environmental synthesize iron minerals and play essential roles in global Sciences, Institute of Oceanology, Chinese Academy of iron cycling (Westbroek and de Jong, 1983; Winklhofer, Sciences, Qingdao, China. 2010). One of the most interesting examples of these 5 Laboratoire de Chimie Bactérienne, Aix-Marseille types of organisms are the magnetotactic bacteria (MTB), Université, CNRS, Marseille Cedex, France. a polyphyletic group of prokaryotes that are ubiquitous in aquatic and sedimentary environments (Bazylinski Summary and Frankel, 2004; Bazylinski et al., 2013).
    [Show full text]
  • Magnetic Properties of Uncultivated Magnetotactic Bacteria and Their Contribution to a Stratified Estuary Iron Cycle
    ARTICLE Received 6 Feb 2014 | Accepted 25 Jul 2014 | Published 1 Sep 2014 DOI: 10.1038/ncomms5797 Magnetic properties of uncultivated magnetotactic bacteria and their contribution to a stratified estuary iron cycle A.P. Chen1, V.M. Berounsky2, M.K. Chan3, M.G. Blackford4, C. Cady5,w, B.M. Moskowitz6, P. Kraal7, E.A. Lima8, R.E. Kopp9, G.R. Lumpkin4, B.P. Weiss8, P. Hesse1 & N.G.F. Vella10 Of the two nanocrystal (magnetosome) compositions biosynthesized by magnetotactic bacteria (MTB), the magnetic properties of magnetite magnetosomes have been extensively studied using widely available cultures, while those of greigite magnetosomes remain poorly known. Here we have collected uncultivated magnetite- and greigite-producing MTB to determine their magnetic coercivity distribution and ferromagnetic resonance (FMR) spectra and to assess the MTB-associated iron flux. We find that compared with magnetite-producing MTB cultures, FMR spectra of uncultivated MTB are characterized by a wider empirical parameter range, thus complicating the use of FMR for fossilized magnetosome (magnetofossil) detection. Furthermore, in stark contrast to putative Neogene greigite magnetofossil records, the coercivity distributions for greigite-producing MTB are fundamentally left-skewed with a lower median. Lastly, a comparison between the MTB-associated iron flux in the investigated estuary and the pyritic-Fe flux in the Black Sea suggests MTB play an important, but heretofore overlooked role in euxinic marine system iron cycle. 1 Department of Environment and Geography, Macquarie University, North Ryde, New South Wales 2109, Australia. 2 Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island 02882, USA. 3 School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA.
    [Show full text]
  • Geobiology of Marine Magnetotactic Bacteria Sheri Lynn Simmons
    Geobiology of Marine Magnetotactic Bacteria by Sheri Lynn Simmons A.B., Princeton University, 1999 Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biological Oceanography at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY and the WOODS HOLE OCEANOGRAPHIC INSTITUTION June 2006 c Woods Hole Oceanographic Institution, 2006. Author.............................................................. Joint Program in Oceanography Massachusetts Institute of Technology and Woods Hole Oceanographic Institution May 19, 2006 Certified by. Katrina J. Edwards Associate Scientist, Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution Thesis Supervisor Accepted by......................................................... Ed DeLong Chair, Joint Committee for Biological Oceanography Massachusetts Institute of Technology-Woods Hole Oceanographic Institution Geobiology of Marine Magnetotactic Bacteria by Sheri Lynn Simmons Submitted to the MASSACHUSETTS INSTITUTE OF TECHNOLOGY and the WOODS HOLE OCEANOGRAPHIC INSTITUTION on May 19, 2006, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biological Oceanography Abstract Magnetotactic bacteria (MTB) biomineralize intracellular membrane-bound crystals of magnetite (Fe3O4) or greigite (Fe3S4), and are abundant in the suboxic to anoxic zones of stratified marine environments worldwide. Their population densities (up to 105 cells ml−1) and high intracellular iron content suggest a potentially significant role in iron
    [Show full text]
  • 19900014581.Pdf
    NASA Contractor Report 4295 The Biogeochemistry of Metal Cycling Edited by Kenneth H. Nealson and Molly Nealson University of Wisconsin at Milwaukee Milwaukee, Wisconsin F. Ronald Dutcher The George Washington University Washington, D.C. Prepared for NASA Office of Space Science and Applications under Contract NASW-4324 National Aeronautics and Space Administration Office of Management Scientific and Technical Information Division 1990 Table of Contents P._gg Introduction vii ,°° Map of Oneida lake Vlll PBME Summer Schedule 1987 ix Faculty and Lecturers of the PBME 1987 Course XIII.°° Students of the PBME 1987 Course xvii I. Lecturers' Abstracts and References I Farooq Azam "Microbial Food Web Dynamics" "Mechanisms in Bacteria - Organic Matter Interactions in Aquatic Environments" Jeffrey S. Buyer "Microbial Iron Transport: Chemistry and Biochemistry" "Microbial Iron Transport: Ecology" Arthur S. Brooks "General Limnology and Primary Productivity" William C. Ghiorse "Survey of Fe/Mn-depositing (Oxidizing) Microorganisms" 10 "Lepto_hrix discoph0_: Mn Oxidation in Field and Laboratory" 12 Robert W. Howarth "Nutrient Limitation in Aquatic Ecosystems: Regulation by 13 Trace Metals" Paul E. Kepkay "Microelectrodes, Microgradients and Microbial Metabolism" 14 "In situ Dialysis: A Tool for Studying Biogeochemical Processes" 16 Edward L. Mills "Oneida Lake and Its Food Chain" 17 William S. Moore "Isotopic Tracers of Scavenging and Sedimentation" 19 "Manganese Nodules from the Deep-Sea and Oneida Lake" 21 °°° IU PRECEDING PAGE BLANK NOT FILMED James J. Morgan "Aqueous Solution, Precipitation and Redox Equilibria of 23 Manganese in Water" "Rates of Mn(ID Oxidation in Aquatic Systems: Abiotic Reactions 24 and the Importance of Surface Catalysis" James W. Murray "Mechanisms Controlling the Distribution of Trace Metals in 26 Oceans and Lakes" "Diagenesis in the Sediments of Lakes" 29 Kenneth H.
    [Show full text]
  • Iron-Biomineralizing Organelle in Magnetotactic Bacteria: Function
    Iron-biomineralizing organelle in magnetotactic bacteria: function, synthesis and preservation in ancient rock samples Matthieu Amor, François Mathon, Caroline Monteil, Vincent Busigny, Christopher Lefèvre To cite this version: Matthieu Amor, François Mathon, Caroline Monteil, Vincent Busigny, Christopher Lefèvre. Iron- biomineralizing organelle in magnetotactic bacteria: function, synthesis and preservation in ancient rock samples. Environmental Microbiology, Society for Applied Microbiology and Wiley-Blackwell, 2020, 10.1111/1462-2920.15098. hal-02919104 HAL Id: hal-02919104 https://hal.archives-ouvertes.fr/hal-02919104 Submitted on 7 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Iron-biomineralizing organelle in magnetotactic bacteria: function, synthesis 2 and preservation in ancient rock samples 3 4 Matthieu Amor1, François P. Mathon1,2, Caroline L. Monteil1 , Vincent Busigny2,3, Christopher 5 T. Lefevre1 6 7 1Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies 8 of Aix-Marseille, CEA Cadarache, F-13108 Saint-Paul-lez-Durance, France 9 2Université de Paris, Institut de Physique du Globe de Paris, CNRS, F-75005, Paris, France. 10 3Institut Universitaire de France, 75005 Paris, France 11 1 12 Abstract 13 Magnetotactic bacteria (MTB) are ubiquitous aquatic microorganisms that incorporate iron 14 from their environment to synthesize intracellular nanoparticles of magnetite (Fe3O4) or 15 greigite (Fe3S4) in a genetically controlled manner.
    [Show full text]
  • Quantifying Magnetite Magnetofossil Contributions to Sedimentary Magnetizations
    Earth and Planetary Science Letters 382 (2013) 58–65 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Quantifying magnetite magnetofossil contributions to sedimentary magnetizations ∗ David Heslop a, ,AndrewP.Robertsa, Liao Chang a,b, Maureen Davies a, Alexandra Abrajevitch a, Patrick De Deckker a a Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia b Paleomagnetic Laboratory ‘Fort Hoofddijk’, Department of Earth Sciences, University of Utrecht, 3584 CD Utrecht, Netherlands article info abstract Article history: Under suitable conditions, magnetofossils (the inorganic remains of magnetotactic bacteria) can contribute Received 2 May 2013 to the natural remanent magnetization (NRM) of sediments. In recent years, magnetofossils have Received in revised form 30 August 2013 been shown to be preserved commonly in marine sediments, which makes it essential to quantify Accepted 10 September 2013 their importance in palaeomagnetic recording. In this study, we examine a deep-sea sediment core Available online xxxx from offshore of northwestern Western Australia. The magnetic mineral assemblage is dominated by Editor: J. Lynch-Stieglitz continental detritus and magnetite magnetofossils. By separating magnetofossil and detrital components Keywords: based on their different demagnetization characteristics, it is possible to quantify their respective natural remanent magnetization contributions to the sedimentary NRM throughout the Brunhes chron. In the studied core, the magnetofossil contribution of magnetofossils to the NRM is controlled by large-scale climate changes, with their relative biogenic magnetite importance increasing during glacial periods when detrital inputs were low. Our results demonstrate Western Australia that magnetite magnetofossils can dominate sedimentary NRMs in settings where they are preserved in Brunhes chron significant abundances.
    [Show full text]
  • Lowtemperature Magnetic Properties of Pelagic Carbonates: Oxidation of Biogenic Magnetite and Identification of Magnetosome Chai
    JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH, VOL. 118, 6049–6065, doi:10.1002/2013JB010381, 2013 Low-temperature magnetic properties of pelagic carbonates: Oxidation of biogenic magnetite and identification of magnetosome chains Liao Chang,1,2 Michael Winklhofer,3 Andrew P. Roberts,2 David Heslop,2 Fabio Florindo,4 Mark J. Dekkers,1 Wout Krijgsman,1 Kazuto Kodama,5 and Yuhji Yamamoto 5 Received 24 May 2013; revised 19 August 2013; accepted 24 October 2013; published 11 December 2013. [1] Pelagic marine carbonates provide important records of past environmental change. We carried out detailed low-temperature magnetic measurements on biogenic magnetite-bearing sediments from the Southern Ocean (Ocean Drilling Program (ODP) Holes 738B, 738C, 689D, and 690C) and on samples containing whole magnetotactic bacteria cells. We document a range of low-temperature magnetic properties, including reversible humped low-temperature cycling (LTC) curves. Different degrees of magnetite oxidation are considered to be responsible for the observed variable shapes of LTC curves. A dipole spring mechanism in magnetosome chains is introduced to explain reversible LTC curves. This dipole spring mechanism is proposed to result from the uniaxial anisotropy that originates from the chain arrangement of biogenic magnetite, similar to published results for uniaxial stable single domain (SD) particles. The dipole spring mechanism reversibly restores the remanence during warming in LTC measurements. This supports a previous idea that remanence of magnetosome chains is completely reversible during LTC experiments. We suggest that this magnetic fingerprint is a diagnostic indicator for intact magnetosome chains, although the presence of isolated uniaxial stable SD particles and magnetically interacting particles can complicate this test.
    [Show full text]
  • Gigantism in Unique Biogenic Magnetite at the Paleocene–Eocene Thermal Maximum
    Gigantism in unique biogenic magnetite at the Paleocene–Eocene Thermal Maximum Dirk Schumann*†, Timothy D. Raub‡, Robert E. Kopp§, Jean-Luc Guerquin-Kern¶ʈ, Ting-Di Wu¶ʈ, Isabelle Rouiller†**, Aleksey V. Smirnov††, S. Kelly Sears†**, Uwe Lu¨ cken‡‡, Sonia M. Tikoo‡, Reinhard Hesse*, Joseph L. Kirschvink‡, and Hojatollah Vali*†**§§ *Department of Earth and Planetary Sciences, McGill University, 3450 University Street, Montre´al, QC, Canada H3A 2A7; †Facility for Electron Microscopy Research, and **Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montre´al, QC, Canada H3A 2B2; ‡Division of Geological and Planetary Sciences, California Institute of Technology, MC 170-25 1200 East California Boulevard, Pasadena, CA 91125; §Department of Geosciences and Woodrow Wilson School of Public and International Affairs, Princeton University, 210 Guyot Hall, Princeton, NJ 08544; ¶Imagerie Inte´grative de la Mole´cule a`l’Organisme, Institut National de la Sante´et de la Recherche Me´dicale, Unite´759, Institut Curie, 91405 Orsay, France; ʈLaboratoire de Microscopie Ionique, Institut Curie, 91405 Orsay, France; ††Department of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI 49931-1295; and ‡‡Nanobiology Marketing, FEI Company, Eindhoven, 5600KA, Eindhoven, The Netherlands Edited by James Zachos, University of California, Santa Cruz, CA, and accepted by the Editorial Board August 29, 2008 (received for review April 15, 2008) ) ) We report the discovery of exceptionally large biogenic magnetite t % quartz sand (FMR) m m legend e e ( ( lithology crystals in clay-rich sediments spanning the Paleocene–Eocene h p d 0 25 50 0.30 0.35 0.40 164 g Thermal Maximum (PETM) in a borehole at Ancora, NJ.
    [Show full text]
  • Magnetotactic Bacteria: Isolation, Imaging, and Biomineralization
    Magnetotactic Bacteria: Isolation, Imaging, and Biomineralization Dissertation Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Zachery Walter John Oestreicher Graduate Program in Geological Sciences. The Ohio State University 2012 Committee: Steven K. Lower, Advisor Wendy Panero Olli Tuovinen Brian H. Lower Copyright by Zachery Walter John Oestreicher 2012 Abstract Magnetotactic bacteria (MTB) are a specialized group of bacteria that produce very small magnets inside their cells. There are a number of reasons that I decided to study these particular microorganisms. MTB are universally found in aquatic environments and they can be isolated with a simple magnet. These bacteria have the distinct ability to synthesize nanometer-scale crystals of magnetite (Fe3O4) or greigite (Fe3S4) inside their cells. This type of biomineralization serves as a model for mineral formation in more complex organisms such as birds, bees, and fish. The magnetite from MTB can be used as a biomarker, called magnetofossils, for past life on earth as well as possible extraterrestrial life forms (e.g., putative magnetofossils in Martian meteorites such as the Allan Hills meteorite). Magnetofossils are novel biomarkers because the magnetite from MTB has a specific crystal shape, narrow size range, and flawless chemical composition, which make them easily identified as biological origin. These same crystallographic attributes could also be exploited in biomimicry. For example, in vitro synthesis of magnetic crystals could have applications in medicine, electronic storage devices, and even environmental remediation. The work in this dissertation touches on all of these concepts.
    [Show full text]
  • Magnetostratigraphic Evidence for Post-Depositional Distortion of Osmium Isotopic Records in Pelagic Clay and Its Implications F
    Usui and Yamazaki Earth, Planets and Space (2021) 73:2 https://doi.org/10.1186/s40623-020-01338-4 EXPRESS LETTER Open Access Magnetostratigraphic evidence for post-depositional distortion of osmium isotopic records in pelagic clay and its implications for mineral fux estimates Yoichi Usui1* and Toshitsugu Yamazaki2 Abstract Chemical stratigraphy is useful for dating deep-sea sediments, which sometimes lack radiometric or biostratigraphic constraints. Oxic pelagic clay contains Fe–Mn oxyhydroxides that can retain seawater 187Os/188Os values, and its age can be estimated by ftting the isotopic ratios to the seawater 187Os/188Os curve. On the other hand, the stability of Fe–Mn oxyhydroxides is sensitive to redox change, and it is not clear whether the original 187Os/188Os values are always preserved in sediments. However, due to the lack of independent age constraints, the reliability of 187Os/188Os ages of pelagic clay has never been tested. Here we report inconsistency between magnetostratigraphic and 187Os/188Os ages in pelagic clay around Minamitorishima Island. In a ~ 5-m-thick interval, previous studies correlated 187Os/188Os data to a brief (< 1 million years) isotopic excursion in the late Eocene. Paleomagnetic measurements revealed at least 12 polarity zones in the interval, indicating a > 2.9–6.9 million years duration. Quartz and feldspars content showed that while the paleomagnetic chronology gives reasonable eolian fux estimates, the 187Os/188Os chronology leads to unrealistically high values. These results suggest that the low 187Os/188Os signal has difused from an original thin layer to the current ~ 5-m interval, causing an underestimate of the deposition duration.
    [Show full text]
  • In Situ Magnetic Identification of Giant, Needle-Shaped Magnetofossils in Paleocene–Eocene Thermal Maximum Sediments
    In situ magnetic identification of giant, needle-shaped magnetofossils in Paleocene–Eocene Thermal Maximum sediments Courtney L. Wagnera,1, Ramon Eglib, Ioan Lascuc, Peter C. Lipperta,d, Kenneth J. T. Livie, and Helen B. Searsf aDepartment of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112; bDivision of Data, Methods and Models, Central Institute of Meteorology and Geodynamics, 1190 Vienna, Austria; cDepartment of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560; dGlobal Change and Sustainability Center, University of Utah, Salt Lake City, UT 84112; eMaterials Characterization and Processing Center, Department of Materials Sciences and Engineering, Johns Hopkins University, Baltimore, MD 21218; and fDepartment of Geology, Colby College, Waterville, ME 04901 Edited by Lisa Tauxe, University of California San Diego, La Jolla, CA, and approved November 24, 2020 (received for review August 27, 2020) Near-shore marine sediments deposited during the Paleocene– These magnetofossils are interpreted to be the predominant Eocene Thermal Maximum at Wilson Lake, NJ, contain abundant source of the PETM magnetic enhancement of these cores (7, conventional and giant magnetofossils. We find that giant, 11–14), although alternative sources have been suggested (15–18). needle-shaped magnetofossils from Wilson Lake produce distinct Giant magnetofossils have so far only been identified in sediments magnetic signatures in low-noise, high-resolution first-order rever- from the PETM and the Middle Eocene Climatic Optimum, sal curve (FORC) measurements. These magnetic measurements on leading to the interpretation that they are unique to hyperthermal bulk sediment samples identify the presence of giant, needle- events(6,7,11–14).
    [Show full text]
  • Magnetofossil Taphonomy with Ferromagnetic Resonance Spectroscopy ⁎ Robert E
    Earth and Planetary Science Letters 247 (2006) 10–25 www.elsevier.com/locate/epsl Chains, clumps, and strings: Magnetofossil taphonomy with ferromagnetic resonance spectroscopy ⁎ Robert E. Kopp a, , Benjamin P. Weiss b, Adam C. Maloof b,1, Hojotollah Vali c,d, Cody Z. Nash a, Joseph L. Kirschvink a a Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA b Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA c Department of Anatomy and Cell Biology and Facility for Electron Microscopy Research, McGill University, Montréal, QC, Canada H3A 2B2 d Department of Earth and Planetary Sciences, McGill University, Montréal, QC, Canada H3A 2A7 Received 15 February 2006; received in revised form 26 April 2006; accepted 1 May 2006 Editor: S. King Abstract Magnetotactic bacteria produce intracellular crystals of magnetite or greigite, the properties of which have been shaped by evolution to maximize the magnetic moment per atom of iron. Intracellular bacterial magnetite therefore possesses traits amenable to detection by physical techniques: typically, narrow size and shape distributions, single-domain size and arrangement in linear chains, and often crystal elongation. Past strategies for searching for bacterial magnetofossils using physical techniques have focused on identifying samples containing significant amounts of single domain magnetite or with narrow coercivity distributions. Searching for additional of traits would, however,
    [Show full text]