In Situ Magnetic Identification of Giant, Needle-Shaped Magnetofossils in Paleocene–Eocene Thermal Maximum Sediments
In situ magnetic identification of giant, needle-shaped magnetofossils in Paleocene–Eocene Thermal Maximum sediments Courtney L. Wagnera,1, Ramon Eglib, Ioan Lascuc, Peter C. Lipperta,d, Kenneth J. T. Livie, and Helen B. Searsf aDepartment of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112; bDivision of Data, Methods and Models, Central Institute of Meteorology and Geodynamics, 1190 Vienna, Austria; cDepartment of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560; dGlobal Change and Sustainability Center, University of Utah, Salt Lake City, UT 84112; eMaterials Characterization and Processing Center, Department of Materials Sciences and Engineering, Johns Hopkins University, Baltimore, MD 21218; and fDepartment of Geology, Colby College, Waterville, ME 04901 Edited by Lisa Tauxe, University of California San Diego, La Jolla, CA, and approved November 24, 2020 (received for review August 27, 2020) Near-shore marine sediments deposited during the Paleocene– These magnetofossils are interpreted to be the predominant Eocene Thermal Maximum at Wilson Lake, NJ, contain abundant source of the PETM magnetic enhancement of these cores (7, conventional and giant magnetofossils. We find that giant, 11–14), although alternative sources have been suggested (15–18). needle-shaped magnetofossils from Wilson Lake produce distinct Giant magnetofossils have so far only been identified in sediments magnetic signatures in low-noise, high-resolution first-order rever- from the PETM and the Middle Eocene Climatic Optimum, sal curve (FORC) measurements. These magnetic measurements on leading to the interpretation that they are unique to hyperthermal bulk sediment samples identify the presence of giant, needle- events(6,7,11–14).
[Show full text]