Fisheries Centre Research Reports 2005 Volume 13 Number 7

Total Page:16

File Type:pdf, Size:1020Kb

Fisheries Centre Research Reports 2005 Volume 13 Number 7 ISSN 1198-6727 Fisheries Centre Research Reports 2005 Volume 13 Number 7 Modeling Antarctic Marine Ecosystems Fisheries Centre, University of British Columbia, Canada Modeling Antarctic Marine Ecosystems edited by M.L.D. Palomares, P. Pruvost, T.J. Pitcher and D. Pauly Fisheries Centre Research Reports 13(7) 98 pages © published 2005 by The Fisheries Centre, University of British Columbia 2202 Main Mall Vancouver, B.C., Canada, V6T 1Z4 ISSN 1198-6727 Fisheries Centre Research Reports 13(7) 2005 MODELING ANTARCTIC MARINE ECOSYSTEMS edited by Maria Lourdes D. Palomares, Patrice Pruvost, Tony J. Pitcher and Daniel Pauly CONTENTS PAGE DIRECTOR’S FOREWORD ...................................................................................................................................... 1 ABSTRACT ...........................................................................................................................................................2 INTRODUCTION ................................................................................................................................................... 3 SIMULATING ANTARCTIC ECOSYSTEMS: WEAPONS OF MASS CONSTRUCTION Tony J. Pitcher ......................................................................................................................................... 3 ANTARCTIC PENINSULA ....................................................................................................................................... 5 AN ECOSYSTEM SIMULATION MODEL OF THE ANTARCTIC PENINSULA Aftab Erfan and Tony J. Pitcher ............................................................................................................. 5 THE KRILL FISHERY IN THE ANTARCTIC PENINSULA: SPATIAL ECOSYSTEM-BASED SIMULATIONS ADDRESSING CONSERVATION CONCERNS FOR CHARISMATIC SPECIES Tony J. Pitcher and Aftab Erfan ........................................................................................................... 21 SUMMARY OF A PRELIMINARY MODEL OF THE MINKE WHALE-BLUE WHALE-KRILL INTERACTION IN THE ANTARCTIC Mitsuyo Mori and Douglas S. Butterworth..........................................................................................28 KERGUELEN ISLANDS ........................................................................................................................................ 31 FEEDING HABITS OF SEABIRDS AND MARINE MAMMALS OF THE KERGUELEN ARCHIPELAGO Yves Cherel, Charles-André Bost, Christophe Guinet and Henri Weimerskirch ................................ 31 ESTIMATIONS DE LA BIOMASSE DES ZOOPLANCTONS DANS L’ARCHIPEL DE KERGUELEN Jean-Philippe Labat and Patrick Mayzaud.......................................................................................... 37 AN ECOSYSTEM MODEL OF THE KERGUELEN ISLANDS’ EEZ Patrice Pruvost, Guy Duhamel, Maria Lourdes D. Palomares ...........................................................40 FALKLAND ISLANDS ...........................................................................................................................................65 A MASS-BALANCED MODEL OF THE FALKLAND ISLANDS FISHERIES AND ECOSYSTEMS William W.L. Cheung, Tony J. Pitcher,.................................................................................................65 SIMULATIONS OF THE FALKLAND ISLANDS MARINE ECOSYSTEM: CLIMATE, PENGUINS AND SQUID FISHERIES William W.L. Cheung and Tony J. Pitcher ...........................................................................................85 COMMENT ON PENGUINS, SQUID AND FISHERIES IN THE FALKLAND ISLANDS ECOSYSTEM David Agnew..........................................................................................................................................92 NEW ZEALAND ..................................................................................................................................................93 PILOT TROPHIC MODEL FOR SUBANTARCTIC WATER OVER THE SOUTHERN PLATEAU, NEW ZEALAND: A LOW BIOMASS, HIGH TRANSFER EFFICIENCY SYSTEM Janet Bradford-Grieve ..........................................................................................................................93 APPENDICES......................................................................................................................................................95 APPENDIX I: MODELING ANTARCTIC ECOSYSTEMS: A UBC FISHERIES CENTRE AND SEA AROUND US PROJECT WORKSHOP, VANCOUVER, CANADA, 15-17 APRIL 2003 ..................................................................................95 APPENDIX II: ATELIER ECOPATH POUR LES ILES KERGUELEN, MUSEUM NATIONAL D’HISTOIRE NATURELLE, PARIS, FRANCE, 29 SEPTEMBRE AU 3 OCTOBRE 2003 ..................................................................................... 97 A Research Report from the Fisheries Centre at UBC 98 pages © Fisheries Centre, University of British Columbia, 2005 FISHERIES CENTRE RESEARCH REPORTS ARE ABSTRACTED IN THE FAO AQUATIC SCIENCES AND FISHERIES ABSTRACTS (ASFA) ISSN 1198-6727 Modeling Antarctic marine ecosystems, M.L.D. Palomares et al. 1 DIRECTOR’S FOREWORD A map of the world with points wherever Ecopath models exist would be covered with such points, and Antarctica, which would have been an exception before, would be represented by the models in this report. In fact, there had been a model of Antarctica published earlier, by Astrid Jarre and others (Trophic flows in the benthic shelf community of the eastern Weddell Sea, Antarctica. p. 118-134. In B. Battaglia, J. Valencia and D. Walton (eds.) Antarctic Communities: Species, Structure and Survival. Cambridge University Press, Cambridge, 1995), based on work by P.H. Schalk and others, published in Trophic Models of Aquatic Ecosystems (V. Christensen and D. Pauly, eds., ICLARM Conf. Proc. 26, 1993). The various models documented here, however, will allow comparisons between subsystems and thus enable, for Antarctica, the kind of detailed comparative analysis that has long been possible for other areas. Such comparison, having provided numerous insights for tropical and temperate systems, can be expected to do the same for Antarctic systems. Notably, it will be possible to quantify the role of pelagic-benthic coupling, assumed to play an important role in polar systems. Also, the dominance of marine mammals and birds will be amenable to comparative study, especially as Arctic systems where these homoeothermic animals dominate have also been described. Two workshops, both sponsored by the Sea Around Us Project, funded by the Pew Charitable Trusts, led to this report: one held on 15-17 April 2003 at the Fisheries Centre, where various models were presented and their implications studied; and the other held on 29 September to 2 October 2003 at the Muséum National d’Histoire Naturelle in Paris, where a group of French researchers with experience in the Kerguelen Islands worked on refining an ecosystem model of the waters around that island. This workshop was proposed and followed by visits by Mr. Patrice Pruvost, working with Dr. M.L. Deng Palomares and others at the Fisheries Centre. This report, thus, is also a testimony to the collaboration between the Fisheries Centre and the Muséum National d’Histoire Naturelle. We would also like to acknowledge cooperation between the Sea Around Us Project and the Renewable Resources Assessment Group (Imperial College, London, UK: Dr David Agnew) and the Falklands Islands Government (Dr John Barton) for advice and data concerning the Falklands Islands marine ecosystem and its fisheries, even if we were unable to consider all of them in the pilot models of the Falklands published in this report. Daniel Pauly Director, UBC Fisheries Centre 5 November 2005 2 West African marine ecosystems, Palomares et al. ABSTRACT This Fisheries Centre Research Report presents eleven papers that describe whole-ecosystem models of four Antarctic areas: the Antarctic Peninsula, Kerguelen Islands, Falkland Islands, and the Southern Plateau region, New Zealand. A mass-balance model, sources of data, and derivations of model parameters are detailed for each region. Dynamic simulation models for the Antarctic Peninsula and the Falklands provide preliminary explorations of critical issues in the management of their fisheries and the effects of climate. Analyses examine competition among krill-eating species, the spatial impacts of potential krill fisheries, and precautionary fishery limits established by management bodies. Modeling Antarctic marine ecosystems, M.L.D. Palomares et al. 3 INTRODUCTION SIMULATING ANTARCTIC ECOSYSTEMS: WEAPONS OF MASS CONSTRUCTION1 Tony J. Pitcher Fisheries Centre, University of British Columbia, 2202 Main Mall, Vancouver BC V6T 1Z4, Canada; Email:[email protected] The ocean dynamics of the Antarctic region are thought to have a large influence on global fluxes. Living marine organisms in the Antarctic have evolved together in an intricate web of feeding relationships structured on a template of these complex ocean habitats fashioned from ice, currents and upwellings. Evidently, these food webs are robust in the face of extreme seasonal change and have survived long-term climate fluctuations since the Pleistocene. But Antarctic ecosystems have proven delicate in the face of human influences, especially commercial fishing, sealing and whaling. The almost complete removal of large whales by the 1970s must have had major effects on Antarctic food webs, while the present slow recovery of cetacean populations is taking place in the virtual absence of studies
Recommended publications
  • A Review of Southern Ocean Squids Using Nets and Beaks
    Marine Biodiversity (2020) 50:98 https://doi.org/10.1007/s12526-020-01113-4 REVIEW A review of Southern Ocean squids using nets and beaks Yves Cherel1 Received: 31 May 2020 /Revised: 31 August 2020 /Accepted: 3 September 2020 # Senckenberg Gesellschaft für Naturforschung 2020 Abstract This review presents an innovative approach to investigate the teuthofauna from the Southern Ocean by combining two com- plementary data sets, the literature on cephalopod taxonomy and biogeography, together with predator dietary investigations. Sixty squids were recorded south of the Subtropical Front, including one circumpolar Antarctic (Psychroteuthis glacialis Thiele, 1920), 13 circumpolar Southern Ocean, 20 circumpolar subantarctic, eight regional subantarctic, and 12 occasional subantarctic species. A critical evaluation removed five species from the list, and one species has an unknown taxonomic status. The 42 Southern Ocean squids belong to three large taxonomic units, bathyteuthoids (n = 1 species), myopsids (n =1),andoegopsids (n = 40). A high level of endemism (21 species, 50%, all oegopsids) characterizes the Southern Ocean teuthofauna. Seventeen families of oegopsids are represented, with three dominating families, onychoteuthids (seven species, five endemics), ommastrephids (six species, three endemics), and cranchiids (five species, three endemics). Recent improvements in beak identification and taxonomy allowed making new correspondence between beak and species names, such as Galiteuthis suhmi (Hoyle 1886), Liguriella podophtalma Issel, 1908, and the recently described Taonius notalia Evans, in prep. Gonatus phoebetriae beaks were synonymized with those of Gonatopsis octopedatus Sasaki, 1920, thus increasing significantly the number of records and detailing the circumpolar distribution of this rarely caught Southern Ocean squid. The review extends considerably the number of species, including endemics, recorded from the Southern Ocean, but it also highlights that the corresponding species to two well-described beaks (Moroteuthopsis sp.
    [Show full text]
  • Distribution, Habitat and Trophic Ecology of Antarctic
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NERC Open Research Archive 1 Distribution, habitat and trophic ecology of Antarctic 2 cephalopods: inferences from predators and stable isotopes 3 4 J. Seco1, J. Roberts2, F.Ceia1, A. Baeta1, J. A. Ramos1, V. Paiva1, J.C. Xavier1,2 5 6 1 Institute of Marine Research, Department of Life science, University of Coimbra, Coimbra, Portugal 7 [email protected] 8 9 2 Natural Institute of Water and Atmospheric Research, 301 Evans Bay Parade, Greta Point, PO Box 10 14-901, Kirbirnie, Wellington, New Zealand 11 12 3 British Antarctic Survey, NERC; High Cross, Madingley Road, CB3 0ET, Cambridge, UK 13 14 15 Abstract: 16 Cephalopods play a key role in the marine environment but knowledge of their 17 feeding habits is limited by a lack of observations and this is particularly true for 18 Antarctic species. Toothfish species are key predators of cephalopods and may be 19 viewed as ideal biological samplers of these species. A total of 256 cephalopod lower 20 beaks were identified from the stomachs of Patagonian (Dissostichus eleginoides) and 21 Antarctic toothfish (D. mawsoni), captured in fisheries of South Georgia and the 22 South Sandwich Islands in the South Atlantic. Long-armed octopus squid 23 (Kondakovia longimana) and smooth-hooked squid (Moroteuthis knipovitchi) were 24 the main cephalopod prey and both were predated upon wherever toothfish were 25 captured, though inhabit deeper waters at the South Sandwich Islands than at South 26 Georgia. Measurements of δ 13C from beak material indicated a clear segregation of 27 habitat use comparing adult and sub-adult sized K.
    [Show full text]
  • The Importance of Krill Predation in the Southern Ocean Philip N Trathan
    The importance of krill predation in the Southern Ocean Philip N Trathan and Simeon L Hill British Antarctic Survey, Madingley Road, Cambridge CB3 0ET 1 Abstract Antarctic krill is a major prey species for a diverse array of Southern Ocean predators. The amount of krill that predators consume, and how this changes over space and time, is a key issue in understanding both regional and circumpolar aspects of the Southern Ocean food- web. We assess current knowledge of consumption by the various predator groups, and the ecological processes through which krill and its predators influence each other. Knowledge has improved greatly over recent decades and has revealed a high level of complexity in the processes that govern krill consumption. We focus on the Antarctic Peninsula and Scotia Sea region where both krill and its consumers occur in significant concentrations and where an updated estimate of krill consumption by the main vertebrate groups is 55 million tonnes per year. Research has mainly focused on mammalian and avian predators of post-larval krill, particularly penguins. Potentially important consumer groups like fish, cephalopods and carnivorous zooplankton remain poorly understood, as does consumption of the early life stages of krill. As a consequence of these knowledge gaps and the variability that arises from complexity, a reliable seasonally, spatially or taxonomically resolved description of krill consumption remains elusive. One of the key motivations for attempting to estimate krill consumption is to understand how changes in krill availability impact predator populations. Such understanding is an important requirement for ecosystem based management of the Antarctic krill fishery.
    [Show full text]
  • Age and Growth of the Southern Blue Whiting Micromesistius Australis in the SW Atlantic*
    SCI. MAR., 64 (3): 269-274 SCIENTIA MARINA 2000 Age and growth of the southern blue whiting Micromesistius australis in the SW Atlantic* MARIA CRISTINA CASSIA Instituto Nacional de Investigación y Desarrollo Pesquero, Paseo Victoria Ocampo N° 1, Mar del Plata (7600), Argentina. E-mail: mccassia@ inidep.edu.ar SUMMARY: Age and growth of southern blue whiting Micromesistius australis are studied. Sagitta otoliths from 3650 specimens were used for age determination. These were taken during research surveys and commercial catches in the South West Atlantic during 1994 and 1995. The size of fishes ranged from 17 to 60 cm total length, corresponding to ages 0 to 23 years. Females attained a greater asymptotic length (L∞ 59.74 cm) than males (L∞ 54.72 cm). Comparison of growth curves by the likelihood ratio showed that the differences among females and males were due to the asymptotic length, while the other parameters (K and t0) were not statistically different. The mean weight-at-age, mean length-at-age, and total mortali- ty (Z) were estimated. Growth parameters estimated by sex in the period 1994-95, mean size per age group, and the num- ber of individuals per age in the catches show differences with those calculated when the population was in the early stage of exploitation. A predominance of 2 to 9 year old individuals was observed in the total catches in 1994-1995, whereas in the beginning of the fisheries total catches were basically fish 15 to 19 years old. Key words: Micromesistius australis, age, growth, population-age structure, Southwest Atlantic.
    [Show full text]
  • Variable Expression of Myoglobin Among the Hemoglobinless Antarctic Icefishes (Channichthyidae͞oxygen Transport͞phylogenetics)
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 3420–3424, April 1997 Physiology Variable expression of myoglobin among the hemoglobinless Antarctic icefishes (Channichthyidaeyoxygen transportyphylogenetics) BRUCE D. SIDELL*†‡,MICHAEL E. VAYDA*†,DEENA J. SMALL†,THOMAS J. MOYLAN*, RICHARD L. LONDRAVILLE*§, MENG-LAN YUAN†¶,KENNETH J. RODNICK*i,ZOE A. EPPLEY*, AND LORI COSTELLO† *School of Marine Sciences and Department of Zoology, †Department of Biochemistry, Microbiology and Molecular Biology, University of Maine, Orono, ME 04469 Communicated by George N. Somero, Stanford University, Pacific Grove, CA, January 13, 1997 (received for review October 24, 1996) ABSTRACT The important intracellular oxygen-binding Icefishes exhibit several unique physiological features. Car- protein, myoglobin (Mb), is thought to be absent from oxi- diovascular adaptations to compensate for lack of hemoglobin dative muscle tissues of the family of hemoglobinless Antarctic in the circulation include lower blood viscosity, increased heart icefishes, Channichthyidae. Within this family of fishes, which size, greater cardiac output, and increased blood volume is endemic to the Southern Ocean surrounding Antarctica, compared with their red-blooded notothenioid relatives (2, there exist 15 known species and 11 genera. To date, we have 14–16). Combined with the high aqueous solubility of oxygen examined eight species of icefish (representing seven genera) at severely cold body temperature, these cardiovascular fea- using immunoblot analyses. Results indicate that Mb is tures are considered necessary to ensure that tissues obtain present in heart ventricles from five of these species of icefish. adequate amounts of oxygen carried in physical solution by the Mb is absent from heart auricle and oxidative skeletal muscle plasma.
    [Show full text]
  • Jan Jansen, Dipl.-Biol
    The spatial, temporal and structural distribution of Antarctic seafloor biodiversity by Jan Jansen, Dipl.-Biol. Under the supervision of Craig R. Johnson Nicole A. Hill Piers K. Dunstan and John McKinlay Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Quantitative Antarctic Science Institute for Marine and Antarctic Studies (IMAS), University of Tasmania May 2019 In loving memory of my dad, whose passion for adventure, sport and all of nature’s life and diversity inspired so many kids, including me, whose positive and generous attitude touched so many people’s lives, and whose love for the ocean has carried over to me. The spatial, temporal and structural distribution of Antarctic seafloor biodiversity by Jan Jansen Abstract Biodiversity is nature’s most valuable resource. The Southern Ocean contains significant levels of marine biodiversity as a result of its isolated history and a combination of exceptional environmental conditions. However, little is known about the spatial and temporal distribution of biodiversity on the Antarctic continental shelf, hindering informed marine spatial planning, policy development underpinning regulation of human activity, and predicting the response of Antarctic marine ecosystems to environmental change. In this thesis, I provide detailed insight into the spatial and temporal distribution of Antarctic benthic macrofaunal and demersal fish biodiversity. Using data from the George V shelf region in East Antarctica, I address some of the main issues currently hindering understanding of the functioning of the Antarctic ecosystem and the distribution of biodiversity at the seafloor. The focus is on spatial biodiversity prediction with particular consideration given to previously unavailable environmental factors that are integral in determining where species are able to live, and the poor relationships often found between species distributions and other environmental factors.
    [Show full text]
  • Blue Whiting — a Key Species in the Mid-Water Ecosystems of the North-Eastern Atlantic
    International Council ICES CM 2002/L:28 forHeino the &Exploration Godø Theme Session L:ICES Census CM 2002/L:28of Marine of the Sea Life: Turning Concept into Reality Blue whiting — a key species in the mid-water ecosystems of the north-eastern Atlantic Mikko Heino and Olav Rune Godø Abstract. Blue whiting (Micromesistius poutassou) is a mesopelagic gadoid that is widely distributed in northeastern Atlantic from the Canary Island to Spitsbergen. It is abundant and commercially exploited in the Norwegian Seas, off Iceland, Faeroe Islands, Hebrides and Ireland, and in the Bay of Biscay. Blue whiting is a highly migratory species. During the spawning season (March-April), blue whiting concentrates to dense aggregations on the well- known spawning locations along the shelf edge west of Ireland and Hebrides and in the Rockall area. Other spawning areas also exist, but stock structure, distribution and migration of this abundant species are insufficiently known. The oceanic distribution of blue whiting westward, towards the mid-Atlantic Ridge (MAR), has not been thoroughly investigated. Scattered observations show that the species occurs along the MAR from the Azores in the south to the Reykjanes Ridge in the north. The possibility that blue whiting is a key species in the mi-water community of the MAR should not be dismissed. Where present, blue whiting is often highly abundant, and plays an important role in the pelagic ecosystems, both as a consumer of zooplankton and small mesopelagics, and as a prey for larger fish and cetaceans. Is there a ‘stock’ of blue whiting over the MAR? If yes, is this stock separate from the stock(s) in the northeastern Atlantic? Institute of Marine Research in Bergen has proposed a component project of MAR-ECO that combines routine monitoring information with observations from the MAR-ECO surveys to evaluate the significance of blue whiting in the pelagic ecosystem of the MAR.
    [Show full text]
  • Darwin and Ichthyology Xvii Darwin’ S Fishes: a Dry Run Xxiii
    Darwin’s Fishes An Encyclopedia of Ichthyology, Ecology, and Evolution In Darwin’s Fishes, Daniel Pauly presents a unique encyclopedia of ichthyology, ecology, and evolution, based upon everything that Charles Darwin ever wrote about fish. Entries are arranged alphabetically and can be about, for example, a particular fish taxon, an anatomical part, a chemical substance, a scientist, a place, or an evolutionary or ecological concept. Readers can start wherever they like and are then led by a series of cross-references on a fascinating voyage of interconnected entries, each indirectly or directly connected with original writings from Darwin himself. Along the way, the reader is offered interpretation of the historical material put in the context of both Darwin’s time and that of contemporary biology and ecology. This book is intended for anyone interested in fishes, the work of Charles Darwin, evolutionary biology and ecology, and natural history in general. DANIEL PAULY is the Director of the Fisheries Centre, University of British Columbia, Vancouver, Canada. He has authored over 500 articles, books and papers. Darwin’s Fishes An Encyclopedia of Ichthyology, Ecology, and Evolution DANIEL PAULY Fisheries Centre, University of British Columbia cambridge university press Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge cb2 2ru, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521827775 © Cambridge University Press 2004 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.
    [Show full text]
  • Part 4 Appendices
    Part 4 Appendices HEARD ISLAND AND MCDONALD ISLANDS MARINE RESERVE 139 Appendix 1. Proclamation of Heard Island and McDonald Islands Marine Reserve 140 MANAGEMENT PLAN HEARD ISLAND AND MCDONALD ISLANDS MARINE RESERVE 141 142 MANAGEMENT PLAN Appendix 2. Native Fauna of the HIMI Marine Reserve Listed Under the EPBC Act Scientific Name Common Name Birds recorded as breeding Aptenodytes patagonicus king penguin S Catharacta lonnbergi subantarctic skua S Daption capense cape petrel S Diomeda exulans wandering albatross V S M B J A Diomeda melanophrys black–browed albatross S M B A Eudyptes chrysocome southern rockhopper penguin S Eudyptes chrysolophus macaroni penguin S Larus dominicanus kelp gull S Macronectes giganteus southern giant petrel E S M B A Oceanites oceanicus Wilson’s storm petrel S M J Pachyptila crassirostris fulmar prion S Pachyptila desolata Antarctic prion S Pelecanoides georgicus South Georgian diving petrel S Pelecanoides urinatrix common diving petrel S Phalacrocorax atriceps (e) Heard Island cormorant V S Phoebetria palpebrata light mantled sooty albatross S M B A Pygoscelis papua gentoo penguin S Sterna vittata Antarctic tern V S Non–breeding birds Catharacta maccormicki south polar skua S M J Diomedea epomophora southern royal albatross V S M B A Fregetta grallaria white–bellied storm petrel S Fregetta tropica black–bellied storm petrel S Fulmarus glacialoides southern fulmar S Garrodia nereis grey–backed storm petrel S Halobaena caerulea blue petrel V S Macronectes halli northern giant petrel V S M B A Pachyptila belcheri
    [Show full text]
  • 120 South Georgian Diving-Petrel
    Text and images extracted from Marchant, S. & Higgins, P.J. (co-ordinating editors) 1990. Handbook of Australian, New Zealand & Antarctic Birds. Volume 1, Ratites to ducks; Part A, Ratites to petrels. Melbourne, Oxford University Press. Pages 263-264, 719-724; plate 53. Reproduced with the permission of Bird life Australia and Jeff Davies. 263 Order PROCELLARIIFORMES A rather distinct group of some 80-100 species of pelagic seabirds, ranging in size from huge to tiny and in habits from aerial (feeding in flight) to aquatic (pursuit-diving for food), but otherwise with similar biology. About three-quarters of the species occur or have been recorded in our region. They are found throughout the oceans and most come ashore voluntarily only to breed. They are distinguished by their hooked bills, covered in horny plates with raised tubular nostrils (hence the name Tubinares). Their olfactory systems are unusually well developed (Bang 1966) and they have a distinctly musky odour, which suggest that they may locate one another and their breeding places by smell; they are attracted to biogenic oils at sea, also no doubt by smell. Probably they are most closely related to penguins and more remotely to other shorebirds and waterbirds such as Charadrii­ formes and Pelecaniiformes. Their diversity and abundance in the s. hemisphere suggest that the group originated there, though some important groups occurred in the northern hemisphere by middle Tertiary (Brodkorb 1963; Olson 1975). Structurally, the wings may be long in aerial species and shorter in divers of the genera Puffinus and Pel­ ecanoides, with 11 primaries, the outermost minute, and 10-40 secondaries in the Oceanitinae and great albatrosses respectively.
    [Show full text]
  • Survey Report
    Survey Report The second leg of the AKES survey with R/V “G.O. Sars”, 19 February-28 March 2008 AKES-2 Ed.: Webjørn Melle, [email protected] Institute of Marine Research, Bergen, Norway, 27.05.08 1 INTRODUCTION The vessel left Cape Town, South-Africa, 19 February 2008 to survey the southern ocean along two transects, to and from Astridryggen, including finer mapping around Bouvetøya and experimental work on krill (AKES). Samples were collected for MARBANK, GENETICS, FISH PATOGENES and the Brazilian fluoride project (BRAZIL). Bathymetry at Astridryggen was mapped acoustically. The cruise ended 28 March 2008, in Walvis Bay, Namibia. The participants are listed in Table 1.1. AKES (Antarctic Krill and Ecosystem Studies) is IMR‟s project to investigate target strength of krill (Euphausia superba) and mackerel ice fish (Champsocephalus gunnari), and the abundance of pelagic fish and squid in the Bouvetøy area. The main objectives are: to evaluate the links between the krill resources and distribution in the area and Bouvetøya based mammals and birds to study krill biology and ecology to establish TS (Target strength; the ability of an organism to reflect sound) for krill and ice fish to study aggregations of krill, fish and plankton relative to the hydrography to compare aggregations and abundance of krill and plankton relative to hydrography in Antarctica and Nordic Seas stomach contents and feeding behavior of krill and fish The University of Oslo‟s krill project is included in the AKES project. The survey is carried out in close relation with CCAMLR (Convention on the Conservation of Antarctic Marine Living Resources).
    [Show full text]
  • Australian Natural HISTORY
    I AUSTRAliAN NATURAl HISTORY PUBLISHED QUARTERLY BY THE AUSTRALIAN MUSEUM, 6-B COLLEGE STREET, SYDNEY VOLUME 19 NUMBER 7 PRESIDENT, JOE BAKER DIRECTOR, DESMOND GRIFFIN JULY-SEPTEMBER 1976 THE EARLY MYSTERY OF NORFOLK ISLAND 218 BY JIM SPECHT INSIDE THE SOPHISTICATED SEA SQUIRT 224 BY FRANK ROWE SILK, SPINNERETS AND SNARES 228 BY MICHAEL GRAY EXPLORING MACQUARIE ISLAND 236 PART1 : SOUTH ERN W ILDLIFE OUTPOST BY DONALD HORNING COVER: The Rockhopper I PART 2: SUBANTARCTIC REFUGE Penguin, Eudyptes chryso­ BY JIM LOWRY come chrysocome, a small crested species which reaches 57cm maximum A MICROCOSM OF DIVERSITY 246 adult height. One of the four penguin species which BY JOHN TERRELL breed on Macq uarie Island, they leave for six months every year to spend the IN REVIEW w inter months at sea. SPECTACULAR SHELLS AND OTHER CREATURES 250 (Photo: D.S. Horning.) A nnual Subscription: $6-Australia; $A7.50-other countries except New Zealand . EDITOR Single cop ies: $1 .50 ($1.90 posted Australia); $A2-other countries except New NANCY SMITH Zealand . Cheque or money order payable to The Australian Museum should be sen t ASSISTANT EDITORS to The Secretary, The Australian Museum, PO Box A285, Sydney South 2000. DENISE TORV , Overseas subscribers please note that monies must be paid in Australian currency. INGARET OETTLE DESIGN I PRODUCTION New Zealand Annual Subscription: $NZ8. Cheque or money order payable to the LEAH RYAN Government Printer should be sent to the New Zealand Government Printer, ASSISTANT Private Bag, Wellington. BRONWYN SHIRLEY CIRCULATION Opinions expressed by the authors are their own and do not necessarily represent BRUCE GRAINGER the policies or v iews of The Australian Museum.
    [Show full text]