Techniques in Radiation Chemistry 1.1.1

Total Page:16

File Type:pdf, Size:1020Kb

Techniques in Radiation Chemistry 1.1.1 “Joint innovative training and teaching/learning program in enhancing development and transfer knowledge of application of ionizing radiation in materials processing” (Project acronym: TL-IRMP) AGREEMENT NUMBER 2014-1-PL01-KA203-003611 Course module Total hours of lecture: 60 hours (6 ECTS) in URCA (05-15/09/2016) and 30 hours (3 ECTS) in KTU (03-07/10, 2016) learning programme Total hours of laboratory and exercises: 6 hours in URCA (09/09/2016) Total hours of laboratory and exercises: 6 hours in KTU (07/10/2016) PROF.DR. DİLEK ŞOLPAN ÖZBAY Hacettepe University Department of Chemistry 06800, Beytepe/Ankara-TURKEY Training/learning course in URCA (Sept 05-07,2016), Reims-FRANCE TL-IRMP This project has been funded with support from the European Commission. This publication reflects the views only of the author(s). Polish National Agency for the Erasmus+ Programme and the European Commission cannot be held responsible for any use which may be made of the information contained therein. Date: Oct. 2017 OUTLINE: 1. Radiation chemistry of liquid systems 1.1.Techniques in radiation chemistry 1.1.1. Steady-state techniques 1.1.2.Pulse radiolysis 2.Radiation chemistry of water and aqueous solutions 2.1. Water radiolysis 2.2.Radiolysis mechanism 2.3.Reactions of intermediates 2.3.1.Characteristic of primary and secondary products 3.Organic solvents/solutions 3.1.Alkanes, alken and aromatic hydrocarbons 3.2.Other organic molecules 3.3.Irradiation of monomer 4.Radiation chemistry of organic solids 4.1.Primary and secondary effects 4.2.Radiation yield 5.Changes in physical and chemical properties 5.1.Natural and synthetic polymers 5.2.Polymer crosslinking, degradation, grafting, curing 5.3.Sterilization of medical devices and drugs 3 4 Prof.Dr.Dilek SOLPAN OZBAY Head of Physical Chemistry Division, Department of Chemistry, Hacettepe University, 06800, Beytepe/Ankara-TURKEY E-mail: [email protected] RESEARCH INTERESTS -Radiation chemistry -Wood-polymer composites -The consolidation and conservation of historical wooden objects -Synthesis and characterization of homopolymers, copolymers and semi-interpenetrating polymer Networks -Hydrogels -Adsorption -The concentration and separation of some metals by using alloy membranes -Surface chemistry -Treatment of industrial wastewater -The determination of COD and BOD, DO values -The degradation and decoloration of textile dyes in wastewater by gamma-irradiation -Removal of some pollutants (such as textile dyes, pesticides…) by gamma-irradiation -The use of GC-MS-MS and IC in the determination of some degradation products and degradation mechanism -The investigation of synergetic effects of ozonation+gamma-irradiation, ozonation+UV for removing of some pollutants in water -The adsorption of heavy metal ions and some metals from water by using appropriate adsorbents -Grafting and antimicrobial polymers 5 Research in our laboratories is broadly organized around the following areas. A number of them are further broken down into subareas. Polymer Chemistry · Synthesis, characterization and modification of smart polymers, hydrogels, membranes and adsorbents · Controlled/Living polymerization techniques · Synthesis of reactive and functional polymers · Nanostructuring of polymers for molecular imprinting · Conductive polymer blends and composites based on polyaniline · Solution and complexation behaviors of polysaccharides (chitosan, alginate, etc.) Radiation Chemistry · Radiation synthesis of polymers, copolymers and hydrogels · Radiation induced crosslinking, degradation, grafting · Radiation induced degradation of water pollutants · Dosimetric responses of polymers, polymer blends 1. Radiation chemistry of liquid systems 1.1.Techniques in radiation chemistry 1.1.1. Steady-state techniques 1.1.2.Pulse radiolysis AA Atom of any element: Z X can be symbolized. N: Neutron number, Z: Proton number and includes the place of the element in the periodic table. Mass number A = N + Z 131131 53 I proton number (atomic number) : Z= 53, Mass number A = N + Z = 131 neutron number: N = 131-53 = 78 7 Nuclide: A Nuclide is a particular nucleus characterized by a defined atomic number and mass number. A Sodium nuclide. There are particular types of Nuclide. They are: Isotopes Isobars Isotones A= Mass Number. Z=Atomic Number n=Number of charge (+ or -) Isotopes: The atoms having same atomic number but different atomic mass number are called Isotope. Isobars: Nuclides having the same mass number but having the different Proton/Atomic number are called Isobar. Isotones: Atoms of different elements having different mass number and different atomic number but same neutron number are called Isotones. 8 9 Penetration of radioactive rays Alpha particles may be completely stopped by a sheet of paper, beta particles by aluminium shielding. Gamma rays can only be reduced by much more substantial mass, such as a very thick layer of lead. Radiation can be absorbed by substances in its path. For example, alpha radiation travels only a few centimetres in air, beta radiation travels tens of centimetres in air, while gamma radiation travels many metres. All types of radiation become less intense the further the distance from the radioactive material, as the particles or rays become more spread out. The thicker the substance, the more the radiation is absorbed. The three types of radiation penetrate materials in different ways. 10 Radiation types Types of scattered radiation from the atomic nuclei of radioactive materials shown in the following diagram Radiation Ionizing radiation Non-ionizing radiation Particle Wave Wave Neutron Alpha Beta Gamma X UV-Vis IR Micro waves Radio waves Radiation originating from atomic nucleus E>50 eV Radiation resulting from atomic orbit Electromagnetic Radiation Spectrum 11 12 13 4. Radiation chemistry of liquid systems 4.1.Techniques in radiation chemistry 4.1.1. Steady-state techniques 4.1.2.Pulse radiolysis •Nuclear chemistry (interests of the structures of the stable and unstable nuclei and nuclear reactions and the events related to them.) •Radiochemistry (interests about the chemistry of the material can be detected by the radiation they emitted. Issues with each of these two disciplines so that these are similar, nuclear chemistry and radiochemistry would be more appropriate to collect under the same name.) •Radiation chemistry (implies the chemical effects of interactions of ionizing radiation with materials.) a, b, g Radiation Source Object to be irradiated The total energy lost per unit path length by the primary charged particle is obtained by the sum of integrating over all losses occuring in hard and soft collisions. The total energy lost per unit path is called the Linear Energy Transfer (LET). 14 Radiation chemistry may be defined as the study of the chemical effects produced in a system by the absorption of ionizing radiation. Included in this definition are the chemical effects produced by radiation from radiactive nuclei (a, b-, and g rays ), by high-energy charged particles (electrons, protons, deuterons, etc.), and by electromagnetic radiation of short wavelength (x- rays with a wavelength less than about 250°A, i.e., with an energy greater than about 50 electron volts.) The chief difference between radiation chemistry and photochemistry lies in the energy of the radiation which initiates the reaction, the energy of the particles and photons concerned in radiation chemistry being very much greater than the energy of the photons causing photochemical reactions. Thus in photochemistry each photon excites only one molecule and, by the use of monochromatic light, it is often possible to produce a single, well- defined, excited state in a particular component in the system.The excites species are distributed essentially uniformly in any plane at right angles to the direction of the beam of light. In the radiation chemistry each photon or particle can ionize or excite a large number of molecules, which are distributed along its track.The high-energy photons and particles are not selective and may react with any molecule lying in their path, raising it to any one of its possible ionized or excited states. 15 TECHNIQUES IN RADIATION CHEMISTRY Two main basically different experimental approaches are used to investigate radiation chemical reactions. One of them is applied to detect, qualitatively or quantitatively determine intermediates and final products that are stable and do not change during the time of measurement. Such intermediates are ions or free radicals ‘frozen’ in solid matrices. The other approach uses time dependent measurement in order to observe intermediates or the build up final products (pulse radiolysis). 16 Steady-state techniques The final products of radiolytic reactions are analyzed by the usual analytical technique, like spectrophotometry, gas-chromatography, high-performance-liquid-chromatography (HPLC) and others. In the radiolytic investigations the conversion is generally very low, being on the order of 0.0001-0.001, therefore sensitive analytical techniques are needed. A new generation of techniques, for instance chromatographic and electrophoretic analytical instrumentation based on diode array technology now makes it possible to examine radiation chemical processes below 10 Gy dose (Barbara 1998). 17 In radiolytic reactions The main intermediates are excited molecules, cations, free electrons, anions and radicals. For the study of radical anions, cations and radicals formed in a solid matrix, e.g. in polymers, EPR spectroscopy is used since the 1950’s.
Recommended publications
  • Type of Ionising Radiation Gamma Rays Versus Electro
    MY9700883 A National Seminar on Application of Electron Accelerators, 4 August 1994 INTRODUCTION TO RADIATION CHEMISTRY OF POLYMER Khairul Zaman Hj. Mohd Dahlan Nuclear Energy Unit What is Radiation Chemistry? Radiation Chemistry is the study of the chemical effects of ionising radiation on matter. The ionising radiation flux in a radiation field may be expressed in terms of radiation intensity (i.e the roentgen). The roentgen is an exposure dose rather than absorbed dose. For radiation chemist, it is more important to know the absorbed dose i.e. the amount of energy deposited in the materials which is expressed in terms of Rad or Gray or in electron volts per gram. The radiation units and radiation power are shown in Table 1 and 2 respectively. Type of Ionising Radiation Gamma rays and electron beam are two commonly used ionising radiation in industrial process. Gamma rays, 1.17 and 1.33 MeV are emitted continuously from radioactive source such as Cobalt-60. The radioactive source is produced by bombarding Cobalt-59 with neutrons in a nuclear reactor or can be produced from burning fuel as fission products. Whereas, electrons are generated from an accelerator to produce a stream of electrons called electron beam. The energy of electrons depend on the type of machines and can vary from 200 keV to 10 MeV. Gamma Rays versus Electron Beam Gamma rays are electromagnetic radiation of very short wavelength about 0.01 A (0.001 nm) for a lMeV photon. It has a very high penetration power. Whereas, electrons are negatively charge particles which have limited penetration power.
    [Show full text]
  • Mechanistic Studies of the Desorption Ionization
    Mechanistic studies of the desorption ionization process in fast atom bombardment mass spectrometry by Jentaie Shiea A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry Montana State University © Copyright by Jentaie Shiea (1991) Abstract: The mechanisms involved in Desorption Ionization (DI) continue to be a very active area of research. The answer to the question of how involatile and very large molecules are transferred from the condensed phase to the gas phase has turned out to involve many different phenomena. The effect on Fast Atom Bombardment (FAB) mass spectra of the addition of acids to analyte bases has been quantitatively investigated. Generally, the pseudomolecular ion (M+H+) intensity increased with the addition of acid, however, decreases in ion intensity were also noted. For the practical use of FAB, it is important to clarify the reasons for this acid effect. By critical evaluation, a variety of different explanations were found. However, contrary to other studies, no unambiguous example was found in which the effect of "preformed ions" could adequately explain the observed results. The mechanistic implications of these findings are briefly discussed. The importance of surface activity in FAB has been pointed out by many researchers. A systematic study was conducted, involving the addition of negatively charged surfactants to samples containing small organic and inorganic cations. An enhancement of the positive ion spectra of these analytes was observed. The study of mass transport processes of two surfactants was performed by varying the analyte concentration and matrix temperature in FAB. The study of the desorption process in SIMS by varying the viscosity of the matrix solutions shows that such studies may help to bridge the mechanisms in solid and liquid SIMS and, in the process, increase our understanding of both techniques.
    [Show full text]
  • Ganymede Science Questions and Future Exploration
    Planetary Science Decadal Survey Community White Paper Ganymede science questions and future exploration Geoffrey C. Collins, Wheaton College, Norton, Massachusetts [email protected] Claudia J. Alexander, Jet Propulsion Laboratory Edward B. Bierhaus, Lockheed Martin Michael T. Bland, Washington University in St. Louis Veronica J. Bray, University of Arizona John F. Cooper, NASA Goddard Space Flight Center Frank Crary, Southwest Research Institute Andrew J. Dombard, University of Illinois at Chicago Olivier Grasset, University of Nantes Gary B. Hansen, University of Washington Charles A. Hibbitts, Johns Hopkins University Applied Physics Laboratory Terry A. Hurford, NASA Goddard Space Flight Center Hauke Hussmann, DLR, Berlin Krishan K. Khurana, University of California, Los Angeles Michelle R. Kirchoff, Southwest Research Institute Jean-Pierre Lebreton, European Space Agency Melissa A. McGrath, NASA Marshall Space Flight Center William B. McKinnon, Washington University in St. Louis Jeffrey M. Moore, NASA Ames Research Center Robert T. Pappalardo, Jet Propulsion Laboratory G. Wesley Patterson, Johns Hopkins University Applied Physics Laboratory Louise M. Prockter, Johns Hopkins University Applied Physics Laboratory Kurt Retherford, Southwest Research Institute James H. Roberts, Johns Hopkins University Applied Physics Laboratory Paul M. Schenk, Lunar and Planetary Institute David A. Senske, Jet Propulsion Laboratory Adam P. Showman, University of Arizona Katrin Stephan, DLR, Berlin Federico Tosi, Istituto Nazionale di Astrofisica, Rome Roland J. Wagner, DLR, Berlin Introduction Ganymede is a planet-sized (larger than Mercury) moon of Jupiter with unique characteristics, such as being the largest satellite in the solar system, the most centrally condensed solid body in the solar system, and the only solid body in the outer solar system known to posses an internally generated magnetic field.
    [Show full text]
  • A Comparative View of Radiation, Xa9745787 Photo and Photocatalytically Induced Oxidation of Water Pollutants
    A COMPARATIVE VIEW OF RADIATION, XA9745787 PHOTO AND PHOTOCATALYTICALLY INDUCED OXIDATION OF WATER POLLUTANTS N. GETOFF Institute for Theoretical Chemistry and Radiation Chemistry, University of Vienna, Vienna, Austria Abstract Water resources are presently overloaded with biologically resistant (refractory) pollutants. Several oxidation methods have been developed for their degradation, the most efficient of which is iradiation treatment, particularly that based on e-beam processing in the presence of Q/O3. The next-best method is photoinduced pollutant oxidation with VUV- and/or UV-light, using HjO2 or H2O2/O3 as an additional source of OH radicals. The photocatalytic method, using e.g. TiQ as a catalyst in combination with oxidation agents such as If Oj or H2O2/O3, is also recommended. The suitability of these three methods is illustrated by examples and they are briefly discussed and compared on the basis of theirenergy consumption and efficiency. Other methods, such as ozone treatment, the photo-Fenton process, ultrasonic and elctrochemical treatments, as well as the well known biological process and thermal oxidation of refractory pollutants, are briefly mentioned. 1. INTRODUCTION Current water resources are strongly overloaded with biologically resistant pollutants, as a result of global population growth and the development of certain industries in the past few decades. The disposal of chemical waste in rivers, seas and oceans has contributed to possibly-irrepairable destruction of marine life. The application of fertilizers, pesticides etc. in modern agriculture has exacerbated the situation. Hence, urgent measures are necessary for remediation of water resources. For the degradation of water pollutants, a number of oxidation methods, based on processes initiated by ionizing radiation, UV- and visible light, photocatalytic induced reactions, as well as combinations of these, have been developed.
    [Show full text]
  • Investigations of Moon-Magnetosphere Interactions by the Europa Clipper Mission
    EPSC Abstracts Vol. 13, EPSC-DPS2019-366-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Investigations of Moon-Magnetosphere Interactions by the Europa Clipper Mission Haje Korth (1), Robert T. Pappalardo (2), David A. Senske (2), Sascha Kempf (3), Margaret G. Kivelson (4,5), Kurt Retherford (6), J. Hunter Waite (6), Joseph H. Westlake (1), and the Europa Clipper Science Team (1) Johns Hopkins University Applied Physics Laboratory, Maryland, USA, (2) Jet Propulsion Laboratory, California, USA, (3) University of Colorado, Colorado, USA, (4) University of Michigan, Michigan, USA, (5) University of California, California, USA, (6) Southwest Research Institute, Texas, USA. ([email protected]) 1. Introduction magnetic fields inducing eddy currents in the ocean. By measuring the induced field response at multiple The influence of the Jovian space environment on frequencies, the ice shell thickness and the ocean Europa is multifaceted, and observations of moon- layer thickness and conductivity can be uniquely magnetosphere interaction by the Europa Clipper will determined. The ECM consists of four fluxgate provide an understanding of the satellite’s interior sensors mounted on a 5-m-long boom and a control structure and compositional makeup among others. electronics hosted in a vault shielding it from The variability of Jupiter’s magnetic field at Europa radiation damage. The use of four sensors allows for induces electric currents within the moon’s dynamic removal of higher-order spacecraft- conducting ocean layer, the magnitude of which generated magnetic fields on a boom that is short depends on the ocean’s location, extent, and compared with the spacecraft dimensions.
    [Show full text]
  • Quantitative Estimation of Track Segment Yields of Water Radiolysis
    www.nature.com/scientificreports OPEN Quantitative estimation of track segment yields of water radiolysis species under heavy ions around Bragg peak energies using Geant4‑DNA Kentaro Baba1, Tamon Kusumoto2, Shogo Okada3, Ryo Ogawara4, Satoshi Kodaira2, Quentin Rafy5, Rémi Barillon5, Nicolas Ludwig5, Catherine Galindo5, Philippe Peaupardin5 & Masayori Ishikawa1,6* − · We evaluate the track segment yield G′ of typical water radiolysis products (eaq , OH and H2O2) under heavy ions (He, C and Fe ions) using a Monte Carlo simulation code in the Geant4‑DNA. Furthermore, we reproduce experimental results of ·OH of He and C ions around the Bragg peak energies (< 6 MeV/u). In the relatively high energy region (e.g., > 10 MeV/u), the simulation results using Geant4‑DNA have agreed with experimental results. However, the G‑values of water radiolysis species have not been properly evaluated around the Bragg peak energies, at which high ionizing density can be expected. Around the Bragg peak energy, dense continuous secondary products are generated, so that it is necessary to simulate the radical–radical reaction more accurately. To do so, we added the role of secondary products formed by irradiation. Consequently, our simulation results are in good agreement with experimental results and previous simulations not only in the high‑energy region but also around the Bragg peak. Several future issues are also discussed regarding the roles of fragmentation and multi‑ionization to realize more realistic simulations. Cancer patients can nowadays select several modalities in radiotherapy such as conventional X-ray therapy and particle therapies (e.g., proton therapy, heavy ion therapy and boron neutron capture therapy).
    [Show full text]
  • Methods of Ion Generation
    Chem. Rev. 2001, 101, 361−375 361 Methods of Ion Generation Marvin L. Vestal PE Biosystems, Framingham, Massachusetts 01701 Received May 24, 2000 Contents I. Introduction 361 II. Atomic Ions 362 A. Thermal Ionization 362 B. Spark Source 362 C. Plasma Sources 362 D. Glow Discharge 362 E. Inductively Coupled Plasma (ICP) 363 III. Molecular Ions from Volatile Samples. 364 A. Electron Ionization (EI) 364 B. Chemical Ionization (CI) 365 C. Photoionization (PI) 367 D. Field Ionization (FI) 367 IV. Molecular Ions from Nonvolatile Samples 367 Marvin L. Vestal received his B.S. and M.S. degrees, 1958 and 1960, A. Spray Techniques 367 respectively, in Engineering Sciences from Purdue Univesity, Layfayette, IN. In 1975 he received his Ph.D. degree in Chemical Physics from the B. Electrospray 367 University of Utah, Salt Lake City. From 1958 to 1960 he was a Scientist C. Desorption from Surfaces 369 at Johnston Laboratories, Inc., in Layfayette, IN. From 1960 to 1967 he D. High-Energy Particle Impact 369 became Senior Scientist at Johnston Laboratories, Inc., in Baltimore, MD. E. Low-Energy Particle Impact 370 From 1960 to 1962 he was a Graduate Student in the Department of Physics at John Hopkins University. From 1967 to 1970 he was Vice F. Low-Energy Impact with Liquid Surfaces 371 President at Scientific Research Instruments, Corp. in Baltimore, MD. From G. Flow FAB 371 1970 to 1975 he was a Graduate Student and Research Instructor at the H. Laser Ionization−MALDI 371 University of Utah, Salt Lake City. From 1976 to 1981 he became I.
    [Show full text]
  • Hydrocarbon Radiation Chemistry in Ices of Cometary Relevance
    ICARUS 126, 233±235 (1997) ARTICLE NO. IS975678 NOTE Hydrocarbon Radiation Chemistry in Ices of Cometary Relevance R. L. HUDSON Department of Chemistry, Eckerd College, St. Petersburg, Florida 33733 E-mail: [email protected] AND M. H. MOORE Code 691, Astrochemistry Branch, NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771 Received August 19, 1996; revised January 3, 1997 emphasis on the chemistry of hydrocarbons in a H2O-dominated mixture Recent discoveries of acetylene, methane, and ethane in at p15 K. Details concerning our laboratory techniques are already in print Comet Hyakutake, C/1996 B2, have led us to investigate these (Moore et al. 1996, Hudson and Moore 1995, and references therein). and other hydrocarbons in irradiated ices of cometary rele- Brie¯y, we condensed H2O-rich gas-phase mixtures onto a cold ®nger at vance. Laboratory experiments showed that chemical reactions, p15 K in a vacuum chamber (P p 1028 Torr), after which an infrared particularly those involving H atoms, in¯uence the C2H6 :CH4 (IR) spectrum of the solid mixture was recorded. Next, the icy sample 1 ratio in H2O 1 hydrocarbon mixtures. 1997 Academic Press was irradiated with a 0.8 MeV proton (p ) beam from a Van de Graaff accelerator. IR spectra were recorded before and after each irradiation, as well as after various thermal annealings. Molecular abundances were determined by established procedures in which a laser interference system Three new cometary molecules, acetylene (C2H2), methane (CH4), and was used to measure ice thickness in a sample of known composition. ethane (C2H6), have been discovered recently in Comet Hyakutake, C/1996 B2.
    [Show full text]
  • Radiolysis of H2O:CO2 Ices by Heavy Energetic Cosmic Ray Analogs
    A&A 523, A77 (2010) Astronomy DOI: 10.1051/0004-6361/201015123 & c ESO 2010 Astrophysics Radiolysis of H2O:CO2 ices by heavy energetic cosmic ray analogs S. Pilling1, E. Seperuelo Duarte2, A. Domaracka3,H.Rothard3, P. Boduch3, and E. F. da Silveira4 1 IP&D/UNIVAP, Av. Shishima Hifumi, 2911, São Jose dos Campos, SP, Brazil e-mail: [email protected] 2 Grupo de Física e Astronomia, CEFET/Química de Nilópolis, Rua Lúcio Tavares, 1052, CEP 2653-060, Nilópolis, Brazil 3 Centre de Recherche sur les Ions, les Matériaux et la Photonique (CEA/CNRS/ENSICAEN/Université de Caen-Basse Normandie), CIMAP – CIRIL – GANIL, Boulevard Henri Becquerel, BP 5133, 14070 Caen Cedex 05, France 4 Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente 225, CEP 22453-900, Rio de Janeiro, Brazil Received 1 June 2010 / Accepted 3 August 2010 ABSTRACT 58 13+ An experimental study of the interaction of heavy, highly charged, and energetic ions (52 MeV Ni ) with pure H2O, pure CO2 and mixed H2O:CO2 astrophysical ice analogs is presented. This analysis aims to simulate the chemical and the physicochemical interactions induced by heavy cosmic rays inside dense and cold astrophysical environments, such as molecular clouds or protostellar clouds. The measurements were performed at the heavy ion accelerator GANIL (Grand Accélérateur National d’Ions Lourds in Caen, France). The gas samples were deposited onto a CsI substrate at 13 K. In-situ analysis was performed by a Fourier transform infrared (FTIR) spectrometer at different fluences. Radiolysis yields of the produced species were quantified.
    [Show full text]
  • Origin and Temperature Dependence of Radiation Damage in Biological Samples at Cryogenic Temperatures
    Origin and temperature dependence of radiation damage in biological samples at cryogenic temperatures Alke Meentsa,b,1,2, Sascha Gutmanna,1,3, Armin Wagnerc, and Clemens Schulze-Briesea aPaul Scherrer Institut, Swiss Light Source, CH-5232 Villigen, Switzerland bHamburger Synchrotronstrahlungslabor, Deutsches Elektronen Synchrotron, D-22607 Hamburg, Germany cDiamond Light Source, Harwell Science and Innovations Campus, Didcot, OX11 0DE, United Kingdom Edited by Venkatraman Ramakrishnan, Medical Research Council, Cambridge, United Kingdom, and approved November 23, 2009 (received for review May 20, 2009) Radiation damage is the major impediment for obtaining structural electrons with energies of a few up to severals tens of eV (4, 5). information from biological samples by using ionizing radiation Subsequent radiolytic reactions caused by products of primary such as x-rays or electrons. The knowledge of underlying processes damage are classified as secondary damage. Possible consequences especially at cryogenic temperatures is still fragmentary, and a con- of primary and secondary radiation damage reactions include sistent mechanism has not been found yet. By using a combination breakage of chemical bonds, redox processes, and generation of of single-crystal x-ray diffraction, small-angle scattering, and qual- free radicals. Alterations of the sample at primary and secondary itative and quantitative radiolysis experiments, we show that hy- damage sites may eventually cause long-range rearrangements of drogen gas, formed inside the sample during irradiation, rather molecules in crystals or other assemblies. The loss of crystalline than intramolecular bond cleavage between non-hydrogen atoms, order has been referred to as tertiary or global damage (1). is mainly responsible for the loss of high-resolution information In crystallography, radiation damage results in the decrease of and contrast in diffraction experiments and microscopy.
    [Show full text]
  • Safety Analysis Report and Associated Documentation, TH
    This page intentionally left blank to facilitate duplex printing. RH-TRU Payload Appendices Rev. 1, February 2011 TABLE OF CONTENTS 1.0 INTRODUCTION 2.0 GAS GENERATION METHODOLOGY 2.1 Radiolytic G Values for Waste Materials 2.2 G Values for RH-TRU 72-B Waste 2.3 Shipping Period – General Case 2.4 Shipping Period – Controlled Shipments 2.5 Compliance Methodology for Gas Generation Requirements 3.0 ASSESSMENT METHODS 3.1 Gas Generation Test Plan for Remote-Handled Transuranic (RH-TRU) Waste Containers 3.2 Summary of the Flammability Assessment Methodology Program 4.0 SUPPORTING EVALUATIONS 4.1 Chemical Compatibility of Waste Forms 4.2 Free Halides in the RH-TRU 72-B Payload – Source Term and Release Rate Estimates 4.3 Payload Compatibility with Butyl Rubber O-Ring Seals 4.4 Volatile Organic Compounds (VOCs) in the RH-TRU 72-B Payload – Source Term and Release Rate Estimates 4.5 Biological Activity Assessment 4.6 Thermal Stability of Payload Materials at Transport Temperatures 5.0 PAYLOAD CONTAINER DESIGN BASIS EVALUATIONS 5.1 Description of Neutron Shielded Canister i RH-TRU Payload Appendices Rev. 1, February 2011 This page intentionally left blank. ii RH-TRU Payload Appendices Rev. 1, February 2011 1.0 INTRODUCTION This document, the RH-TRU Payload Appendices, accompanies the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC) and is provided as supplemental information pertaining to issues related to the transportation of remote-handled transuranic (RH-TRU) waste in the RH-TRU 72-B packaging. The RH-TRAMPAC contains all information, including requirements and methods of compliance, required for the qualification of a payload for transport in the RH-TRU 72-B packaging.
    [Show full text]
  • Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases
    International Journal of Molecular Sciences Review Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases Fabrice Collin Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III-Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse CEDEX 09, France; [email protected] Received: 26 April 2019; Accepted: 13 May 2019; Published: 15 May 2019 Abstract: Increasing numbers of individuals suffer from neurodegenerative diseases, which are characterized by progressive loss of neurons. Oxidative stress, in particular, the overproduction of Reactive Oxygen Species (ROS), play an important role in the development of these diseases, as evidenced by the detection of products of lipid, protein and DNA oxidation in vivo. Even if they participate in cell signaling and metabolism regulation, ROS are also formidable weapons against most of the biological materials because of their intrinsic nature. By nature too, neurons are particularly sensitive to oxidation because of their high polyunsaturated fatty acid content, weak antioxidant defense and high oxygen consumption. Thus, the overproduction of ROS in neurons appears as particularly deleterious and the mechanisms involved in oxidative degradation of biomolecules are numerous and complexes. This review highlights the production and regulation of ROS, their chemical properties, both from kinetic and thermodynamic points of view, the links between them, and their implication in neurodegenerative diseases. Keywords: reactive oxygen species; superoxide anion; hydroxyl radical; hydrogen peroxide; hydroperoxides; neurodegenerative diseases; NADPH oxidase; superoxide dismutase 1. Introduction Reactive Oxygen Species (ROS) are radical or molecular species whose physical-chemical properties are well-known both on thermodynamic and kinetic points of view.
    [Show full text]