life Review Astrochemical Pathways to Complex Organic and Prebiotic Molecules: Experimental Perspectives for In Situ Solid-State Studies Daniele Fulvio 1,2,* , Alexey Potapov 3, Jiao He 2 and Thomas Henning 2 1 Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, 80131 Naples, Italy 2 Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany;
[email protected] (J.H.);
[email protected] (T.H.) 3 Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, 07743 Jena, Germany;
[email protected] * Correspondence:
[email protected] Abstract: A deep understanding of the origin of life requires the physical, chemical, and biological study of prebiotic systems and the comprehension of the mechanisms underlying their evolutionary steps. In this context, great attention is paid to the class of interstellar molecules known as “Complex Organic Molecules” (COMs), considered as possible precursors of prebiotic species. Although COMs have already been detected in different astrophysical environments (such as interstellar clouds, protostars, and protoplanetary disks) and in comets, the physical–chemical mechanisms underlying their formation are not yet fully understood. In this framework, a unique contribution comes from laboratory experiments specifically designed to mimic the conditions found in space. We present Citation: Fulvio, D.; Potapov, A.; He, a review of experimental studies on the formation and evolution of COMs in the solid state, i.e., J.; Henning, T. Astrochemical within ices of astrophysical interest, devoting special attention to the in situ detection and analysis Pathways to Complex Organic and techniques commonly used in laboratory astrochemistry.