Invasive Plants in Pacific Northwest Ecosystems. Gen

Total Page:16

File Type:pdf, Size:1020Kb

Invasive Plants in Pacific Northwest Ecosystems. Gen United States Department of Agriculture Meeting the Challenge: Forest Service Pacific Northwest Research Station Invasive Plants in Pacific General Technical Report Northwest Ecosystems PNW-GTR-694 June 2007 TECHNICAL EDITORS Timothy B. Harrington, research forester, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Forestry Sciences Laboratory, 3625 93rd Ave. SW, Olympia, WA 98512 and Sarah H. Reichard, associate professor, University of Washington Botanic Gardens, Box 354115, Seattle, WA 98195. Cover photography (clockwise from top): Manual removal of garlic mustard (Alliaria petiole) (Karen J. Peterson) Herbicide application to milk thistle (Silybum marianum) (Patricia A. MacLaren) Seedhead weevil (Larinus minutus) for bio-control of diffuse knapweed (Centaurea diffusa) (Daniel L. Fagerlie) Milk thistle (Silybum marianum) (Dennis Chambreau) Scotch broom (Cytisus scoparius) (Joe Kraft) Hoary alyssum (Berteroa incana) (Daniel L. Fagerlie) Mechanical removal of Himalayan blackberry (Rubus discolor) (Ann Risvold) Japanese knotweed (Fallopia japonica) (Kyle Strauss) Center image: spotted knapweed (Centaurea biebersteinii) (www.invasive.org, Steve Dewey) Graphic designer: Jenny Beranek, Beaverton, OR. Papers were provided by the authors in camera-ready form for printing. Authors are responsible for the content and accuracy. Opinions expressed may not necessarily reflect the position of the U.S. Department of Agriculture. The use of trade or firm names is for information only and does not imply endorsement by the U.S. Department of Agriculture of any product or service. PESTICIDE PRECAUTIONARY STATEMENT This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate state or federal agencies, or both, before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic and wild animals, and desirable plants if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. Meeting the Challenge: Invasive Plants in Pacific Northwest Ecosystems Timothy B. Harrington and Sarah H. Reichard Technical Editors U.S. Department of Agriculture Forest Service Pacific Northwest Research Station Portland, Oregon General Technical Report PNW-GTR-694 June 2007 This page is intentionally left blank. ABSTRACT Harrington, Timothy B.; Reichard, Sarah H., tech. eds. 2007. Meeting the challenge: invasive plants in Pacific Northwest ecosystems. Gen. Tech. Rep. PNW-GTR-694. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 166 p. During September 19-20, 2006, a conference was held at the University of Washington Botanic Gardens, Seattle, WA, with the title “Meeting the challenge: invasive plants in Pacific Northwest Ecosystems.” The mission of the conference was to create strategies and partnerships to understand and manage invasions of non-native plants in the Pacific Northwest. The audience included over 180 professionals, students, and citizens from public and private organizations responsible for monitoring, studying, or managing non-native invasive plants. This proceedings includes twenty-seven papers based on oral presentations at the conference plus a synthesis paper that summarizes workshop themes, discussions, and related information. Topics include early detection and rapid response; control techniques, biology, and impacts; management approaches; distribution and mapping of invasive plants; and partnerships, education, and outreach. KEYWORDS: Non-native plants, invasive, exotic, weeds, vegetation management, early detection/rapid response, biological control, integrated management. ENGLISH EQUIVALENTS When you know: Multiply by: To find: Degrees Celsius (°C) (C*9/5) + 32 Degrees Fahrenheit (°F) Centimeters (cm) .3937 Inches (in) Meters (m) 3.2808 Feet (ft) Kilometers (km) 0.6214 Miles (m) Square meters per hectare (m2/ha) 4.3560 Square feet per acre (ft2/ac) ACKNOWLEDGMENTS This conference was sponsored by USDA Forest Service, Pacific Northwest Research Station; University of Washington Botanic Gardens; The Nature Conservancy; and the Center for Invasive Plant Mangement. We would like to thank members of the Conference Steering Committee for their guidance during planning for the conference, the Science Advisory Committee for their assistance with selection and organization of conference presentations, and students from University of Washington and other colleges and universities who helped with conference logistics. Special thanks to Alaine Sommargren for assistance with manuscript formatting, to Steve Reutebuch for providing critical insight and support, and to our keynote speakers, John Randall, Les Mehrhoff, Ann Bartuska, and Doug Johnson, for sharing their knowledge, experiences, and inspiring ideas. Meeting the Challenge: Invasive plants in Pacific Northwest Ecosystems CONTENTS CONFERENCE SYNTHESIS 1 Meeting the Challenge: Invasive Plants in Pacific Northwest Ecosystems 3 Sarah H. Reichard EARLY DETECTION AND RAPID RESPONSE 11 Invasive Species Early Detection Protocol Development in the National Parks: Integrating All the Pieces 13 Susan O’Neil, Brad Welch, Penelope Latham, and Daniel Sarr Developing Early Detection Networks to Abate the Invasive Plant Species Threat 17 Kyle Strauss The First Line of Defense: Interceptions of Federal Noxious Weed Seeds in Washington 19 Margaret Smither-Kopperl Summary of the National Environmental Policy Act Approach for Early Detection/Rapid Response to Invasive Plants on the Olympic National Forest 23 Rochelle Desser CONTROL TECHNIQUES, BIOLOGY, AND IMPACTS 25 Developing a Biological Control Program for Invasive Knotweeds (Fallopia spp.) 27 Fritzi Grevstad, Richard Reardon, Bernd Blossey, and Richard Shaw Cytisus Scoparius (Scotch Broom) Control Using Sewage Biosolids – Preliminary Results 31 Jacqueline D. Shaben Establishment of Scotch Broom Seedlings in Douglas-fir Forests: Effects of Overstory Retention Level and Seedbed Type 37 Timothy B. Harrington Biology and Management of Invasive Hawkweeds (Hieracium spp.) in the Pacific Northwest 43 Linda M. Wilson Fungal Endophytes in Spotted Knapweed: Do They Affect Its Invasiveness? 47 George Newcombe, Anil K. Raghavendra, Alexey Shipunov, Cort Anderson, Hongjian Ding, Sanford Eigenbrode, Timothy Prather, and Mark Schwarzlaender Successful Biological Control of Invasive Plant Species in Washington 51 Jennifer Andreas, Tara J. Zimmerman, Daniel L. Fagerlie, Brad W. Gaolach, Dale K. Whaley, and Tyler W. Wilson Garden Loosestrife (Lysimachia Vulgaris), a Spreading Threat in Western Waterways 53 Katie Sauter Messick and Drew Kerr Garlic Mustard Control: Is Success a Possibility? Strategy and Potential Impact 59 Karen J. Peterson The Ecological Consequences of Giant Knotweed Invasion into Riparian Forests 63 Lauren Urgenson and Sarah H. Reichard MANAGEMENT APPROACHES 65 Strategic Management of Public Invasive Species Programs 67 Steven J. A. Burke Invasive Plant Management Following the 2003 Okanagan Valley Wildfires, British Columbia 73 Lisa K. Scott A Summary of Acute Risk of Four Common Herbicides to Birds and Mammals 77 Shawna L. Bautista Got Milk Thistle? An Adaptive Management Approach to Eradicating Milk Thistle on Dairies in King County, Washington State 83 Dennis Chambreau and Patricia A. MacLaren Controlling Invasive Plants Without Herbicides, Cedar River Municipal Watershed 85 Sally Nickelson, Heidy Barnett, David Chapin, Bill Richards, and Dwayne Paige DISTRIBUTION AND MAPPING OF INVASIVE PLANTS 93 Non-Native Plants on the Mt. Baker-Snoqualmie National Forest 95 Tracy L. Fuentes, Laura L. Potash, Ann Risvold, Kimiora Ward, Robin D. Lesher, and Jan A. Henderson Is the Spread of Non-Native Plants in Alaska Accelerating? 117 Matthew L. Carlson and Michael Shephard Challenges in Predicting the Potential Distribution of Invasive Species Using Habitat Distribution Models 135 Chad C. Jones, Steven A. Acker, and Charles B. Halpern The Integrated Noxious Weed Invasive Species Project (INWISP) of Washington State 139 Daniel L. Fagerlie, Jennifer E. Andreas, Tara J. Zimmerman, Brad W. Gaolach, Dale K. Whaley, and Tyler W. Wilson Distribution and Abundance of Invasive Plants in Pacific Northwest Forests 143 Andrew Gray Herbarium Collections and Invasive Species Biology: Understanding the Past, Present, and Future 149 David E. Giblin, Ben Legler, and Richard G. Olmstead PARTNERSHIPS, EDUCATION, AND OUTREACH 151 Weeds Cross Borders Project: A Canada – United States Collaboration 153 Lisa K. Scott The St. Louis Codes of Conduct: Providing a Framework to Prevent Invasions from Horticulture 157 Sarah H. Reichard Policies to Reduce the Risk of Invasive Plant Introductions via Horticultural Trade: Stakeholder Perceptions and Preferences 163 Arianne Ransom-Hodges CONFERENCE SYNTHESIS Garden loosestrife (Lysimachia vulgaris) (King County Staff) This page is intentionally left blank. Meeting the Challenge: Invasive Plants in Pacific Northwest Ecosystems MEETING THE CHALLENGE: INVASIVE PLANTS IN PACIFIC NORTHWEST ECOSYSTEMS Sarah H. Reichard1 ABSTRACT Compared to other parts of North America, the Pacific Northwest was settled relatively recently by humans of European origin. This more recent population growth and development has resulted in fewer plant invasions and therefore a greater
Recommended publications
  • The Biology of Canadian Weeds. 146. Lapsana Communis L
    The Biology of Canadian Weeds. 146. Lapsana communis L. Ardath Francis1, Stephen J. Darbyshire1, David R. Clements2, and Antonio DiTommaso3 1Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, Wm. Saunders Bldg. #49, Ottawa, Ontario, Canada KIA 0C6 (e-mail: [email protected]); 2Biology Department, Trinity Western University, 7600 Glover Road, Langley, British Columbia, Canada V2Y 1Y1; and 3Department of Crop and Soil Sciences, 903 Bradfield Hall, Cornell University, Ithaca, NY 14853 USA. Received 17 August 2010, accepted 20 December 2010. Francis, A., Darbyshire, S. J., Clements, D. R. and DiTommaso, A. 2011. The Biology of Canadian Weeds. 146. Lapsana communis L. Can. J. Plant Sci. 91: 553Á569. Nipplewort, Lapsana communis, is an annual weed of the Asteraceae native to Europe and western Asia, first detected in northeastern and Pacific northwestern regions of North America in the 19th century. It appears to have been introduced as a contaminant of imported garden material and seeds, but may also have been deliberately introduced as a medicinal herb. After a century of remaining close to its original points of introduction in gardens and ruderal habitats, it spread to neighbouring areas, and now occurs across southern Canada and in many areas of the United States. Possible reasons for this range expansion include forest clearance and changing crop management practices as was observed in Europe, where this plant has become an important weed in grain, forage and vegetable crops. In Ontario, L. communis has recently emerged as a weed in wheat (Triticum aestivum), corn (Zea mays) and soybean (Glycine max) fields.
    [Show full text]
  • Medicinal Plants and EAV
    Medicinal plants and EAV Directed phytotherapy These listed medicinal plants facilitate a safe start with the combination EAV & phytotherapy. The symptoms should be correctly classified and treated causally by an EAV practitioner, who also knows which parts of the plants are efficient, how they have to be prepared and who knows the Indications and contraindications of each medicinal plant and can precisely apply them in the energetic context. The best phytopharmaceutical is the one which is tested according the EAV and enables 100% personalized treatments. Abies alba (1) Ge, Kr, Ne B, Lu Abies balsamea (1) Lu Abies sibirica (1) Ge, Kr, Ne B, Lu Acacia senegal, (vereck) (1) Bi D Achillea millefolium (1) Hau, Bl E, Madidü, Ne Achillea moscata (1) Madidü, Ne Acokanthera ouabaio (1) Aconitum napellus (1) Acorus calamus (1) Ne B, Ge, Mada Adiantum capillus veneris (1) Hau F Adonis vernalis (1) Aesculus hippocastanum (1) Kr A, Kr Gb He Kb, Al D, Kr Gb Kr Hb, Bl E, Ly Agrimonia eupatoria (1) Legbl, Didü, He Kb, Kr, Ge Agropyron caninum, repens (1) 3e D Ajuga reptans (1) Didü Alchemilla alpinae (1) Alchemilla glabra (1) Kr Gb, Didü, Ly D, Ly F Alchemilla vulgaris (1) Didü Alkana tinctoria (1) Allium cepa (1) Pa, Al D Allium sativum (1) Hau, Pa, Al D, Hekr, Ne G, Madidü, Le 5 = MiPa 6 = Ni 8 Allium ursinum (1) Hau Aloe barbadensis, ferox (1) Madidü Aloe vulgaris (1) Madidü Alpinia officinarum (1) Madidü Althaea officinalis (1) Lu, Ly D Ammi majus (1) Hau 1 Medicinal plants and EAV Ammi visagna (1) Al Amygdalus communis (1) Hau Anacyclus pyrethrum
    [Show full text]
  • Nipplewort Feeding, Vehicle Traffic, Or Animal/Human Feet
    Country Living Provided to you by the OSU Extension Service Columbia County 505 N. Columbia River Hwy, St. Helens OR 97051 Phone: 503.397.3462 ▪ Fax: 503.397.3467 Email: [email protected] Office hours: Monday-Friday, 8 a.m. to 5 p.m. Website: http://extension.oregonstate.edu/columbia/ June 2019 Programs for you . Listen to the Gardening Spot on KOHI (1600 am) radio - Every Saturday, 8:05 to 8:15 a.m. June 4 ............. Scappoose Bay Watershed Council 7:00 p.m. 57420 Old Portland Road, Warren. June 6 ............. Master Gardener™ Board Meeting 10:30 a.m. OSU Extension Service, St. Helens. June 6 ............. Columbia County Oregon Beekeepers 6:00 p.m. Meets 1st Thursday, monthly at CRPUD. June 8 ............. St. Helens Garden Club Tour 10 a.m. – 3 p.m. Rain or Shine! Tour of five Columbia County Gardens. $10 with optional lunch & museum admission available for purchase. *See back page June 11 ............ Lower Columbia River Watershed Council 7:00 p.m. Clatskanie PUD, 495 Hwy 30. June 24 .......... Farm Bureau Meeting 7:30 p.m. OSU Extension Service, St. Helens. June 27 .......... Upper Nehalem Watershed Council 5:30 p.m. at the Vernonia Grange, 1201 Texas Ave. June 27 .......... Master Gardener™ Chapter Meeting 6:30 p.m. Guest speaker: Jim LaBonte of the Oregon Department of Agriculture, presents “Oregon Spider Facts!” Public Welcome! Chip Bubl, OSU Extension Faculty, Agriculture Agricultural Sciences & Natural Resources, Family and Community Health, 4-H Youth, Forestry & Natural Resources, In the garden and Extension Sea Grant programs. Oregon State University, United States Department of Agriculture, and Columbia County cooperating.
    [Show full text]
  • Noxious and Rangeland Weed Management: Getting the Most out of Spraying Mark Pederson Dow Agrosciences [email protected]
    Noxious and Rangeland Weed Management: Getting the Most Out of Spraying Mark Pederson Dow AgroSciences [email protected] DOW RESTRICTED - For internal use only Thanks to Pend Oreille County. DOW RESTRICTED - For internal use only Successful Herbicide Weed Control • Why does the herbicide work better one year and not the next? • What changes from year to year? • Is your equipment in good working order? • Just keeping on doing what you always have done… • And get what you always got! DOW RESTRICTED - For internal use only The Variables • Weather • Growing conditions • Temperatures • Wind • Water volume per acre applied • Equipment wear and calibration • You, you, you DOW RESTRICTED - For internal use only Start with the End in Mind • Visualize what you want to accomplish with every spray job – set expectations • Review records and see what has changed • Are the growing conditions and weeds conducive to weed control? • Recalibrate every year and even do a check up during the spray season • Calibrate every applicator that applies products DOW RESTRICTED - For internal use only Rates, Carrier & Equipment • Select herbicide product that: – controls the majority of target weeds – use the correct rates (don’t scrimp) • Water carrier per acre – use enough to get the product to the desired site of activity (if herbicide is soil active, it must penetrate the vegetative canopy to get benefit) – Use Syltac or R-11 • Tune-up sprayers and do timely repairs DOW RESTRICTED - For internal use only Adjuvants/Surfactants • Always use Syltac or R-11 • Use
    [Show full text]
  • Towards Resolving Lamiales Relationships
    Schäferhoff et al. BMC Evolutionary Biology 2010, 10:352 http://www.biomedcentral.com/1471-2148/10/352 RESEARCH ARTICLE Open Access Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences Bastian Schäferhoff1*, Andreas Fleischmann2, Eberhard Fischer3, Dirk C Albach4, Thomas Borsch5, Günther Heubl2, Kai F Müller1 Abstract Background: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales.
    [Show full text]
  • Digitalis Poisoning After Accidental Foxglove Ingestion
    Issue: Ir Med J; Vol 114; No. 1; P245 Digitalis Poisoning after Accidental Foxglove Ingestion T. Popoola, E. Umana, J. Binchy Emergency Department, University Hospital Galway, Ireland. Abstract Presentation A 22-year-old man presented to the Emergency Department (ED) with a history of persistent gastrointestinal symptoms, drowsiness, light-headedness, blurred vision and numbness of the lips for a day after accidentally ingesting foxglove. Diagnosis Serial electrocardiography demonstrated significant changes ranging from sinus bradycardia to varying degrees of heart block with ST segment depression and T wave inversion in the inferior and anterolateral leads. A diagnosis of probable digitalis (cardiac glycoside) poisoning was made. Treatment After initial emergency medicine approach and assessment; his treatment included intravenous atropine, antiemetic, activated charcoal and Digibind with referral to the cardiology team for observation. Conclusion A high index of suspicion for digitalis toxicity in a symptomatic patient with unknown plant ingestion is crucial in the ED. This case also highlights the emergency management approach of such patients with atropine and activated charcoal. Introduction Digitalis poisoning from the therapeutic use of herbal cardiac glycosides (CG) continues to be a source of toxicity today 1. CG are found in a diverse group of plants, the commonest being, foxglove (Digitalis purpurea). Toxicity may occur after consuming juice or teas brewed from plant parts or after consuming leaves, flowers, or seeds from such plants 1. Case Report A 22-year old man presented to the Emergency Department (ED) with a history of persistent vomiting, abdominal discomfort, drowsiness, light-headedness, blurred vision and numbness of the lips for a day.
    [Show full text]
  • Garlic Mustard Plant Alliaria Petiolata Alert
    Invasive Garlic Mustard Plant Alliaria petiolata Alert One of the biggest threats to natural ecosystems in Saanich is the spread of invasive non-native plants. The District of Saanich appreciates the cooperation of all residents in removing Garlic Mustard from private property. For assistance, see contacts on reverse. Considered one of the most invasive plants in Canada. Why is Garlic Mustard a problem? • Garlic Mustard is a serious threat to natural habitats and biodiversity. • Dominates understorey vegetation, monopolizing light, moisture and soil nutrients. • Produces phytotoxins (chemicals) inhibiting growth of other plants and trees. • Has been shown to disrupt the lifecycles of butterflies and salamanders in other areas of North America. • A prolific seed producer with seeds remaining viable for 5-10 years in soil; also self-pollinating (single seed produces new invasion). What does it look like? • First year: lower growing carpets of heart-shaped leaves with scalloped margins, remaining green over winter. • Second year: grow to over 1m tall; mature leaves triangular with scalloped margins becoming smaller towards top of plant. • Flowers: clusters of small white 4-petaled flowers at top of stem, usually one flowering stalk per plant. • Garlic odour when crushed. • Look for: White flowers (April to September), garlic odour, purple base of the stems and roots. Could be confused with: Distribution: • Wild Violet (Viola spp) • Native to Europe and Asia. • Fringecup (Tellima grandiflora) • Eastern Canada: a species of • Nipplewort (Lapsana communis) major concern, has devastated forest ecosystems. • Money Plant (Lunaria annua) • A newer invader to BC: the • Sweet Cicely (Osmorhiza berteroi) regional goal is to eradicate • Avens (Geum spp) due to current distribution and high priority.
    [Show full text]
  • Cynoglossum Officinale L
    United States Department of Agriculture NATURAL RESOURCES CONSERVATION SERVICE Invasive Species Technical Note No. MT-8 January 2007 Ecology and Management of Houndstongue (Cynoglossum officinale L.) by Jim Jacobs, NRCS Invasive Species Specialist, Bozeman, Montana Sharlene Sing, Assistant Research Professor, Montana State University, Bozeman, Montana Abstract Houndstongue, Cynoglossum officinale (Boraginaceae), is a biennial or short-lived perennial originating from montane zones in western Asia and Eastern Europe. Houndstongue reproduces by seed only, and was probably introduced to North America as a grain seed contaminant. This species was first reported in Montana from Sweet Grass County near Big Timber, Montana in 1900. As of 2006, houndstongue has been reported in 35 of Montana’s 56 counties (http://invader.dbs.umt.edu). Houndstongue invades grasslands, pastures, shrublands, forestlands, croplands and riparian areas, and is an effective competitor that readily displaces desirable species, establishing monocultures and further degrading forage quality in disturbed habitats. This species is particularly well adapted to invading and dominating forest openings created through logging activities. Houndstongue has a number of biological characteristics that contribute to its invasiveness. Houndstongue seeds are covered with barbed prickles that have been referred to as ‘nature’s Velcro®. These facilitate the effective, widespread dispersal of seeds on the fur, wool or hides of passing wildlife and livestock, and on the cloths of humans. The seeds are also relatively large; this provision of stored energy confers a significant competitive advantage due to high germination rates and seedling establishment. The large taproot developed in the first year of growth enables houndstongue to tolerate environmental stress and produce many seeds in the second year of growth.
    [Show full text]
  • Mountain Plants of Northeastern Utah
    MOUNTAIN PLANTS OF NORTHEASTERN UTAH Original booklet and drawings by Berniece A. Andersen and Arthur H. Holmgren Revised May 1996 HG 506 FOREWORD In the original printing, the purpose of this manual was to serve as a guide for students, amateur botanists and anyone interested in the wildflowers of a rather limited geographic area. The intent was to depict and describe over 400 common, conspicuous or beautiful species. In this revision we have tried to maintain the intent and integrity of the original. Scientific names have been updated in accordance with changes in taxonomic thought since the time of the first printing. Some changes have been incorporated in order to make the manual more user-friendly for the beginner. The species are now organized primarily by floral color. We hope that these changes serve to enhance the enjoyment and usefulness of this long-popular manual. We would also like to thank Larry A. Rupp, Extension Horticulture Specialist, for critical review of the draft and for the cover photo. Linda Allen, Assistant Curator, Intermountain Herbarium Donna H. Falkenborg, Extension Editor Utah State University Extension is an affirmative action/equal employment opportunity employer and educational organization. We offer our programs to persons regardless of race, color, national origin, sex, religion, age or disability. Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, Robert L. Gilliland, Vice-President and Director, Cooperative Extension
    [Show full text]
  • Indiana Medical History Museum Guide to the Medicinal Plant Garden
    Indiana Medical History Museum Guide to the Medicinal Plant Garden Garden created and maintained by Purdue Master Gardeners of Marion County IMHM Medicinal Plant Garden Plant List – Common Names Trees and Shrubs: Arborvitae, Thuja occidentalis Culver’s root, Veronicastrum virginicum Black haw, Viburnum prunifolium Day lily, Hemerocallis species Catalpa, Catalpa bignonioides Dill, Anethum graveolens Chaste tree, Vitex agnus-castus Elderberry, Sambucus nigra Dogwood, Cornus florida Elecampane, Inula helenium Elderberry, Sambucus nigra European meadowsweet, Queen of the meadow, Ginkgo, Ginkgo biloba Filipendula ulmaria Hawthorn, Crateagus oxycantha Evening primrose, Oenothera biennis Juniper, Juniperus communis False Solomon’s seal, Smilacina racemosa Redbud, Cercis canadensis Fennel, Foeniculum vulgare Sassafras, Sassafras albidum Feverfew, Tanacetum parthenium Spicebush, Lindera benzoin Flax, Linum usitatissimum Witch hazel, Hamamelis virginiana Foxglove, Digitalis species Garlic, Allium sativum Climbing Vines: Golden ragwort, Senecio aureus Grape, Vitis vinifera Goldenrod, Solidago species Hops, Humulus lupulus Horehound, Marrubium vulgare Passion flower, Maypop, Passiflora incarnata Hyssop, Hyssopus officinalis Wild yam, Dioscorea villosa Joe Pye weed, Eupatorium purpureum Ladybells, Adenophora species Herbaceous Plants: Lady’s mantle, Alchemilla vulgaris Alfalfa, Medicago sativa Lavender, Lavendula angustifolia Aloe vera, Aloe barbadensis Lemon balm, Melissa officinalis American skullcap, Scutellaria laterifolia Licorice, Glycyrrhiza
    [Show full text]
  • USSR (North Caucasus, Kazakhstan Republic) July 18-August 31, 1977 U.S
    PLANT GERMPLASM COLLECTION REPORT USDA-ARS FORAGE AND RANGE RESEARCH LABORATORY LOGAN, UTAH Foreign Travel to: USSR (North Caucasus, Kazakhstan Republic) July 18-August 31, 1977 U.S. Participants Douglas R. Dewey - Research Geneticist (deceased) contact Jack Staub USDA-Agricultural Research Service Logan, Utah U.S.A. A. Perry Plummer USDA-Forest Service Provo, Utah U.S.A. Laurie Law (Interpreter) USDA-ARS-IPD Washington, DC 20250 GERMPLASM ACCESSIONS Country Visited: Soviet Union -North Caucasus (Stavropol Kray) -Kazakstan Republic (Tselinograd Oblast) (Alma Ata Oblast) (Dzhambul Oblast) (Chimkent Oblast) Period of Travel: July 18 - August 31, 1977 Moscow: July 18-19 Stavropol: July 20 - August 6 Tselinograd: August 7-11 Alma Ata: August 12-16 Dzhambul: August 17-21 Chimkent: August 22-28 Moscow: August 29-31 Purpose of Trip: 1) To collect germplasm of grasses, legumes, forbs, and shrubs from natural large sites in the USSR for possible use on U.S. rangelands; 2) to establish contracts with Soviet botanists and plant breeders for the purpose of negotiating future seed exchanges. SUMMARY A 45-day plant collection expedition to the USSR by D. R. Dewey, A. P. Plummer, and Laurie Law netted about 1,100 seed collections of range-forage grasses, legumes, forbs, and shrubs. The Soviets provided land transportation and an escort of several scientists and administrators throughout the trip. The collectors were usually housed in hotels and made daily trips to collect native vegetation in surrounding areas usually within a 100-km radius. Almost 3 weeks (July 20 - August 6) were spent in the Stavropol Kray in the northern foothills of the Caucasus Mountains.
    [Show full text]
  • Plant Species Richness and Composition of a Habitat Island
    Biodiversity Data Journal 8: e48704 doi: 10.3897/BDJ.8.e48704 Research Article Plant species richness and composition of a habitat island within Lake Kastoria and comparison with those of a true island within the protected Pamvotis lake (NW Greece) Alexandros Papanikolaou‡‡, Maria Panitsa ‡ Division of Plant Biology, Department of Biology, University of Patras, Patras, Greece Corresponding author: Maria Panitsa ([email protected]) Academic editor: Gianniantonio Domina Received: 22 Nov 2019 | Accepted: 07 Jan 2020 | Published: 15 Jan 2020 Citation: Papanikolaou A, Panitsa M (2020) Plant species richness and composition of a habitat island within Lake Kastoria and comparison with those of a true island within the protected Pamvotis lake (NW Greece). Biodiversity Data Journal 8: e48704. https://doi.org/10.3897/BDJ.8.e48704 Abstract Lake Kastoria is one of the potentially “ancient” Balkan lakes that has a great environmental importance and ecological value, attracts high touristic interest and is under various anthropogenic pressures. It belongs to a Natura 2000 Special Protection Area and a Site of Community Interest. The city of Kastoria is located at the western part of the lake and just next to it, towards the centre of the lake, is a peninsula, a habitat island. In the framework of research concerning the flora of lake islands of Greece, one of the main objectives of the present study is to fill a gap concerning plant species richness of the habitat island within the protected Lake Kastoria, which is surrounded by the lake except for its north-western part where the border of the city of Kastoria is located.
    [Show full text]