Corneal Ulcer Due to Achromobacterxylosoxidans

Total Page:16

File Type:pdf, Size:1020Kb

Corneal Ulcer Due to Achromobacterxylosoxidans Br J Ophthalmol: first published as 10.1136/bjo.68.7.472 on 1 July 1984. Downloaded from British Journal of Ophthalmology, 1984, 68, 472-474 Corneal ulcer due to Achromobacter xylosoxidans PHILIP E. NEWMAN,' PATRICIA HIDER,2 GEORGE 0. WARING III,' E. 0. HILL,3 LOUIS A. WILSON,' AND THOMAS S. HARBIN' From the 'Department of Ophthalmology, -and the 3Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA, and 2Hynson, Westcott, Dunning, Baltimore, Maryland, USA SUMMARY We report a case of corneal ulcer caused by the opportunistic organism Achromobacter xylosoxidans which developed during chronic topical steroid treatment of an eye with neovascular glaucoma. A. xylosoxidans has probably been underreported as a cause of ocular infection because of confusion between this organism and other Gram-negative organisms, particularly pseudomonas. A. xylosoxidans is resistant to aminoglycosides and some cephalosporins but not carbenicillin. This difference in antibiotic sensitivity patterns between A. xylosoxidans and pseudomonas makes an accurate differentiation between the 2 organisms important. This case was successfully treated after substituting topical carbenicillin for topical gentamicin and amikacin. Achromobacter xylosoxidans is a Gram-negative Treatment was instituted with atropine 1% twice daily water-borne bacterium first described and named in and dexamethasone 0-1% 4 times daily, with 1971 by Yabuuchi and Ohyama,' who isolated the disappearance of pain and inflammation. organism from the purulent ear discharge of 7 Two months later he again developed severe pain patients. The first report of an ophthalmic infection in the right eye associated with an infiltrate in the was in 1977, when the organism was isolated from an central cornea and loss of25% ofthe overlying corneal infected orbit.2 It has also been isolated from spinal tissue without hypopyon. Superficial and deep vessels http://bjo.bmj.com/ fluid, blood, urine, and bronchial washings.3 The occupied the entire peripheral cornea. The corneal organism has been variously classified as a Mimea ulcer was cultured with a cotton tipped applicator and and later Acinetobacter. It is easily confused with later placed on chocolate and blood agar. Samples pseudomonas and other Gram-negative pathogens taken for Gram stain revealed polymorphonuclear but has a different antibiotic sensitivity profile. We leucocytes and slender Gram-negative rods, tenta- report here a patient with a corneal abscess due to tively diagnosed as pseudomonas. Initial therapy this organism. included topical gentamicin 5 mg/ml hourly, sub- on September 30, 2021 by guest. Protected copyright. conjunctival injection of gentamicin 20 mg, topical Case report carbenicillin 6 mg/ml hourly, and atropine 1%. The dexamethasone 0-1% which he had used for the A 34-year-old man was struck in the right eye by an previous 2 months was discontinued. A repeat sub- airgun pellet at age 12, the accident resulting in no conjunctival injection of gentamicin 20 mg was given light perception. The patient remained comfortable on the second day. The initial culture report identified until September 1979, when he developed severe the organism as a pseudomonas species resistant to pain in the right eye. Examination at that time gentamicin but sensitive to carbenicillin. revealed a normal left eye, a 40 prism dioptre right The corneal infiltrate progressed and he was exotropia, right circumcorneal vascular injection, admitted to the Emory University cornea service. diffuse epithelial and stromal corneal oedema, iris The right cornea contained a large superior para- neovascularisation, a 3 mm hyphaema, a dense central, propeller-shaped, yellow-white stromal cataract, and an intraocular pressure of 54 mmHg. infiltrate with an overlying epithelial defect and There was no light perception in the eye and a diffuse epithelial and stromal oedema. diagnosis of neovascular glaucoma was made. Scrapings obtained from the ulcer with a platinum were Correspondence to George 0. Waring 111, MD, The Emory Clinic, spatula plated directly on to blood, chocolate, Department of Ophthalmology, 1365 Clifton Road NE, Atlanta, Lowenstein-Jensen, and Sabouraud agars and into Georgia 30322, USA. thioglycolate broth. Gram stain of the scrapings 472 Br J Ophthalmol: first published as 10.1136/bjo.68.7.472 on 1 July 1984. Downloaded from Corneal ulcer due to Achromobacter xylosoxidans 473 showed numerous polymorphonuclear leucocytes with local immune defense mechanisms, enabling and Gram-negative rods. The patient was continued achromobacter to establish itself opportunistically. on topical atropine 1%; carbenicillin 6 mg/ml was A. xylosoxidans is an aerobic, oxidase-positive, increased to every 30 minutes; topical amikacin 25 Gram-negative rod.7 The specific growth character- mg/ml was added every 30 minutes. After 2 days on istics of our isolate are listed in Table 2. In 1939 A. this therapy the infiltrate and ulcer remained xylosoxidans was included in the class Mimeae, which unchanged. were a group of Gram-negative bacilli.8 Gilardi,9 The initial cultures taken by the referring oph- while studying the Mimeae, was able to identify 2 thalmologist and those taken at Emory grew new genera biochemically; Achromobacter anitratus Achromobacter xylosoxidans. A tube dilution anti- and A. Iwoffii. A. anitratus was reported as a causative biotic sensitivity test of minimum inhibitory concen- agent of conjunctivitis'0 in 1949 and of corneal trations demonstrated resistance to amikacin at 64 ulcers"I in 1968. The organisms are Gram-negative, Itg/ml and resistance to gentamicin at 32 [tg/ml but oxidase-negative, and now recognised as members of sensitivity to carbenicillin at 8 ,ug/ml. Since the abscess the Acinetobacter group. Achromobacter and the was clearing clinically, the topical amikacin and car- Alcaligenes genus resemble each other biochemically. benicillin were continued for 72 hours, then amikacin However, oxidative production of acid from glucose was discontinued. By the sixth hospital day the epi- and xylose excludes Achromobacter from the genus thelial defect was healed, and minimal corneal Alcaligenes, which is assaccharolytic. infiltrates remained. After discharge on tapered doses Pien and Higa 12 isolated from external ear drainage of carbenicillin for a one-week period the patient 9 strains of A. xylosoxidans that had previously been became asymptomatic, and the ocular inflammation reported by their laboratory as Pseudomonas species, disappeared. non-P. aeruginosa. The organisms they isolated were peritrichously flagellated, oxidase-positive, Gram- Discussion negative, as well as sensitive to carbenicillin, sulphonamide, and trimethaprim/sulphamethaxozole The paucity of reports of ophthalmic infection caused combination. The type and number of flagella and by Achromobacter xylosoxidans may reflect the characteristic antibiotic sensitivity pattern serve infrequent recognition of the organism caused by to differentiate Achromobacter from Pseudomonas, confusion in the nomenclature and difficulty in which is resistant to sulphonamide/trimethaprim/ identification. Because pseudomonas species are sulphamethaxozole.4 http://bjo.bmj.com/ common ocular pathogens, the misidentification of The source of A. xylosoxidans and its natural achromobacter as pseudomonas occurred in this case habitat are unknown. Holmes et al.2 suggested the when the early cultures indicated a Gram-negative organism is a water pathogen. Two of their strains rod. Consequently the patient was started immedi- were isolated from a swimming pool and from ately on gentamicin. This was an ineffective treat- chlorhexidine 05% solution. Shigeta et al. 13 ment, since achromobacter isolates are resistant to aminoglycosides and cephalosporins4 (Table 1). Table 1 antimicrobic susceptibilities ofAchromobacter on September 30, 2021 by guest. Protected copyright. Since A. xylosoxidans is most frequently found xylosoxidans from corneal ulcer accompanying other organisms in clinical infections,5 its pathogenic role is difficult to assess. It can be Antibiotic Broth minimum Agar disc considered an opportunistic pathogen. Dworzack et inhibitory concentra- diffusion al.6 described a patient with a deficiency of IgM who tion Rglml developed pneumonia due to A. xylosoxidans. Amikacin >64 R Holmes et al.2 reported finding A. xylosoxidans in the Ampicillin 16 R blood of one patient on chemotherapy for breast Carbenicillin 8 S in another Cefamandole 16 S carcinoma, patient with metastatic adeno- Cefoxitin >64 S carcinoma in the liver, and in a third patient on Cephalothin 64 R chronic steroid inhalation therapy. Chloroamphenicol 32 1 A. xylosoxidans has rarely been isolated from the Gentamycin >32 R eye. et Kenamycin >64 R Holmes al.2 isolated the organism from the Penicillin >16 R infected orbit of a patient who had lost the globe after PolymyxinB 8 S a perforating injury from shrapnel. Our case is Tetracycline 32 R unusual because the corneal ulcer was due solely to Tobramycin >32 R achromobacter. The patient was on chronic topical Trimethoprim/ steroids for therapy of his noevascular glaucoma and sulphamethoxazole 1-2/0-06 S corneal oedema. The steroids probably interfered R=resistant. S=sensitive. I=intermediate. Br J Ophthalmol: first published as 10.1136/bjo.68.7.472 on 1 July 1984. Downloaded from 474 Newman, Hider, Waring, Hill, Wilson, and Harbin Table 2 Biochemical characteristics ofAchromobacter encountered, because of its resistance to gentamicin xylosoxidans isolatefrom
Recommended publications
  • Estudio Molecular De Poblaciones De Pseudomonas Ambientales
    Universitat de les Illes Balears ESTUDIO MOLECULAR DE POBLACIONES DE PSEUDOMONAS AMBIENTALES T E S I S D O C T O R A L DAVID SÁNCHEZ BERMÚDEZ DIRECTORA: ELENA GARCÍA-VALDÉS PUKKITS Departamento de Biología Universitat de les Illes Balears Palma de Mallorca, Septiembre 2013 Universitat de les Illes Balears ESTUDIO MOLECULAR DE POBLACIONES DE PSEUDOMONAS AMBIENTALES Tesis Doctoral presentada por David Sánchez Bermúdez para optar al título de Doctor en el programa Microbiología Ambiental y Biotecnología, de la Universitat de les Illes Balears, bajo la dirección de la Dra. Elena García-Valdés Pukkits. Vo Bo Director de la Tesis El doctorando DRA. ELENA GARCÍA-VALDÉS PUKKITS DAVID SÁNCHEZ BERMÚDEZ Catedrática de Universidad Universitat de les Illes Balears PALMA DE MALLORCA, SEPTIEMBRE 2013 III IV Index Agradecimientos .................................................................................................... IX Resumen ................................................................................................................ 1 Abstract ................................................................................................................... 3 Introduction ............................................................................................................ 5 I.1. The genus Pseudomonas ............................................................................................ 7 I.1.1. Definition ................................................................................................................ 7 I.1.2.
    [Show full text]
  • Cetrimide Agar Base M024
    Cetrimide Agar Base M024 Intended use Cetrimide Agar Base is used for the selective isolation of Pseudomonas aeruginosa from clinical specimens. Composition** Ingredients Gms / Litre Gelatin peptone 20.000 Magnesium chloride 1.400 Potassium sulphate 10.000 Cetrimide 0.300 Agar 15.000 Final pH ( at 25°C) 7.2±0.2 **Formula adjusted, standardized to suit performance parameters Directions Suspend 46.7 grams in 1000 ml distilled water containing 10 ml glycerol. Heat, to boiling, to dissolve the medium completely. Sterilize by autoclaving at 15 lbs pressure (121°C) for 15 minutes. Cool to 45-50°C. If desired, rehydrated contents of 1 vial of Nalidixic Selective Supplement (FD130) may be added aseptically to 1000 ml medium. Mix well and pour into sterile Petri plates. Principle And Interpretation Pseudomonas aeruginosa grows well on all normal laboratory media but specific isolation of the organism, from environmental sites or from human, animal or plant sources, is best carried out on a medium, which contains a selective agent and also constituents to enhance pigment production. Most selective media depend upon the intrinsic resistance of the species to various antibacterial agents. Cetrimide inhibits the growth of many microorganisms whilst allowing Pseudomonas aeruginosa to develop typical colonies. Cetrimide is a quaternary ammonium salt, which acts as a cationic detergent that reduces surface tension in the point of contact and has precipitant, complexing and denaturing effects on bacterial membrane proteins. It exhibits inhibitory actions on a wide variety of microorganisms including Pseudomonas species other than Pseudomonas aeruginosa. King et al developed Medium A for the enhancement of pyocyanin production by Pseudomonas (1).
    [Show full text]
  • Cetrimide Agar Plates MPH024
    Cetrimide Agar Plates MPH024 For the selection and subculture of Pseudomonas aeruginosa in accordance with the harmonized method of USP/EP/BP/ JP/IP. Composition** Ingredients Gms / Litre Pancreatic digest of gelatin 20.000 Magnesium chloride 1.400 Dipotassium sulphate 10.000 Cetrimide 0.300 Agar 13.600 Glycerol 10 ml **Formula adjusted, standardized to suit performance parameters Directions Either streak, inoculate or surface spread the test inoculum (50-100 CFU) aseptically on the plate. Principle And Interpretation Pseudomonas aeruginosa grows well on all normal laboratory media but specific isolation of the organism, from environmental sites or from human, animal or plant sources, is best carried out on a medium, which contains a selective agent and also constituents to enhance pigment production. Most selective media depend upon the intrinsic resistance of the species to various antibacterial agents. Cetrimide inhibits the growth of many microorganisms whilst allowing Pseudomonas aeruginosa to develop typical colonies. Cetrimide is a quaternary ammonium salt, which acts as a cationic detergent that reduces surface tension in the point of contact and has precipitant, complexing and denaturing effects on bacterial membrane proteins. It exhibits inhibitory actions on a wide variety of microorganisms including Pseudomonas species other than Pseudomonas aeruginosa . King et al developed Medium A for the enhancement of pyocyanin production by Pseudomonas (1). Cetrimide Agar developed by Lowburry (2) is a modification of Tech Agar (Medium A) with addition of 0.1% cetrimide for selective isolation of P. aeruginosa . Later, due to the availability of the highly purified cetrimide, its concentration in the medium was decreased (3).
    [Show full text]
  • Articles, Onomic Units (Otus) of Which Half Were Related to Bacteria Their Numbers Are Highly Variable in Both Time and Space
    Biogeosciences, 4, 115–124, 2007 www.biogeosciences.net/4/115/2007/ Biogeosciences © Author(s) 2007. This work is licensed under a Creative Commons License. Fluorescent pseudomonads isolated from Hebridean cloud and rain water produce biosurfactants but do not cause ice nucleation H. E. Ahern1, K. A. Walsh2, T. C. J. Hill2, and B. F. Moffett2 1University of East London, Romford Road, Stratford, London, UK 2Environment Agency, Wallingford, UK Received: 1 September 2006 – Published in Biogeosciences Discuss.: 4 October 2006 Revised: 11 January 2007 – Accepted: 9 February 2007 – Published: 12 February 2007 Abstract. Microorganisms were discovered in clouds over 1 Introduction 100 years ago but information on bacterial community struc- ture and function is limited. Clouds may not only be a niche There has been a resurgence of interest in microorganisms within which bacteria could thrive but they might also in- in the atmosphere due, in part, to heightened awareness of fluence dynamic processes using ice nucleating and cloud disease epidemiology. Health issues however may be less condensing abilities. Cloud and rain samples were collected important than their role in cloud and rainfall processes and from two mountains in the Outer Hebrides, NW Scotland, link to climate change. Recently it has been reported that UK. Community composition was determined using a com- there are between 1500 and 355 000 bacteria per millilitre of bination of amplified 16S ribosomal DNA restriction analy- cloud water (Sattler et al., 2001, Bauer et al., 2002 and Am- sis and sequencing. 256 clones yielded 100 operational tax- ato et al., 2005). Therefore, as with other aerosol particles, onomic units (OTUs) of which half were related to bacteria their numbers are highly variable in both time and space.
    [Show full text]
  • Harmonized Pharmacopeia Dehydrated Media
    Harmonised Pharmacopoeia Compliant to Dehydrated Culture Media EP 10th Edition 1. Sterility Testing Sterility testing is required when developing and manufacturing products for pharmaceutical applications as part of a sterilisation validation process as well as routine testing before release. Manufacturers must provide adequate and reliable sterility test data to ensure their product meets strict safety guidelines. Neogen offers the below media for sterility testing, which have been developed in accordance with the European Pharmacopoeia (EP) compliance guidelines: Fluid Thioglycollate Medium NCM0108 This medium has been designed for the detection of aerobic and anaerobic organisms including Clostridia spp., Pseudomonas spp. and Staphylococci. The medium has a nutritionally rich base to support the growth of a wide range of organisms as well as low oxygen reduction potential to prevent any species that may have a negative effect on the recovery and growth of contaminants. NCM0108 Tryptic Soy Broth (Soybean-Casein Digest Broth) NCM0004 This is a highly nutritious medium for the cultivation of a wide range of microorganisms including Aspergillus spp., Bacillus spp. and Candida spp. This versatile medium promotes growth of both fungi and aerobic bacteria, and can also be used as a pre-enrichment broth for non-sterile products. NCM0004 2. Examination of Non-Sterile Products Not all products which are released to market are required to be sterile. Instead, to guarantee that the product meets safety and quality standards, manufacturers are required to evaluate the microbial content of each product and ensure no organisms of concern are present. Neogen’s media range for the examination of non-sterile products has been developed for detection and enumeration of each organism specified within the HP including: Bile-Tolerant Gram-Negative Bacteria Enterobacteriaceae Enrichment (EE) Broth Mossel NCM0057 This is a selective broth for the enrichment of Enterobacteriaceae.
    [Show full text]
  • Burkholderia Cepacia Complex Organisms Recovery on Burkholderia Cepacia Agar W/O Supplements Figure 3
    m» MICROBIOLOGY )) Recovery of Introduction The FDA has adopted the position that all new product submissions for Stressed (Acclimated) non-sterile drugs must address recovery of Burkholderia cepacia [1,2). The rationale for this requirement from the review section of the Center for Drug Evaluation and Research (CDER) was published late in 2012 in Burkholderia cepacia the trade literature [3]. Both the published article and the regulatory requests have noted the disturbing ability of the Bee (Burkholderia cepacia complex) group to proliferate in normally well-preserved Complex Organisms products and their ability to cause serious complications in susceptible populations [4]. The Agency has expressed concern that "acclimated" Bee organisms may not be recovered by standard microbiological methods and so evade detection [2]. The potential failure of these methods is of special concern as Bee organisms have been implicated in a series of FDA recalls for both sterile and non-sterile products. The product types included eyewash, nasal spray, mouthwash, anti-cavity rinse, skin cream, baby and adult washcloths, surgical prep solution, electrolyte solution, and radio-opaque preparations [5). B. cepacia complex organisms have also been implicated in a series of outbreaks in hospital settings and have earned their reputation as objectionable organisms in specific product categories [6]. This study investigates the concern that compendia! methods (especially the use of rich nutrient recovery agar) may not be capable of recovering Bee microorganisms that had been acclimated to an environment of USP Purified Water under refrigeration (2-8°() for an extended period of time (up to 42 days). This acclimation method is one suggested specifically for 8.
    [Show full text]
  • Probiotic Potential of Escherichia Coli ŽP for the Gut Microbiota of Chickens
    E3S Web of Conferences 222, 03021 (2020) https://doi.org/10.1051/e3sconf/202022203021 DAIC 2020 Probiotic potential of Escherichia coli ŽP for the gut microbiota of chickens Irina Maslennikova1,*, Julia Gizatullina1, Elizaveta Afanasievskaya2, Marjanca Starčič Erjavec3, and Marina Kuznetsova1 1Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva street 13, 614081 Perm, Russia 2Perm State Medical University named after E.A. Wagner, str. Petropavlovskaya, 26, Perm, Russia 3Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia Abstract. The effect of oral administration of Escherichia coli ŽP strain carrying a conjugative plasmid encoding the colicin E7 on the composition of the intestinal chyme microbiota of chickens was studied. It was shown that E. coli ŽP was present in the chyme of chickens 6-24 days of age in all experimental groups. In the microbiota of the control group (not administered with the ŽP strain) the Firmicutes phylum, as well as Proteobacteria (E. coli), Actinobacteria (Eubacterium spp.) and, to a lesser extent, Bacteroidetes were found. In the experimental groups the proportion of Firmicutes, represented by the Lactobacillus, Bacillus and Clostridium genera, was higher than in the control group. Our results showed that the use of E. coli ŽP helps to maintain a dynamic state of the microbiota, in all experimental groups, including the group, which was administered an APEC strain. 1 Introduction The composition of the microbiota of the chickens is of great importance for their health, especially in the poultry industry. The mortality rate of colibacillosis caused by avian pathogenic Escherichia coli (APEC) can reach 55% of total losses [1].
    [Show full text]
  • Insights Into the Bacterial Profiles and Resistome Structures Following Severe 2018 Flood in Kerala, South India
    bioRxiv preprint doi: https://doi.org/10.1101/693820; this version posted July 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Insights into the bacterial profiles and resistome structures following severe 2018 flood in Kerala, South India Soumya Jaya Divakaran $1, Jamiema Sara Philip$1, Padma Chereddy1, Sai Ravi Chandra Nori1, Akshay Jaya Ganesh1, Jiffy John1, Shijulal Nelson-Sathi* 1Computational Biology Laboratory, Interdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India * Author for Correspondence: Shijulal Nelson-Sathi, Computational Biology Laboratory, Interdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India, Phone: +91-4712781236, e-mail: [email protected] Abstract Extreme flooding is one of the major risk factors for human health, and it can significantly influence the microbial communities and enhance the mobility of infectious disease agents within its affected areas. The flood crisis in 2018 was one of the severe natural calamities recorded in the southern state of India (Kerala) that significantly affected its economy and ecological habitat. We utilized a combination of shotgun metagenomics and bioinformatics approaches for understanding microbiome disruption and the dissemination of pathogenic and antibiotic-resistant bacteria on flooded sites. Here we report, altered bacterial profiles at the flooded sites having 77 significantly different bacterial genera in comparison with non-flooded mangrove settings. The flooded regions were heavily contaminated with faecal contamination indicators such as Escherichia coli and Enterococcus faecalis and resistant strains of Pseudomonas aeruginosa, Salmonella Typhi/Typhimurium, Klebsiella pneumoniae, Vibrio cholerae and Staphylococcus aureus.
    [Show full text]
  • CDC Anaerobe 5% Sheep Blood Agar with Phenylethyl Alcohol (PEA) CDC Anaerobe Laked Sheep Blood Agar with Kanamycin and Vancomycin (KV)
    Difco & BBL Manual Manual of Microbiological Culture Media Second Edition Editors Mary Jo Zimbro, B.S., MT (ASCP) David A. Power, Ph.D. Sharon M. Miller, B.S., MT (ASCP) George E. Wilson, MBA, B.S., MT (ASCP) Julie A. Johnson, B.A. BD Diagnostics – Diagnostic Systems 7 Loveton Circle Sparks, MD 21152 Difco Manual Preface.ind 1 3/16/09 3:02:34 PM Table of Contents Contents Preface ...............................................................................................................................................................v About This Manual ...........................................................................................................................................vii History of BD Diagnostics .................................................................................................................................ix Section I: Monographs .......................................................................................................................................1 History of Microbiology and Culture Media ...................................................................................................3 Microorganism Growth Requirements .............................................................................................................4 Functional Types of Culture Media ..................................................................................................................5 Culture Media Ingredients – Agars ...................................................................................................................6
    [Show full text]
  • Drinking Water Microbiology September 2016
    Proficiency Testing Drinking Water Microbiology September 2016 Tommy Šlapokas NFA PT Since 1981 Edition Version 1 (2016-11-30) Editor in chief Hans Lindmark, Head of Biology department, National Food Agency Responsible for the scheme Tommy Šlapokas, Microbiologist, Biology department, National Food Agency PT March 2016 is registered as no. 2016/02715 at the National Food Agency, Uppsala Proficiency testing Drinking water Microbiology September 2016 Parameters included Coliform bacteria and Escherichia coli with membrane filter method (MF) Coliform bacteria and Escherichia coli, (rapid methods with MPN) Suspected thermotolerant coliform bacteria with MF (not assessed) Intestinal enterococci with MF Pseudomonas aeruginosa with MF Culturable microorganisms (total count) 3 days incubation at 22±2 °C Culturable microorganisms (total count) 2 days incubation at 36±2 °C Tommy Šlapokas Irina Boriak, Kirsi Mykkänen & Marianne Törnquist National Food Agency, Biology department, Box 622, SE-751 26 Uppsala, Sweden Abbreviations and explanations Microbiological media CCA Chromocult Coliform Agar® (Merck; EN ISO 9308-1:2014) Colilert Colilert® Quanti-Tray® (IDEXX Inc.; EN ISO 9308-2:2014) LES m-Endo Agar LES (according to SS 028167) LTTC m-Lactose TTC Agar with Tergitol (according to EN ISO 9308-1:2000) m-Ent m-Enterococcus Agar (Slanetz & Bartley; according to EN ISO 8799-2:2000) m-FC m-FC Agar (according to SS 028167) PACN Pseudomonas Agar base/CN agar (with cetrimide and nalidixic acid; according to EN ISO 16266:2008) YeA Yeast extract Agar (according
    [Show full text]
  • Anaerobe Agar
    Thermo Scientific Microbiology Prepared media selection guide For the isolation, identification, differentiation and susceptibility testing of microorganisms Table of Contents Anaerobe Agar 4 Antimicrobial Susceptibility Testing (AST) Agars 6 Bi-plates 9 Blood Agars 14 Brilliance Chromogenic Media (Clinical) 16 Brilliance Chromogenic Media (Food) 21 Diluents, Water & Peptones 23 Dip-Slides 24 General Purpose Media 25 Pharmaceutical Media 29 ReadyBags 32 Water Testing 33 Culture Media byby Organism Type Aeromonas 36 ListeriaListeria 5252 Bacillus cereus 366 MycoplasmaMycoplasma / Ureaplasma 52 Bordetella 37 PasteurellaPasteurella 5353 Burkholderia cepaciaacia 37 Pseudomonas 53 Campylobacter 388 SalmonellaSalmonella 5454 Clostridium specieses 38 Staphylococci / Streptococcii 5757 Coliforms / Escherichiarichia colii 4040 StaphylococcusStaphylococcus aureusaureus 5858 Corynebacteria 411 StreptococcusStreptococcus agalactiaeagalactiae 5959 Dermatophytes 41 Trichomonas 60 Escherichia coli O157 42 Vibrio 60 Enterobacteriaceae 43 Yeasts & Moulds 61 Enterococci 47 Yersinia 63 Gardnerella 48 Haemophilus & Neisseria 48 Helicobacter pylori 50 Lactobacilli / Bifidobacteria 50 Legionella 51 Bringing more to microbiology Highest levels of quality & consistency Our culture medium expertise and rigorous quality standards have made us a preferred supplier and trusted source of prepared media to laboratories around the world. With a full range of formulations and formats, our media products combine ease-of-use with accurate, reproducible performance. You can rest assured knowing the Thermo Scientific™ culture media that reaches your benchtop will provide optimal recovery and differentiation of organisms, for greater confidence in your results. Unmatched service & support When you choose Thermo Scientific products for your microbiology needs, consider it the start of a lifelong partnership. Whether you need assistance with protocols, product transitions or product troubleshooting, our team of experts is ready to help you.
    [Show full text]
  • Cosmetics & Personal Care Microbiology
    Cosmetics & Personal Care Microbiology 102914tr For more information on other Hardy Diagnostics Products: Email us at [email protected] Visit us online at www.HardyDiagnostics.com Distribution Centers Santa Maria, California | Centralia, Washington | Salt Lake City, Utah Phoenix, Arizona | Dallas, Texas | Springboro, Ohio Lake City, Florida | Albany, New York | Raleigh, North Carolina A Culture of Service™ Anaerobic Microbiology 4 Contents Control Organisms 5 Dehydrated Culture Media 9 Environmental Monitoring 11 Membrane Filtration 16 Microscope 20 Stains 21 Inoculating Products 23 Pipettes 26 Prepared Culture Media 28 Custom Media 40 Personal Protection 41 Soap & Sanitizers 43 Rapid Identification Systems 46 Reagents 47 Sample Collection & 49 Transport Petri Dishes 52 Scale 52 Weighing Dishes 52 A Culture of Service™ email: [email protected] | website: www.HardyDiagnostics.com | phone: (800) 266-2222 | fax: (805) 346-2760 3 Anaerobic Microbiology AnaeroGen™ Compact AnaeroGen™ Compact is a simple-to-use system for rapidly generating an anaerobic environment necessary to cultivate anaerobic microorganisms. The AnaeroGen™ Compact system consists of an AnaeroGen™ sachet, oxygen impermeable pouch, and sealing clip. Each pouch is large enough to hold four 15x100mm petri plates. • No catalyst needed and no water required for activation • No potentially explosive Sealing hydrogen gas produced Clip • No dangerous build-up of pressure • Sachet is activated upon opening • Final atmosphere generated contains less than 1% AnaeroGen™ oxygen, which is ideal for the Compact growth of anaerobes Sachet O2 Impermeable Pouch AnaeroGen™ Compact System Sachets and Pouches, 10/bx AN010C Sealing Clips, 5/bx (reusable) AN005C Anaerobic Indicator Strip, 100 strips/bx BR55 Jar System for Anaerobes AnaeroGen™ is a simple-to-use system for rapidly generating an anaerobic environment necessary Almore Gas Jar to cultivate anaerobic microorganisms within a ™ sealed jar.
    [Show full text]