Association of Slugs with the Fungal Pathogen Epichlo ¨E Typhina

Total Page:16

File Type:pdf, Size:1020Kb

Association of Slugs with the Fungal Pathogen Epichlo ¨E Typhina Annals of Applied Biology ISSN 0003-4746 RESEARCH ARTICLE Association of slugs with the fungal pathogen Epichloe¨ typhina (Ascomycotina: Clavicipitaceae): potential role in stroma fertilisation and disease spread G.D. Hoffman & S. Rao Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331, USA Keywords Abstract Arion subfuscus; choke disease; Dactylis glomerata; Deroceras reticulatum; fungal Epichloe¨ spp. are endophytes of grasses, and form epiphytic external stromata ecology; mycophagy; Prophysaon andersoni. on flowering tillers. E. typhina was first noticed infecting Dactylis glomerata (= orchardgrass, cocksfoot) stands in the Willamette Valley in 1996, and Correspondence soon became the primary factor limiting the longevity of seed production G.D. Hoffman, Department of Crop and Soil fields. Several species of slugs are present in these fields, and we investigated Science, Oregon State University, Corvallis, OR 97331, USA. Email: their role in E. typhina biology. Pre-dawn surveys of D. glomerata fields in [email protected] 2009 and 2010 found Prophysaon andersoni and Arion subfuscus slugs feeding on the fungal stromata. When unfertilised and fertilised immature stromata Received: 9 August 2012; revised version predominated, approximately 80% of the individuals of these two species accepted: 17 February 2013. that were seen on plants were found on the stromata. As the majority of stromata reached maturity the presence of these species on stromata declined doi:10.1111/aab.12024 to between 20–40%. The common agricultural slug pest, Deroceras reticulatum, was on stromata only 20% of the time early in the season, and declined to <5% at stromata maturity. Observations of frass from slugs determined that the most common constituent was the food sources upon which the slug species was usually found during these surveys. Typically 100% of the frass from P. andersoni and A. subfuscus contained stroma material, compared to 25% for D. reticulatum. Spermatia, and ascospores later in the season, were commonly seen in the frass of slugs that consumed stromata. Some slugs that had no stroma material in their frass appeared to have consumed spermatia and ascospores from the leaf surface. A multiple-choice laboratory test confirmed the different proportional preferences of P. andersoni and D. reticulatum for stroma (0.72 vs 0.20) and leaf (0.07 vs 0.38), respectively. Two laboratory multiple-choice tests, and a field survey, found that P. andersoni preferred unfertilised and immature stroma over mature stroma. D. reticulatum is the most common and abundant slug in Willamette Valley grass seed fields, yet it is the least likely to move spermatia between unfertilised stromata, or ascospores to uninfected plants. P. andersoni and A. subfuscus are mycophagous, frequently transport viable spermatia and ascospores in their frass; yet they are generally confined to field edges. Data and observations suggest the role of slugs in the epidemiology of E. typhina is small compared to other factors. Introduction in the Willamette Valley of western Oregon (Pfender & Alderman, 2006). Epichloe¨ (Ascomycotina: Clavicipi- Epichloe¨ typhina (Pers.:Fr.) Tul. is the primary factor taceae) endophytes are of considerable interest in agri- limiting the longevity of productive Dactylis glomerata cultural research, as pathogens in cultivated grass seed L. (= orchardgrass, cocksfoot) seed production fields production fields (Pfender & Alderman, 1999), as causal 324 Ann Appl Biol 162 (2013) 324–334 © 2013 Association of Applied Biologists G.D. Hoffman & S. Rao Slug consumption of Epichloe¨ stromata agents of livestock toxicosis (Belesky & Bacon, 2009), and of stroma fertilisation have recently been described. as beneficial organisms which reduce insect herbivory as Ascospores released from early maturing stromata can well as increase drought tolerance of host plants (Siegel fertilise late emerging stromata (Alderman & Rao, 2008). et al., 1990; Schardl, 1996; Schardl et al., 2009). During Spermatia dislodged from a stroma by air pressure driven the vegetative growth phase of the host plant, Epichloe¨ water mist, mimicking wind-blown rain, can fertilise is characterised by intercellular hyphal growth with lit- adjacent stromata (Kaser, 2009). tle to no penetration of the host cell wall (Christensen Slugs are serious pests in the grass seed cropping et al., 2002). When the host grass enters the reproductive systems in the Willamette Valley, OR, USA, particularly phase, branched hyphal masses (stromata) form epiphyti- on emerging grass seedlings and in no-till systems (Gavin cally on grass culms, and occasionally on vegetative tillers et al., 2008; Anderson et al., 2010; Mellbye et al., 2011). (Schardl, 1996; Christensen et al., 2008). After stroma fer- The introduced Deroceras reticulatum (Muller),¨ known as tilisation there is a proliferation of white fungal hyphae either the grey garden slug, or grey field slug, is the most leading to a thickening of the stroma and eventual forma- common slug in Willamette Valley agronomic systems tion of perithecia and ascospores. Growth of the stroma (Dreves & Fisher, 2012; personal observation). Other slug mechanically inhibits grass inflorescence development species, particularly those in the genus Arion, are present and production of viable grass seed; this syndrome is in smaller numbers in many grass seed fields. Slugs seen known as choke disease (Kirby, 1961; Bucheli & Leucht- on stromata during choke surveys raised the question of mann, 1996). E. typhina does not produce compounds whether they could be involved in the cycle of stroma toxic to livestock (Leuchtmann et al., 2000), and infected fertilisation, ascospore dispersal and the infection of new plants are not a problem in forage production or grazing. plants. E. typhina, was first recorded in Oregon in 1996, and We investigated the association between the orchard- was likely introduced from Europe where the species is grass pathogen E. typhina and slugs in seed production native (Alderman et al., 1997). By 2000, approximately fields in the Willamette Valley. We documented within 90% of orchardgrass seed production fields in Oregon the plant feeding sites of three slug species: D. reticulatum; were infected by the fungus (Pfender & Alderman, the native slug Prophysaon andersoni Cooper (reticulated 2006). It appears that seed yield loss is proportional to taildropper); and the introduced slug Arion subfuscus Dra- the percentage of flowering tillers choked (Large, 1954; parnaud (dusky Arion). The frass from these slugs was Pfender & Alderman, 2006). While E. typhina spread examined to identify diet components, and confirm that quickly through the Willamette Valley, infecting orchard slug location on the plant during night feeding peri- grass for experimental studies has proven to be difficult ods corresponded to the food consumed. To determine (S.C. Alderman, personal communication). if feeding site locations were due to a true food pref- The sexually reproducing Epichloe¨ are bipolar het- erence, we ran multiple-choice feeding preferences tests erothallic, and are obligate out crossers (White & Bult- in a controlled environment. Corroborative tests deter- man, 1987). Stroma of sexual Epichloe¨ species produce mined the field preference of P. andersoni for stromata of haploid spermatia and receptive hyphae of one of two different developmental stages. This information allowed possible mating types (MAT1-1-1 or MAT1-2-1) (Chung us to make predictions on the role of these slugs in the & Schardl, 1997). It appears that only one mating type infection biology of E. typhina. is found within a host plant (Schardl, 1996). The mei- otically derived haploid ascospores produced within the perithecia are ejected at maturity (Chung & Schardl, 1997; Methods and materials Leyronas & Raynal, 2008). E. typhina is a Type 1 reproduc- Field sampling tive system fungus (White, 1988), requiring ascospores to spread the fungus outside of the host and into susceptible In 2009, we focused our slug surveys on three individuals; it is not transmitted vertically through seed. orchardgrass fields in the mid-Willamette Valley, two For sexual reproduction in Epichloe¨ species, spermatia containing P. andersoni. We began the slug survey shortly produced on the stroma must be transported to a stroma of after the onset of stromata formation (early May). the opposite mating type for gamete transfer and meiosis Sampling was from 5:00 am to 6:30 am on cloudy or to occur. Female flies in the genus Botanophila (Diptera: foggy mornings, at approximately 2-week intervals. The Anthomyiidae) transfer viable spermatia from one stroma exceptions were two 10:00 pm to 12:00 am sampling to another in the process of female feeding, defecation, events (14 May and 3 June), done to compare night and egg laying (Kohlmeyer & Kohlmeyer, 1974; Bultman with the subsequent early morning feeding periods. We et al., 1995, 1998). Spermatia are not carried by wind attempted to record the location of 30–40 individuals (Bultman et al., 1995); however other mechanisms of each species seen on orchardgrass plants during Ann Appl Biol 162 (2013) 324–334 325 © 2013 Association of Applied Biologists Slug consumption of Epichloe¨ stromata G.D. Hoffman & S. Rao each sampling period. Because D. reticulatum was most The frass generally consisted of a digested, unidentifiable common, we stopped recording information on this granular appearing substance and a portion of undigested species after 40 observations, as we continued
Recommended publications
  • Haida Gwaii Slug,Staala Gwaii
    COSEWIC Assessment and Status Report on the Haida Gwaii Slug Staala gwaii in Canada SPECIAL CONCERN 2013 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2013. COSEWIC assessment and status report on the Haida Gwaii Slug Staala gwaii in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. x + 44 pp. (www.registrelep-sararegistry.gc.ca/default_e.cfm). Production note: COSEWIC would like to acknowledge Kristiina Ovaska and Lennart Sopuck of Biolinx Environmental Research Inc., for writing the status report on Haida Gwaii Slug, Staala gwaii, in Canada, prepared under contract with Environment Canada. This report was overseen and edited by Dwayne Lepitzki, Co-chair of the COSEWIC Molluscs Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur la Limace de Haida Gwaii (Staala gwaii) au Canada. Cover illustration/photo: Haida Gwaii Slug — Photo by K. Ovaska. Her Majesty the Queen in Right of Canada, 2013. Catalogue No. CW69-14/673-2013E-PDF ISBN 978-1-100-22432-9 Recycled paper COSEWIC Assessment Summary Assessment Summary – May 2013 Common name Haida Gwaii Slug Scientific name Staala gwaii Status Special Concern Reason for designation This small slug is a relict of unglaciated refugia on Haida Gwaii and on the Brooks Peninsula of northwestern Vancouver Island.
    [Show full text]
  • (Gastropoda: Eupulmonata: Onchidiidae) from Iran, Persian Gulf
    Zootaxa 4758 (3): 501–531 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4758.3.5 http://zoobank.org/urn:lsid:zoobank.org:pub:2F2B0734-03E2-4D94-A72D-9E43A132D1DE Description of a new Peronia species (Gastropoda: Eupulmonata: Onchidiidae) from Iran, Persian Gulf FATEMEH MANIEI1,3, MARIANNE ESPELAND1, MOHAMMAD MOVAHEDI2 & HEIKE WÄGELE1 1Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany. E-mail: [email protected] 2Iranian Fisheries Science Research Institute (IFRO), 1588733111, Tehran, Iran. E-mail: [email protected] 3Corresponding author Abstract Peronia J. Fleming, 1822 is an eupulmonate slug genus with a wide distribution in the Indo-Pacific Ocean. Currently, nine species are considered as valid. However, molecular data indicate cryptic speciation and more species involved. Here, we present results on a new species found in the Persian Gulf, a subtropical region with harsh conditions such as elevated salinity and high temperature compared to the Indian Ocean. Peronia persiae sp. nov. is described based on molecular, histological, anatomical, micro-computer tomography and scanning electron microscopy data. ABGD, GMYC and bPTP analyses based on 16S rDNA and cytochrome oxidase I (COI) sequences of Peronia confirm the delimitation of the new species. Moreover, our 14 specimens were carefully compared with available information of other described Peronia species. Peronia persiae sp. nov. is distinct in a combination of characters, including differences in the genital (ampulla, prostate, penial hooks, penial needle) and digestive systems (lack of pharyngeal wall teeth, tooth shape in radula, intestine of type II).
    [Show full text]
  • On the Distribution and Food Preferences of Arion Subfuscus (Draparnaud, 1805)
    Vol. 16(2): 61–67 ON THE DISTRIBUTION AND FOOD PREFERENCES OF ARION SUBFUSCUS (DRAPARNAUD, 1805) JAN KOZ£OWSKI Institute of Plant Protection, National Research Institute, W³adys³awa Wêgorka 20, 60-318 Poznañ, Poland (e-mail: [email protected]) ABSTRACT: In recent years Arion subfuscus (Drap.) is increasingly often observed in agricultural crops. Its abun- dance and effect on winter oilseed rape crops were studied. Its abundance was found to be much lower than that of Deroceras reticulatum (O. F. Müll.). Preferences of A. subfuscus to oilseed rape and 19 other herbaceous plants were determined based on multiple choice tests in the laboratory. Indices of acceptance (A.I.), palat- ability (P.I.) and consumption (C.I.) were calculated for the studied plant species; accepted and not accepted plant species were identified. A. subfuscus was found to prefer seedlings of Brassica napus, while Chelidonium maius, Euphorbia helioscopia and Plantago lanceolata were not accepted. KEY WORDS: Arion subfuscus, abundance, oilseed rape seedlings, herbaceous plants, acceptance of plants INTRODUCTION Pulmonate slugs are seroius pests of plants culti- common (RIEDEL 1988, WIKTOR 2004). It lives in low- vated in Poland and in other parts of western and cen- land and montane forests, shrubs, on meadows, tral Europe (GLEN et al. 1993, MESCH 1996, FRANK montane glades and sometimes even in peat bogs. Re- 1998, MOENS &GLEN 2002, PORT &ESTER 2002, cently it has been observed to occur synanthropically KOZ£OWSKI 2003). The most important pest species in such habitats as ruins, parks, cemeteries, gardens include Deroceras reticulatum (O. F. Müller, 1774), and and margins of cultivated fields.
    [Show full text]
  • BRYOLOGICAL INTERACTION-Chapter 4-6
    65 CHAPTER 4-6 INVERTEBRATES: MOLLUSKS Figure 1. Slug on a Fissidens species. Photo by Janice Glime. Mollusca – Mollusks Glistening trails of pearly mucous criss-cross mats and also seemed to be a preferred food. Perhaps we need to turfs of green, signalling the passing of snails and slugs on searach at night when the snails and slugs are more active. the low-growing bryophytes (Figure 1). In California, the white desert snail Eremarionta immaculata is more common on lichens and mosses than on other plant detritus and rocks (Wiesenborn 2003). Wiesenborn suggested that the snails might find more food and moisture there. Are these mollusks simply travelling from one place to another across the moist moss surface, or do they have a more dastardly purpose for traversing these miniature forests? Quantitative information on snails and slugs among bryophytes is scarce, and often only mentions that bryophytes are abundant in the habitat (e.g. Nekola 2002), but we might be able to glean some information from a study by Grime and Blythe (1969). In collections totalling 82.4 g of moss, they examined snail populations in a 0.75 m2 plot each morning on 7, 8, 9, & 12 September 1966. The copse snail, Arianta arbustorum (Figure 2), numbered 0, 7, 2, and 6 on those days, respectively, with weights of Figure 2. The copse snail, Arianta arbustorum, in 0.0, 8.5, 2.4, & 7.3 per 100 g dry mass of moss. They were Stockholm, Sweden. Photo by Håkan Svensson through most abundant on the stinging nettle, Urtica dioica, which Wikimedia Commons.
    [Show full text]
  • Fauna of New Zealand Ko Te Aitanga Pepeke O Aotearoa
    aua o ew eaa Ko te Aiaga eeke o Aoeaoa IEEAE SYSEMAICS AISOY GOU EESEAIES O ACAE ESEAC ema acae eseac ico Agicuue & Sciece Cee P O o 9 ico ew eaa K Cosy a M-C aiièe acae eseac Mou Ae eseac Cee iae ag 917 Aucka ew eaa EESEAIE O UIESIIES M Emeso eame o Eomoogy & Aima Ecoogy PO o ico Uiesiy ew eaa EESEAIE O MUSEUMS M ama aua Eiome eame Museum o ew eaa e aa ogaewa O o 7 Weigo ew eaa EESEAIE O OESEAS ISIUIOS awece CSIO iisio o Eomoogy GO o 17 Caea Ciy AC 1 Ausaia SEIES EIO AUA O EW EAA M C ua (ecease ue 199 acae eseac Mou Ae eseac Cee iae ag 917 Aucka ew eaa Fauna of New Zealand Ko te Aitanga Pepeke o Aotearoa Number / Nama 38 Naturalised terrestrial Stylommatophora (Mousca Gasooa Gay M ake acae eseac iae ag 317 amio ew eaa 4 Maaaki Whenua Ρ Ε S S ico Caeuy ew eaa 1999 Coyig © acae eseac ew eaa 1999 o a o is wok coee y coyig may e eouce o coie i ay om o y ay meas (gaic eecoic o mecaica icuig oocoyig ecoig aig iomaio eiea sysems o oewise wiou e wie emissio o e uise Caaoguig i uicaio AKE G Μ (Gay Micae 195— auase eesia Syommaooa (Mousca Gasooa / G Μ ake — ico Caeuy Maaaki Weua ess 1999 (aua o ew eaa ISS 111-533 ; o 3 IS -7-93-5 I ie 11 Seies UC 593(931 eae o uIicaio y e seies eio (a comee y eo Cosy usig comue-ase e ocessig ayou scaig a iig a acae eseac M Ae eseac Cee iae ag 917 Aucka ew eaa Māoi summay e y aco uaau Cosuas Weigo uise y Maaaki Weua ess acae eseac O o ico Caeuy Wesie //wwwmwessco/ ie y G i Weigo o coe eoceas eicuaum (ue a eigo oaa (owe (IIusao G M ake oucio o e coou Iaes was ue y e ew eaIa oey oa ue oeies eseac
    [Show full text]
  • (5 Classes) Polyplacophora – Many Plates on a Foot Cephalopoda – Head Foot Gastropoda – Stomach Scaphopoda – Tusk Shell Bivalvia – Hatchet Foot
    Policemen Phylum Censor Gals in Scant Mollusca Bikinis! (5 Classes) Polyplacophora – Many plates on a foot Cephalopoda – Head foot Gastropoda – Stomach Scaphopoda – Tusk shell Bivalvia – Hatchet foot foot Typical questions for Mollusca •How many of these specimens posses a radula? •Which ones are filter feeders? •Which have undergone torsion? Detorsion? •Name the main function of the mantle? •Name a class used for currency •Which specimens have lungs? (Just have think of which live on land vs. in water……) •Name the oldest part of a univalve shell? Bivalve? Answers…maybe • Gastropods, Cephalopoda, Mono-, A- & Polyplacophora • Bivalvia (Scaphopoda….have a captacula) • Gastropods Opisthobranchia (sea hares & sea slugs) and the land slugs of the Pulmonata • Mantle secretes the shell • Scaphopoda • Pulmonata – their name gives this away • Apex for Univalve, Umbo for bivalve but often the terms are used interchangeably Anus Gills in Mantle mantle cavity Radula Head in mouth Chitons radula, 8 plates Class Polyplacophora Tentacles (2) & arms are all derived from the gastropod foot Class Cephalopoda - Octopuses, Squid, Nautilus, Cuttlefish…beak, pen, ink sac, chromatophores, jet propulsion……….dissection. Subclass Prosobranchia Aquatic –marine. Generally having thick Apex pointed shells, spines, & many have opercula. Gastropoda WORDS TO KNOW: snails, conchs, torsion, coiling, radula, operculum & egg sac Subclass Pulmonata Aquatic – freshwater. Shells are thin, rounded, with no spines, ridges or opercula. Subclass Pulmonata Slug Detorsion… If something looks strange, chances are…. …….it is Subclass Opisthobranchia something from Class Gastropoda Nudibranch (…or your roommate!) Class Gastropoda Sinistral Dextral ‘POP’ Subclass Prosobranchia - Aquatic snails (“shells”) -Have gills Subclass Opisthobranchia - Marine - Have gills - Nudibranchs / Sea slugs / Sea hares - Mantle cavity & shell reduced or absent Subclass Pulmonata - Terrestrial Slugs and terrestrial snails - Have lungs Class Scaphopoda - “tusk shells” Wampum Indian currency.
    [Show full text]
  • Comprehensive Conservation Plan Benton Lake National Wildlife
    Glossary accessible—Pertaining to physical access to areas breeding habitat—Environment used by migratory and activities for people of different abilities, es- birds or other animals during the breeding sea- pecially those with physical impairments. son. A.D.—Anno Domini, “in the year of the Lord.” canopy—Layer of foliage, generally the uppermost adaptive resource management (ARM)—The rigorous layer, in a vegetative stand; mid-level or under- application of management, research, and moni- story vegetation in multilayered stands. Canopy toring to gain information and experience neces- closure (also canopy cover) is an estimate of the sary to assess and change management activities. amount of overhead vegetative cover. It is a process that uses feedback from research, CCP—See comprehensive conservation plan. monitoring, and evaluation of management ac- CFR—See Code of Federal Regulations. tions to support or change objectives and strate- CO2—Carbon dioxide. gies at all planning levels. It is also a process in Code of Federal Regulations (CFR)—Codification of which the Service carries out policy decisions the general and permanent rules published in the within a framework of scientifically driven ex- Federal Register by the Executive departments periments to test predictions and assumptions and agencies of the Federal Government. Each inherent in management plans. Analysis of re- volume of the CFR is updated once each calendar sults helps managers decide whether current year. management should continue as is or whether it compact—Montana House bill 717–Bill to Ratify should be modified to achieve desired conditions. Water Rights Compact. alternative—Reasonable way to solve an identi- compatibility determination—See compatible use.
    [Show full text]
  • 2010 Animal Species of Concern
    MONTANA NATURAL HERITAGE PROGRAM Animal Species of Concern Species List Last Updated 08/05/2010 219 Species of Concern 86 Potential Species of Concern All Records (no filtering) A program of the University of Montana and Natural Resource Information Systems, Montana State Library Introduction The Montana Natural Heritage Program (MTNHP) serves as the state's information source for animals, plants, and plant communities with a focus on species and communities that are rare, threatened, and/or have declining trends and as a result are at risk or potentially at risk of extirpation in Montana. This report on Montana Animal Species of Concern is produced jointly by the Montana Natural Heritage Program (MTNHP) and Montana Department of Fish, Wildlife, and Parks (MFWP). Montana Animal Species of Concern are native Montana animals that are considered to be "at risk" due to declining population trends, threats to their habitats, and/or restricted distribution. Also included in this report are Potential Animal Species of Concern -- animals for which current, often limited, information suggests potential vulnerability or for which additional data are needed before an accurate status assessment can be made. Over the last 200 years, 5 species with historic breeding ranges in Montana have been extirpated from the state; Woodland Caribou (Rangifer tarandus), Greater Prairie-Chicken (Tympanuchus cupido), Passenger Pigeon (Ectopistes migratorius), Pilose Crayfish (Pacifastacus gambelii), and Rocky Mountain Locust (Melanoplus spretus). Designation as a Montana Animal Species of Concern or Potential Animal Species of Concern is not a statutory or regulatory classification. Instead, these designations provide a basis for resource managers and decision-makers to make proactive decisions regarding species conservation and data collection priorities in order to avoid additional extirpations.
    [Show full text]
  • Characterization of Arm Autotomy in the Octopus, Abdopus Aculeatus (D’Orbigny, 1834)
    Characterization of Arm Autotomy in the Octopus, Abdopus aculeatus (d’Orbigny, 1834) By Jean Sagman Alupay A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Roy L. Caldwell, Chair Professor David Lindberg Professor Damian Elias Fall 2013 ABSTRACT Characterization of Arm Autotomy in the Octopus, Abdopus aculeatus (d’Orbigny, 1834) By Jean Sagman Alupay Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Roy L. Caldwell, Chair Autotomy is the shedding of a body part as a means of secondary defense against a predator that has already made contact with the organism. This defense mechanism has been widely studied in a few model taxa, specifically lizards, a few groups of arthropods, and some echinoderms. All of these model organisms have a hard endo- or exo-skeleton surrounding the autotomized body part. There are several animals that are capable of autotomizing a limb but do not exhibit the same biological trends that these model organisms have in common. As a result, the mechanisms that underlie autotomy in the hard-bodied animals may not apply for soft bodied organisms. A behavioral ecology approach was used to study arm autotomy in the octopus, Abdopus aculeatus. Investigations concentrated on understanding the mechanistic underpinnings and adaptive value of autotomy in this soft-bodied animal. A. aculeatus was observed in the field on Mactan Island, Philippines in the dry and wet seasons, and compared with populations previously studied in Indonesia.
    [Show full text]
  • Gastropoda: Stylommatophora)1 John L
    EENY-494 Terrestrial Slugs of Florida (Gastropoda: Stylommatophora)1 John L. Capinera2 Introduction Florida has only a few terrestrial slug species that are native (indigenous), but some non-native (nonindigenous) species have successfully established here. Many interceptions of slugs are made by quarantine inspectors (Robinson 1999), including species not yet found in the United States or restricted to areas of North America other than Florida. In addition to the many potential invasive slugs originating in temperate climates such as Europe, the traditional source of invasive molluscs for the US, Florida is also quite susceptible to invasion by slugs from warmer climates. Indeed, most of the invaders that have established here are warm-weather or tropical species. Following is a discus- sion of the situation in Florida, including problems with Figure 1. Lateral view of slug showing the breathing pore (pneumostome) open. When closed, the pore can be difficult to locate. slug identification and taxonomy, as well as the behavior, Note that there are two pairs of tentacles, with the larger, upper pair ecology, and management of slugs. bearing visual organs. Credits: Lyle J. Buss, UF/IFAS Biology as nocturnal activity and dwelling mostly in sheltered Slugs are snails without a visible shell (some have an environments. Slugs also reduce water loss by opening their internal shell and a few have a greatly reduced external breathing pore (pneumostome) only periodically instead of shell). The slug life-form (with a reduced or invisible shell) having it open continuously. Slugs produce mucus (slime), has evolved a number of times in different snail families, which allows them to adhere to the substrate and provides but this shell-free body form has imparted similar behavior some protection against abrasion, but some mucus also and physiology in all species of slugs.
    [Show full text]
  • Prophysaon Coeruleum Conservation Assessment
    CONSERVATION ASSESSMENT FOR Prophysaon coeruleum, Blue-Gray Taildropper Originally issued as Management Recommendations September 1999 by Thomas E. Burke with contributions by Nancy Duncan and Paul Jeske Reconfigured October 2005 Nancy Duncan USDA Forest Service Region 6 and USDI Bureau of Land Management, Oregon and Washington TABLE OF CONTENTS EXECUTIVE SUMMARY ......................................................................................................... 1 I. NATURAL HISTORY ................................................................................................... 3 A. Taxonomic/Nomenclatural History ...................................................................... 3 B. Species Description ............................................................................................... 3 1. Morphology ............................................................................................... 3 2. Reproductive Biology ................................................................................ 5 3. Ecology ...................................................................................................... 5 C. Range, Known Sites................................................................................................ 6 D. Habitat Characteristics and Species Abundance..................................................... 6 1. Habitat Characteristics ............................................................................... 6 2. Species Abundance ...................................................................................
    [Show full text]
  • 1 Appendix 3. Gulf Islands Taxonomy Report
    Appendix 3. Gulf Islands Taxonomy Report Class Order Family Genus Species Arachnida Araneae Agelenidae Agelenopsis Agelenopsis utahana Eratigena Eratigena agrestis Amaurobiidae Callobius Callobius pictus Callobius severus Antrodiaetidae Antrodiaetus Antrodiaetus pacificus Anyphaenidae Anyphaena Anyphaena aperta Anyphaena pacifica Araneidae Araneus Araneus diadematus Clubionidae Clubiona Clubiona lutescens Clubiona pacifica Clubiona pallidula Cybaeidae Cybaeus Cybaeus reticulatus Cybaeus signifer Cybaeus tetricus Dictynidae Emblyna Emblyna peragrata Gnaphosidae Sergiolus Sergiolus columbianus Zelotes Zelotes fratris Linyphiidae Agyneta Agyneta darrelli Agyneta fillmorana Agyneta protrudens Bathyphantes Bathyphantes brevipes Bathyphantes keeni 1 Centromerita Centromerita bicolor Ceratinops Ceratinops latus Entelecara Entelecara acuminata Erigone Erigone aletris Erigone arctica Erigone cristatopalpus Frederickus Frederickus coylei Grammonota Grammonota kincaidi Linyphantes Linyphantes nehalem Linyphantes nigrescens Linyphantes pacificus Linyphantes pualla Linyphantes victoria Mermessus Mermessus trilobatus Microlinyphia Microlinyphia dana Neriene Neriene digna Neriene litigiosa Oedothorax Oedothorax alascensis Pityohyphantes Pityohyphantes alticeps Pocadicnemis Pocadicnemis pumila Poeciloneta Poeciloneta fructuosa Saaristoa Saaristoa sammamish Scotinotylus Scotinotylus sp. 5GAB Semljicola Semljicola sp. 1GAB Sisicottus Spirembolus Spirembolus abnormis Spirembolus mundus Tachygyna Tachygyna ursina Tachygyna vancouverana Tapinocyba Tapinocyba
    [Show full text]