IAWA Journal, Vol. 28 (2), 2007: 139-172

MENISPERMACEAE WOOD ANATOMY AND CAMBIAL VARIANTS

Frederic M.B. Jacques* and Dario De Franceschi

Museum National d'Histoire Naturelle, Departement Histoire de la Terre, CP 38, UMR 5143 CNRS-USM 0203 Paleobiodiversite et Paleoenvironnements, 8 rue Buffon, 75231 Paris Cedex 05, France - *Corresponding author [E-mail: [email protected]]

SUMMARY

Menispermaceae are comprised almost entirely of lianas. Study of its wood anatomy is of interest for understanding adaptation to the liana habit. We set out here to present a general overview of Menispermaceae wood. The wood anatomy of 77 species of 44 genera, representative of an tribes and from an continents, is described. The wood of 18 of these genera was previously unknown. We observed two secondary growth types within the family: wood with successive cambia and wood with a single cambium. The distribution of these types is partly consistent with the c1assification of the family by Diels. General characters of the family are: wide rays, enlarged vessel pits near the perforation plates, and pitted tyloses. The fun range of wood anatomical diversity is given in Table 1. Key words: Menispermaceae, wood, successive cambia, cambial variants.

INTRODUCTION

The bark of some species of Menispermaceae is wen known for its use in the preparation of dart poisons in South America, named curare. Although Menispermaceae wood is an important material for pharmacological studies for identifying new alkaloids (N'Guyen, pers. comm.), this special interest of phytochemists contrasts with the relative paucity of anatomical knowledge of the family. A better knowledge of Menispermaceae wood is also important for palaeobotanical studies, to enable fossil woods of this family to be more precisely identified (Vozenin-Serra et al. 1989; Poole & Wilkinson 2000). As is true for most liana wood, Menispermaceae wood has not been studied often. However, previous studies showed that it exhibits some interesting features (Santos 1928, 1931; Mennega 1982; Carlquist 1996): successive cambia occur in most Menis­ permaceae. Carlquist (1996) even proposed that successive cambia could be the only secondary growth type in Menispermaceae. Fibraurea tinctoria, studied here for the first time, CosciniumJenestratum, recorded by Eichler as early as 1864, and several other taxa show, however, that this assumption is untenable. This study aims to extend the survey of Menispermaceae wood anatomy. A total of 77 species of 44 genera were studied and the wood of 18 genera is described here for the first time. To allow easy data retrieval for phylogeny reconstruction, we recorded the wood anatomy of each species in detail, even if they are very similar to others.

Downloaded from Brill.com10/09/2021 07:28:22PM via free access 140 IAWA Journal, Vol. 28 (2), 2007

Carlquist (1996) suggested the special significance ofMenispermaceae wood in the phylogeny ofRanunculales, part ofthe basal , because the farnily shows 'primi­ tive' features (presence oftracheids) and 'derivative' ones (successive cambia). The different types of cambial variants of Menispermaceae wood will be discussed on the basis of our broad survey.

MATERIALS AND METHODS

The wood specimens studied came from different collections: Paris Herbarium (P), Utrecht xylarium (Uw), Leiden xylarium (Lw), Tervuren xylarium (Tw) and personal collection in the field. All identifications were checked by studying the corresponding herbarium vouchers in the different collections. Some sampies were collected especially for wood anatomy studies, others came from small twigs of herbarium specimens (P). All specimens studied are listed in the Appendix (pages 169-172). Dry wood sampies were rehydrated in boiling water and sectioned on a sliding mi­ crotome. The sections were stained with iodine green, and mounted in glycerine jelly and/or Canada balsam after dehydration through graded a1cohol and toluene series. All descriptions follow the terminology of the IAWA Committee (1989). As the wood structure of the majority of the studied species showed very wide rays, it was difficult to determine some of the usual descriptive quantitative characters, such as number of vessels/sq.mm, number of rays/mm, etc. The bark was carefully observed in some cases for a better understanding of the special structure of the wood (successive cambia, protruding phloem rays). The averages of the measurements were ca1culated on the basis of all available specimens and most of the time the photomicrographs inc1uded here only partly rep­ resent the characteristics of the species. Especially in cross sections we could observe important variations in the size of vessel elements from different collections and even in the different parts of the same section from pith to bark.

As Menispermaceae wood has some very special features, we feIt the need to specify the meaning of some terms used in the descriptions to avoid ambiguities. The terms are explained and illustrated in Figure 1.

- Bundle: part of secondary xylem formed between two adjacent rays and within one cambial production unit. - Sc1erotic fibres: sc1ereid layers found extemal to secondary phloem. This tissue is referred to as sc1erenchyma by some authors. - Tangential cortical parenchyma: parenchyma in continuous tangential bands between two successive cambial production units. We do not use Carlquist's term (2001) 'con­ junctive tissue' because it refers to both the sc1erotic fibres and the tangential phel­ lodermal parenchyma. - Ray cells in special arrangement: ray cells with terminal oblique walls and seemingly in continuity from one row to the nextone as seen in transverse section (see Fig. lOH). - High ray: when a ray is more than 1 mm high.

Downloaded from Brill.com10/09/2021 07:28:22PM via free access Jacques & De Franceschi - Menispermaceae - wood anatomy 141

xylem bundle (3rd CPU) tangential cortical parenchyma sclerotic fibres phloem ray secondary phloem of the 2nd bundle series 2nd cambium zone

0+-...:---- xylem ray

xylem bundle (2nd CPU)

tangential cortical parenchyma pericyclic fibres primary phloem phloem ray '---- secondary phloem of the 1st bundle series 1st cambium zone

xylem ray

xylem bundle (1st CPU)

primary xylem medulla

Figure 1. Diagram explaining the terms used in the descriptions with respect to the special struc­ ture associated with successive cambia. epu: cambial production unit.

RESULTS AND DISeUSSION

The pith shows anatomical variation, depending on the or the species. Some secretory canals (Caryomene) or laticifers (Borismene, Dioscoreophyllum, Tinomis­ cium) can be observed in the medulla (Fig. 6E). Numerous calcium oxalate crystals occur in some species, often in the ray cells. The protoxylem pole number varies from 8 (Syntriandrum) to 87 (Elephantomene) and is between 20 and 40 for the majority of specimens. The poles are subtended by a crescent-shaped sclerification on their inner side (Abuta spp., Anomospermum, Arcangelisia, etc.), on their outer side (Chondro­ dendron, Cissampelos, Cocculus, etc.) or on both sides (Elephantomene). A sclerified medullar ring occurs in the stern of Sciadotenia.

The secondary xylem of all observed species shares the following features: Vessel elements with horizontal or oblique simple perforation plates; alternate and small intervessel pits; vasicentric tracheids always present and more or less abundant depending on the species; fibres with distinct bordered pits (4-7 !-lm) in both radial and

Downloaded from Brill.com10/09/2021 07:28:22PM via free access 142 IAWA Journal, Val. 28 (2), 2007 tangential walls; fibre walls thin to thick; rays commonly multiseriate and more than 1 mm high, and there are less than 4 rays/tangential mm. The majority ofthe species studied shows successive cambia. Other frequent features are: enlarged pits near perforation plates; generally square to procumbent ray cells; diffuse-in-aggregate axial parenchyma, often in short tangentiallines. No vessel-ray pits were observed, because there is commonly no contact between vessels and rays.

As the Menispermaceae species are mainly lianas, the wood structure has some 'non­ standard' characters. The specific wood characters are summarized in Table 1 (page 156). These characters are illustrated in Figures 2-14, with genera and species arranged in alphabetical order.

The bark plays an important role in the formation of successive cambia (see discus­ sion below), and encompasses unexpected tissues in the different parts of the stern. The sclerotic pericyclic fibres are found in all species, and in wood with successive cambia they are observed between the first and second cambial unit ring. Except in Hyperbaena and Parabaena, the secondary phloem rays protrude into the xylem rays, deeply to near the central part of the stern (Arcangelisia). In a xylem bundle, vessels are homogeneous in size or of increasing size towards the external part of the bundle. The width of the bundles can be estimated by the number of vessels present tangentially. In rays, cells can be oriented parallel to the axis of the ray or obliquely. Sometimes, a new ray can appear in a bundle. The crystals observed in the bark are of the same type as in the xylem rays.

Cambial variants Carlquist (1996) showed that the term 'successive cambia' was more accurate than 'included phloem' (proposed by Metcalfe & Chalk in 1950) to describe this special growth. We agree with his analysis because new secondary cambial units appear suc­ cessively in the pericycle or cortex by the activity of new cambial zones. Successive cambia are frequent in the Caryophyllales. Carlquist (2001: 277) cited 12 families ofthis order showing this feature. But Obaton (1960: 33) gave aprecision: "in lianas, we found only once bundles appearing in the bark (Menispermaceae)." Schenk (1893) also stressed this feature, that he only saw in a few other genera (Avicennia, Rhynchosia, Wisteria and some Capparidaceae). So we can reasonably assurne that the successive cambia in Menispermaceae are not homologous with successive cambia in other families, and arose independently in their phylogeny. Rajput and Rao (2003) showed in Cocculus hirsutus (L.) Diels, that each cambium is active for aperiod of two to three years. In some species studied here, growth ring boundaries, showing cambial dormancy and resumption of activity, are conspicuous and continuous through rays and bundles. There is nothing to prove that those rings represent annual rings (Schenk 1893) and they could correspond with other phenomena (variation in apical growth activity, etc.). (text continued on page 159)

Downloaded from Brill.com10/09/2021 07:28:22PM via free access Jacques & De Franceschi - Menispermaceae - wood anatomy 143

Figure 2. A: Abuta grandifolia (Martius) Sandw. (Uw 18753), transverse section, note the thick­ walled fibres and the small diameter ofvessellumina. - B: Abuta grisebachii Tr. & Planch. (Uw 18666), transverse section, note the sclerotic pericyclic fibres (arrow). - C: Albertisia papuana Becc. (Lw s.n.), transverse section, note the vessels associated tangentially. - D & E: Anamirta cocculus (L.) Wight & Am. (E. Poilane 19643); D: transverse section, note the only slightly lignified rays (arrow), E: tangential section, possible presence of radial canals (arrow). - Scale bars: A-C 500 ~m; D, E 200 ~m.

Downloaded from Brill.com10/09/2021 07:28:22PM via free access 144 IAWA Journal, Vol. 28 (2), 2007

Figure 3. A & B: Anisocycla cymosa Troup. (1\\1 33337), transverse sections; C-E: Anomosper­ mum chloranthum Diels (Uw 18671); C, E: transverse seetions, with bark inE, note the protruding phloem ray (arrow), D: tangential seetion. - F: Arcangelisiaflava (L.) Merr. (M. van Balgooy 3610), transverse seetion, showing the unlignified rays. - G: Beirnaertia cabindensis (ExeIl & Mendon~a) Troupin (Tw 35835), trans verse seetion, note the sclerotic pericyclic fibres. - Scale bars: A, C-G 500 !-lm; B 100 !-lm.

--+ Figure 4. A-C: Borismene japurensis (Mart.) Bameby (Uw 20524); A & B: transverse seetions, note the unlignified parenchyma (black arrow), the phloem ray (grey arrow) in A, the lateral ray cells lignified only on the bundle side (black arrow) in B; C: radial seetion showing numerous crystals. - D: Chasmanthera dependens Hochst. (Tw 39939), trans verse seetion, with new ray

Downloaded from Brill.com10/09/2021 07:28:22PM via free access Jacques & De Franceschi - Menispermaceae - wood anatomy 145

appearing in the bundle. - E: Chlaenandra ovata Miq., transverse section, note patches of un­ lignified cells. - F: Chondrodendron microphyllum (Eich!.) Moldenke (Uw 18063), transverse sec­ tion, showing long bundles with numerous vessels. - G: Chondrodendron tomentosum Ruiz & Pav. (T. Plowman 7495), tangential section. - Scale bars: A, D-F 500 !-lm; G 200 !-lm; B, C 100 !-lm.

Downloaded from Brill.com10/09/2021 07:28:22PM via free access 146 IAWA Journal, Vol. 28 (2), 2007

Figure 5. A: Cissampelos pareira L. (Uw 5437), transverse section, note the bundles enlarging out­ wards. - B & C: Cocculus laurifolius DC. (FG x-I-4), transverse sections, note the new cambium in formation within phellodermal tissues (arrow in B). - D & E: Cocculus pendulus (Forst.) Diels (D: De Franceschi s.n.); D: tangential section, note that pits are all of identical size (arrow), E: transverse section. - F: CosciniumJenestratum (Gaertn.) Colebr. (Uw 18746), transverse sec­ tion, note the pectinate ray cells (arrow). - Scale bars: A, C, E, F 500 !Am; B, D 200 !Am.

Downloaded from Brill.com10/09/2021 07:28:22PM via free access Jaeques & De Franeesehi - Menispermaceae - wood anatomy 147

Figure 6. A & C: Curarea tecunarum Bameby & Krukoff (Uw 18682), trans verse seetions, C showing a detail of phloem. - B: Curarea candicans (L.c. Richard) Bameby & Krukoff (Uw 21904), tangential seetion, note the enlarged pits (arrow). - D & E: Dioscoreophyllum cumminsii (Stapf) Diels var. cumminsii (Tw 41144), transverse seetions; in D note the inc1uded phloem (arrow), in E note the laticifer (arrow). - Seale bars: A, D 500 ~m; B, C, E 100 ~m.

Figure 7. A: Diploclisia glaucescens (Blume) Diels (E. Poilane 5099), transverse seetion. - B: Fibraurea tinctoria Louf. (F. Jacques 04), transverse seetion, note the phloem rays (arrow) protruding deeply into the xylem rays. - C-E: Elephantomene eburnea Bameby & Krukoff; C (Uw 21079), D, E (Maas et al. 2217); C & E: transverse seetions, in C note the sc1erotic peri­ cyc1ic fibres (black arrow) and crescent-shaped medullary sc1erenchyma near protoxyIem poles (continued on the next page)

Downloaded from Brill.com10/09/2021 07:28:22PM via free access 148 IAWA Journal, Vo!. 28 (2), 2007

(grey arrow), D: tangential seetion, note the axial parenchyma (arrow). - F: Haematocarpus sub­ peltatus Merr., transverse seetion, with thin bundles. - G & H: Hyperbaena domingensis Eich!. (L.c. Richard s.n.); G: transverse section, with large bundles, H: tangential seetion, showing the vasicentric tracheids. - Scale bars: A-C, E-G 500 !-lm; D, H 200 !-lm.

Downloaded from Brill.com10/09/2021 07:28:22PM via free access Jacques & De Franceschi - Menispermaceae - wood anatomy 149

Figure 8. A: Hypserpa nitida Miers (SMHI 1647), transverse section (TS). - B: Hypserpa polyan­ dra Becc. (M. Jacobs 9653), TS, note lack of successive cambia and presence of growth rings. - C: Legnephora minutiflora (K. Sch.) Diels (M. Jacobs 9533), TS. - D: Limacia oblonga Hook. f. & Thoms., TS, note heterogeneous vessel diameters. - E & F: Limacia blumei (Boerl.) Diels, TS; F: vessels with tyloses (black arrow) and the insertion of a new ray (white arrow). - G-I: Limaciopsis loangensis Eng!. (Tw 41153); G: transverse section, H: tangential section, I: radial section, crystals present in lateral ray cells (arrow). - Scale bars: A-E, G 500 I-tm; F, H, I 200 I-tm.

Downloaded from Brill.com10/09/2021 07:28:22PM via free access 150 IAWA Journal, Vol. 28 (2), 2007

Figure 9. A & B: Macrococculus pomijerus Becc.; A: transverse section, B: tangential section. - C: Odontocarya wullschlaegelii (Eich!.) Barneby, transverse section, with patches of sclereids in unlignified xylem rays. - D & E: Orthomene schomburgkii (Miers) Bameby & Krukoff (Uw 18075); D: transverse section, note that cambia are not always completely superimposed, E: tan­ gential section. - Scale bars: A, C, D 500 !lm; B 200 !lm; E 100 !lm.

Downloaded from Brill.com10/09/2021 07:28:22PM via free access Jacques & De Franceschi - Menispermaceae - wood anatomy 151

Figure 10. A & B: Pachygone dasycarpa Kurz, transverse sections, B: note the crystals organized in tangential bands (arrow). - C & D: Parabaena sagittata Miers ex Hook. f. & Thoms., transverse sections, note the unlignified rays and the noncontinuous bundles. - E: Pycnarrhena celebica (Miers) Diels, transverse seetion, note the wide rays. - F & G: Penianthus zenkeri (Eng!.) Diels (1.J. Bos 6893); F: transverse seetion, G: tangential seetion, note the wide rays, the small vessel diameter and the thick-walled fibres. - H: Pycnarrhena tumefacta Miers, trans verse seetion, with pectinate rays. - Scale bars: A, C, E, F 500 ~m; B, G, H 200 ~m; D 100 ~m.

Downloaded from Brill.com10/09/2021 07:28:22PM via free access 152 IAWA Journal, Vol. 28 (2), 2007

Figure 11. A & B: Sciadotenia eichleriana Moldenke (Uw 18658); A: transverse section, B: tan­ gential section. - C: Strychnopsis thouarsii Bail!. (R. Capuron 22805), transverse section, note the long bundles with irregularly distributed vessels. - D: Synclisia scabrida Miers ex Oliv. (Tw 41136), transverse section. - E & F: Syrrheonemajasciculatum Miers (Tw 35635); E: trans verse section, F: tangential section. - G & H: Syntriandrium preussii Eng!. (Tw 41151), transverse sec­ tions, appearance of a new ray (arrow). - Scale bars: A, C, E, G 500 !lm; B, D 200 !lm; F, H 100 !lm.

Downloaded from Brill.com10/09/2021 07:28:22PM via free access Jacques & De Franceschi - Menispermaceae - wood anatomy 153

Figure 12. A: Telitoxicum glaziovii Moldenke (Uw 18053), transverse section, note the phloem rays only slightly protruding into the xylem rays. - B, C, E: Telitoxicum minutiflorum (Diels) Moldenke; B, E (Uw 18673), C (Uw 18674); B & C: transverse seetions, E: tangential seetion; note the intraspecific variation in number of vessels per bundle. - D: Telitoxicum peruvianum Moldenke, transverse section. - Scale bars: A-D 500 !lm; E 200 !lm.

Downloaded from Brill.com10/09/2021 07:28:22PM via free access 154 IAWA Journal, Val. 28 (2), 2007

Figure 13. A: Tiliacora dielsiana Hutch. & Dalz., transverse section. - B: Tiliacora funifera (Miers) Oliv. (1. Louis 13448), trans verse section, showing vessels with tyloses (arrow). - C: Tiliacora chrysobotrya Welw. ex Filcaho (l. Louis 15877), tangential section, showing vessel with tyloses (arrow). - D-F: Tinomioscium petiolare Hook. f. & Thoms.; D-E (F. lacques 59), F (F. lacques 12); D & E: transverse sections, E: note the transition between lignified and unligni­ fied parts of wood ray (arrow), F: tangential section. - G: Tinospora arfakiana Becc., transverse section, with a tangential band of unlignified parenchyma. - H: Tinospora macrocarpa Diels (SMHI 1783), trans verse section. - I: Tinospora caffra (Miers) Troupin (Tw 38214), trans verse section. - Scale bars: A, D, G, H 500 I-tm; F 200 I-tm; B, C, E, I 100 I-tm.

Downloaded from Brill.com10/09/2021 07:28:22PM via free access Jacques & De Franceschi - Menispermaceae - wood anatomy 155

Figure 14. A & B: Triclisiajumelleana Diels, transverse seetions. - C & D Triclisia patens Oliv., transverse sections, note the pitted tyloses (arrow). - Scale bars: A, C 500 ~m; B 200 ~m; D 100 ~m.

Downloaded from Brill.com10/09/2021 07:28:22PM via free access Table 1. List of specific wood characters. I~ Legends: + present; - absent; +/- present or absent; i = irregular. - 1 Highest number of vessels in a tangential multiple. - 2 Vessels significant- ly increasing in diameter towards the periphery of each bundle. - 3 Highest number of vessels present along the tangential bundle width. - 4 Average and full range. - 5 Occurence of enlarged pits near vessel perforation. - 6 P = pitted; s = sc1erotic. - 7 a = diffuse-in-aggregate; d = diffuse. - 8 outwards change of ray width; - no change; + increasing towards periphery; d = decreasing. - 9 Orientation of tangential ray cell walls in transverse section; 0 = at an oblique angle to the ray axis; p =perpendicular to the ray axis. - \0 m = ray margins only; 0 = older parts only. - 11 Origin of new rays within single bundle units. - 12 d = druses; m = in ray margins only; p = prismatic crystals; * = only a few.

N ...... e B '"Q) ~ Q) .... öJ) .... a S .... on Q) «l Q) a B r- «l .S Q) .D ;a c:: c.. l!l 00 '"c:: c.. " «l " Q) 0 :2 a ., ., ., 'e.. a öJ) N § Q) '>( c:: CJ> CJ> a "§ CJ> ., c:: CJ> CJ> ..... >-. 0 "7n ~ "8 ;a CJ> «l «l «l öJ) a Q) Q) Q) Q) CJ> ..c: c:: .~ >-. CJ> CJ> c:: ..c: () öJ) ;. () a Q) «l ., ., ;. ;.- Q) c:: o I () () .... Q) c:: CJ> ;. 'e CJ> ~S öJ) 0,:: CJ> 'ö] .~ 0 ;. eil a CJ> c:: 'e CJ> Q) ~ :;. c:: 'C> 'e;; Q) c:: "0 ~ "0-= '2 >-. .- ;. ;.~ 'e;; ~.D Q) CJ> ., CJ> CJ> g «l ;. " Q) c.. 'eQ)CJ> ._" .~ Q) «l a .... öj -= § .D a CJ> () ~ () ~ CJ> ,( §-= ~ ,( Q) ~ 0 ca Species () «l Q) Q) öJ) () «l a '>( ~.S >-. >-. >-. ~ 8 ,,- "2 «l «l «l «l Q) C Cf) ::; ::; ::;..§ ::; a " " .s Z9 ~ ~ < ..::~ ..:: ..:: ..::z U Abuta brevifolia + 1 125 201 + 1 a 5 12 0 + p Abuta colombiana + 3 175 2 + + a 6 23 0 + Abuta fluminum + 2 87 2 5 (2-9) + a 6 13 0 + p Downloaded fromBrill.com10/09/2021 07:28:22PM Abuta grandifolia + 1 63 215 + 1 6 (4-9) + a 2 17 P + P Abuta grisebachii + 1 71 317 1 6 (3-9) +/- +/- a 4 10 p + p* »~ Abuta imene + 3 190 265 3 11 (4-15) +/- +/- a 5 16 P + ...... Abuta rufescens + 2 212 272 3 11 (5-16) + a 7 8 p + c0 Abuta sandwithiana + 1 150 378 2 7 (4-13) +/- a,d 5 11 P + :3 Albertisia exelliana + 1 71 212 4 61 (21-105) +/- + a 3 12 P + + p ? 17 (14-25) Albertisia papuana + + 1 102 345 2 + +/- a 4 16 P + P ~ Albertisia villosa + 1 94 333 5 + ? a 15 + P + + :- IV Anamirta cocculus + 3 237 387 3 14 (8-23) + 5 14 P P 00 Anisocycla cymosa + 3 81 209 3 19 (10-32) + +/- ? 4 9 p + p Anomospermum chloranthum + 3 166 272 + 2 +/- a 6 20 0 + p ~ via freeaccess IV Anomospermum reticulatum + 1 161 319 2 11 (7-18) +/- a 5 26 P + P 0 0 Arcangelisia flava + 2 257 463 3 17 (9-28) + a p m -.J .... Beirnaertia cabindensis + 2 196 409 + 2 10 (4-17) a 4 13 d,p I\l + + P + () Borismene japurensis 2 144 396 + +,5 a n + p m + p,m ~ t:: Caryomene olivascens + 3 139 + 2 a 8 16 P + (1) Chasmanthera dependens 3 272 234 +/- ? ? m + p '" P Re Chlaenandra ovata + ? 460 128 a 1 1 ? d + P 0 Chondrodendron microphyllum + 100 324 4 39 (27-50) +/- a 9 20 P +/- P (1) 'Tl Chondrodendron tomentosum + 143 243 + 2 31 (12-81) +/- +/- d 2 12 d P + P "1 I\l Cissampelos pareira 146 256 3 d 5 18 ::l + + + P + P () Cocculus laurifolius + 81 255 + 2 +/- +/- a 3 20 + P + P (1) Cocculus pendulus 112 257 3 20 (7--40) d 3 11 '"() + + + P + P e: Coscinium Jenestratum + 160 507 + a 4 10 + 0 + + p I Curarea candicans + 1 131 278 3 + a 8 13 P +/- P Curarea tecunarum + 3 122 324 3 16 (9-24) +/- + a 4 13 P + ~ Curarea toxicoJera + 92 362 3 15 (7-20) + + a 6 16 P + ;:s Dioscoreophyllum cumminsii ~. var. cumminsii i 1 162 260 2 +/- ? d 5 13 p + p 3'" Diploclisia glaucescens + + 1 101 305 2 8 ((rIO) + 3 12 P + I:l Elephantomene eburnea + 1 199 298 + 2 13 ((r17) + + a 4 14 +/- P I:l'"'"' Fibraurea tinctoria 1 116 276 +/- + d 3 15 + 0 0 + p '"I Haematocarpus subpeltatus + 2 90 331 2 9 (4-13) d 6 9 + P ~ Hyperbaena domingensis + 1 114 305 2 18 (9-26) + + 5 10 + ~ P P ~ Hypserpa nitida + 3 143 355 + + +,5, P a 6 12 P + P I:i.. I:l Hypserpa polyandra +/- 3 93 368 a 4 14 + P + + P ;:s Legnephora minutiflora + 3 271 530 2 +, S, P a 5 26 +/- I:l + + P + 0 Limacia blumei + 1 113 379 + +,5 d 5 15 + P + + Downloaded fromBrill.com10/09/2021 07:28:22PM Limacia oblonga + 3 161 384 3 + 5 8 P + ~ Limaciopsis loangensis + 1 190 321 2 + ? n p + + p Macrococculus pomiferus + 1 164 383 3 + +,5, P a 8 16 P + P Odontocarya wullschlaegelii 3 202 200 d n + ? + P Orthomene schomburgkii + 1 138 261 2 7 (3-10) + a 4 11 P + Pachygone dasycarpa + + 3 43 230 5 39 (31-55) + 5 14 + P + P Parabaena sagittata + 1 194 392 d p d Penianthus zenkeri 1 48 216 + d 5 20 + p + + Pycnarrhena cauliflora + + 1 98 278 + + a 4 11 + P + P Pycnarrhena celebica + + 1 67 324 + d 4 27 + P + P Pycnarrhena lucida + + 2 141 284 4 21 (11-30) + a 10 15 P + P via freeaccess Pycnarrhena tumeJacta + + 68 335 3 + a 6 11 0 + (continued on the next page) 15 N Table 1 continued .... I~ E '".... E <1.) ~ <1.) .D .... 00 .... E E .... er, <1.) ;:l <1.) E c '" r- ;:l -5.. ~ ;a'" c 0- ~ 00 C -5.. E <1.) 0 :2 :Ei ;:l E "E a:i N '" <1.) a:i a:i E'" 00 c 00 00 Vl ;>, -~ c -E -00 E 2 00 Vl Vl"" a:i 0 ;a'" E <1.) <1.) <1.) Vl ;>, Vl 00 <1.) Vl ..c c ".g u ;> ;> ;>- u c E ..c'" <1.) '" 00 a:i ...... <1.) o I u u .... <1.) c a:i Vl "0 ;> c -e '" Vl ]e 00 o c -~ -e Vl ob E 0 00 _5 Vl <1.) C ;:l 'C> -B <1.) ~ :l. C "0 ~ -a ;>, Vl ;>~ -0;; <1.) Vl -e ;:l "0 Vl ;> ;> ~.D 0- 00 Vl -B .:9 <1.) <1.) E -~ a:i .... <1.) c..c .D E e!l Vl Vl -_ U ~ u ~ c <1.) ~ '" Vl >-i '".... >-i E <1.) 0 c ;>, ;>, ;>, Species U 0 <1.) ~btJ -;;: - ~ .... u ;:l- <1.) ;:l '" Q'" ;& ~-E C CI) CI :E'" :E :E] .s :E'" Z~ ~ -< o:::~ 0:::'" '" 0:::0:::'" Z U

Sciadotenia eichleriana + 3 139 264 3 21 (12-27) + +/- a 5 13 p + p Sciadotenia sprucei + 3 94 344 3 28 (18-31) +/- + a 5 15 P + Sciadotenia toxi/era + I 132 313 3 16 (10-23) +/- +/- a 5 13 p + Stephania sp_ 1 126 d + ? Strychnopsis thouarsii + 1 45 209 + + d 2 12 P + + p Synclisia scabrida + 1 49 109 +/- ? a p + p Syntriandrium preussii 2 158 181 ? d + ? + Syrrheonema Jasciculatum + 3 195 302 + +, s, p a + p + + Telitoxicum glaziovii + 138 252 1 + a 5 20 P + Telitoxicum krukovii + 186 328 2 +/- a 12 20 + P + + Telitoxicum minutijlorum + 117 355 + 3 18 (13-25) +/- + a 6 24 P + Telitoxicum peruvianum + 1 65 320 2 + d 7 11 0 + Tiliacora acuminata + 1 85 264 5 +/- d 5 9 +

Downloaded fromBrill.com10/09/2021 07:28:22PM P Tiliacora chrysobotrya + 3 96 338 3 + + a,d 3 12 P + P ~ Tiliacora die/siana + + 3 63 235 4 + +/- d 4 10 p + p :> Tiliacora Juni/era 4 128 271 d 4 15 ...... + + + + P + P 0 Tiliacora laurentii + 3 162 272 3 11 (3-24) +/- +, s, p a 4 13 p + p c Tinomiscium petiolare 1 195 361 + +, S a 8 17 0 +/- 3 Tinospora arJakiana 3 196 408 + a n + ? + p ? Tinospora caffra 3 226 182 + d n + ? + P ? ~ Tinospora macrocarpa 2 282 242 + d n + + P N Triclisia dictyophylla + 3 122 312 4 + +/- d 4 12 P + + 00 Triclisia jumelleana + 3 121 286 3 14 (8-23) + +, s d 3 11 P + ~ via freeaccess Triclisia patens I 128 289 2 d 2 + + + 8 P + P N 358 d 0 Triclisia sacleuxii + I 129 + +/- 5 7 P + P 0 -..l Jacques & De Franceschi - Menispermaceae - wood anatomy 159

Successive cambia are the most common feature in Menispermaceae (70 % of the genera studied, Table 3); however, some species have a single vascular cambium (Fi­ braurea tinctoria and Cosciniumfenestratum, and several others, cf. Table 1).

Origin of supernumerary cambia Maheu (1902) proposed four different origins for the supemumerary cambia in Meni­ spermaceae (cortical parenchyma, endodermis, pericycle and irregular activity of a normal cambium). A transverse section of Cocculus laurifolius shows the formation of a new cambium (Fig. SB). The formation ofthis new cambium does not seem to fit into one of the four origins proposed by Maheu. We therefore think that other origins are possible for those successive cambia. Careful developmental studies of Menispermaceae sterns should be carried out to clarify their precise origin(s).

Successive cambia type The first type (Fig. 16B) described in Menispermaceae is the concentric stern (corpus lignosum circumvallatum, Pfeiffer 1926; Chalk & Chattaway 1937). Chalk and Chat­ taway described the anomalous growth of Menispermaceae as follows: "successive bundles of xylem and phloem repeating structure of the young stern; bundles separated by tangential bands of parenchyma and large interfascicular rays." This model is also called "Iobed stern with compound wood in concentric rings" (Beurel & Doumenge 1982). It corresponds to the "Menispermaceen-Typus" of Schenk (1893). The roots could have the same successive cambia structure as the stern (Schenk 1893). Within this first type, there is some diversity. Legnephora minutiflora has discontinu­ ous new cambia. These form patches around the first cambial unit, separated anticlinally from each other by bark tissue (lignified phloem rays). Chlaenandra ovata (Fig. 17B) wood is less organized, with abundant parenchyma and no clear bundles. Limaciopsis loangensis wood is organized in bundles separated by a large amount of unlignified parenchyma.

Single cambium type The second type (Fig. 16A) is characterized by a single cambium and high and wide rays enlarging outwards. Rays can appear during the growth outwards, and continue until the bark. This type is called "circular stern with circular compound wood" (Beurel & Doumenge 1982). It corresponds to the "Aristolochia-Typus" of Schenk (1893). Thanks to a sampie of with a diameter of more than 3.5 cm, we can ascertain that the report of a single cambium is not an observation artefact due to small stern size. Table 2 proposes a comparison between sterns without and with successive cambia; it gives the maximum stern diameter measured for species without successive cambia and the maximum diameter of the first cambium production unit (see Fig. 1) for species with successive cambia. In most cases, the youth ofthe stern can be excluded to explain lack of successive cambia. Therefore we disagree with Carlquist's (1996) proposal that a lack of successive cambia might be only artefactual, as opposed to interpretations by preceding workers (Schenk 1893; Solereder 1899; Maheu 1902;

Downloaded from Brill.com10/09/2021 07:28:22PM via free access 160 IAWA Journal, Vol. 28 (2), 2007

Table 2. Comparison of diameter of first cambium production unit of sterns with successive cambia (A) and diameter of observed sterns without successive cambia (B).

A Maximum diameter of the B Maximum observed diameter first eambium produetion (ern) ofa single eambium Genus unit (ern) Genus wood sampie

Abuta 0.5 Borismene 3.2 Albertisia 1.3 Coscinium 3.5 Anamirta l.l Fibraurea 1.5 Arcangelisia 0.9 Odontocarya l.l Chlaenandra 1.7 Parabaena 0.8 Chondrodendron 1 Penianthus 2.7 Cocculus l.l Tinomiscium 1.7 Diploclisia 0.4 Tinospora 2.7 Elephantomene 1.2 Haematocarpus 0.4 Legnephora 2.7 Limaciopsis 0.8 Macrococculus 0.9 Pachygone 0.4 Pycnarrhena I Sciadotenia 0.4 Tiliacora 0.5 Triclisia 0.8

Dipasupil1955 [cited by Mennega 1982]; Obaton 1960; Mennega 1982). We can answer his call of reporting "a large stern of Menispermaceae in which only a single cambial unit has operated" with many examples. The single cambium is generally associated with unlignified wide and enlarging rays; so, this growth type can hardly be seen as a young stage of the successive cambia type. There is also some diversity in this type. In Tinomiscium petiolare and Fibraurea tinctoria (Fig. 18B), there are some sc1ereid cells, maybe from phloem rays, very deeply situated inside the wood rays. In Parabaena sagittata (Fig. 17 A), the structure is less organized.

Special cases Dioscoreophyllum cumminsii (Fig. 6D, E) is particularly interesting. Its wood is c1early compound with successive cambia. But, in this species, pericyc1ic fibres are found at the outer part of the last produced secondary phloem, whereas in typical succes­ sive cambia Menispermaceae wood they are found at the outer part of the first produced secondary phloem, i.e. inner to the second cambium production unit. So successive cambia of D. cumminsii do not appear in the same tissue as they do in other species (respectively inner and outer to the pericyc1e). The replacement of the cambium by the next one is not synchronous on the whole periphery of the stern, but takes place later in some bundles. For these reasons, the successive cambia of Dioscoreophyllum cannot be proposed homologous to those generally found in Menispermaceae.

Downloaded from Brill.com10/09/2021 07:28:22PM via free access Jacques & De Franceschi - Menispermaceae - wood anatomy 161

Figure 16. A: Cosciniumjenestratum (Gaertn.) Colebr. (E. Poilane 35641), transverse section, wood without successive cambia, ofthe second cambial variant type (see discussion). - B: Tili­ acora dielsiana Hutch. & Dalz., transverse seetion, wood with successive cambia, of the first cambial variant type (see discussion). - Scale bars: A, B 500 ~m.

Downloaded from Brill.com10/09/2021 07:28:22PM via free access 162 IAWA Journal, Vol. 28 (2), 2007

Figure 17. A: Parabaena sagittata Miers ex Hook. f. & Thoms., transverse section, irregularly structured wood without successive cambia. - B: Chlaenandra ovata Miq., transverse section, irregular wood structure with successive cambia. Note in A & B the absence of medullary sc\e­ renchyma and the continuous wood near the pith (arrows). - Scale bars: 500 !Am.

Downloaded from Brill.com10/09/2021 07:28:22PM via free access Jacques & De Franceschi - Menispermaceae - wood anatomy 163

Figure 18. A: Penianthus zenkeri (Engl.) Diels (l.J. 80S 6893), transverse seetion, wood without successive cambia, with lignified rays. - B: Fibraurea tinctoria Lour. (F. lacques 04), transverse seetion, wood without successive cambia, rays not lignified; note the crescent-shaped medullary sclerenchyma near protoxylem poles (black arrow), and the deeply protruding phloem rays (grey arrow). - Scale bars: 500 !lm.

Downloaded from Brill.com10/09/2021 07:28:22PM via free access 164 IAWA Journal, VoL 28 (2), 2007

Chlaenandra and Parabaena (Fig. 17) could be related, because both have wood that is irregularly organized and show an inner continuous wood ring, but the first is with successive cambia and the other without.

Significance of these variants In the , the successive cambia type is found only in Menisperrnaceae, whereas the single cambium type is found in Lardizabalaceae (Akebia trifoliata (Thunb.) Koidz.; Carlquist (1984) and personal observation) and Ranunculaceae (Clematis vi­ talba L.; Metcalfe & Chalk (1950) and personal observation). The lack of successive cambia could be plesiomorphic. Bhambie (1972) studied the biomechanics of some lianas, using Tinospora among others. He showed thatour second type (single cambium type) had the greatest fiexibility. Therefore the type of secondary growth in Menisperrnaceae could be an adaptation to the liana habit (Schenk 1893; Bamber & Ter Welle 1994). However, the phylogeny, rather than the habit, explains the growth type for some species. For example, the tree Cocculus laurifolius has successive cambia, but it is the only arborescent species of the genus. Some Menisperrnaceae sterns are excentric (e.g. Mennega 1982). This shape is al­ ways linked with the successive cambia type. Successive cambia could give a greater potential of excentric secondary growth.

Important features of Menispermaceae wood Lignification of rays The rays ofMenisperrnaceae, always multiseriate, vary strongly in their lignification. In some species, such as Tinospora caffra, the rays are totally unlignified. In others, Curarea candicans for example, the rays are welllignified. Even if unlignified rays are more often present in wood without successive cambia, this cannot be established as a general rule: unlignified rays are present in wood with successive cambia (e.g. Lima­ ciopsis loangensis) and without (e.g. Fibraurea tinctoria, Fig. 18B); likewise, ligni­ fied rays are present in wood with successive cambia (e.g. Anomospermum chloran­ thum) and without (e.g. Penianthus zenkeri, Fig. 18A). We do not know ifthere is any relation between this lignification and sap conduction, storage, flexibility or support. In other woods (e.g. Fagaceae), ray lignification occurs later than that of the vessels, and vessels are supposed to stimulate the lignification of the cells surrounding them (Boura, pers. comrn.); the unlignified rays of some Menisperrnaceae could be a neotenic feature.

Enlarged pits Enlarged pits at the extremities of vessel elements (Fig. 6B) are frequent in the farnily. However, this character is not always present (Fig. 5D), and there is even an intra-individual variation in some species. Such enlarged pits were also reported in Boraginaceae (Cordia cicatricosa L.O. Williams; Gottwald 1983). The significance of those larger pits is unclear.

Downloaded from Brill.com10/09/2021 07:28:22PM via free access Jacques & De Franceschi - Menispermaceae - wood anatomy 165

Medullary sclerenchyma In the majority of species, the protoxylem poles are basally contiguous with a medul­ lary sc1erenchyma (Fig. 7C; 18B). The sc1erification ofthe tissue varies from weak to strong. This sc1erenchyma is sometimes absent (Fig. 17 A, B), generally in species with­ out successive cambia.

Pitted tyloses Tyloses are often present in Menispermaceae. In all species in which we saw tyloses, they were pitted (e.g. Fig. 14D) and more or less sc1erified.

Special ray Jeatures The organization ofthe ray cells is not always regular. In some species (Pycnarrhena tumeJacta, CosciniumJenestratum), ray cells are oriented at an angle outwards the axes of the ray. Consequently, the rays often have a special appearance (Fig. lOH) as also often occurs in other woody families with broad rays, inc1uding lianas. In transverse section, the rays appear depressed in their middle part. This special arrangement can be developmentally explained: in the same radiallength, cells are more numerous in bundles than in rays; the cell division activity of the cambium is greater in bundles than in rays, and greater in ray margins than in central ray regions.

Axial parenchyma The axial parenchyma is often diffuse-in-aggregates, organized in short tangential bands, that do not extend over the whole bundle width.

Phloem rays intruding into xylem rays In almost all species studied, the phloem rays protrude into the xylem rays (Fig. 3C). These protrusions vary in depth according to the species. In some species, like Fibraurea tinctoria, parts of phloem rays (groups of sc1ereids) can be seen almost from the inner extremity of the rays (Fig. 18B). This character is found only in woods without successive cambia, of the tribe Fibraureae.

Nonseptate fibres In some species, such as Elephantomene eburnea (Fig. 7D), axial parenchyma can be mistaken for septate fibres, particularly when the tangential section cuts through a parenchyma band. However, trans verse walls of these cells are pitted and no septate fibres were observed in the wood of the Menispermaceae studied here.

Vessel-ray pitting The contacts between vessels and rays are very rare, if present at all. Therefore it was not possible to observe the vessel-ray pitting type.

Systematic considerations Table 3 shows the distribution of normal (single cambium type) and abnormal (suc­ cessive cambia type) secondary growth in the Menispermaceae tribes (according to Diels' c1assification of 1910).

Downloaded from Brill.com10/09/2021 07:28:22PM via free access 166 IAWA Journal, Vol. 28 (2), 2007

Table 3. Distribution of major wood features in Menisperrnaceae. Classification according to Diels (1910) with later assignations inc1uded (Jacques et al. , in press). Anomospermeae Abuta Tree or Iiana Successive cambia + Am Anomospermum Liana Successive cambia + Am Caryomene Liana Successive cambia + Am Elephantomene Liana Successive cambia +/- Am Orthomene Liana Successive cambia + Am Telitoxicum Liana Successive cambia + Am Coscinieae Anamirta Liana Successive cambia As Arcangelisia Liana Successive cambia As Coscinium Liana One cambium + +/- As Fibraureae Borismene Liana Onecambium + Am Fibraurea Liana Onecambium +/- + As Tinomiscium Liana One cambium +/- As

Hyperbaeneae Hyperbaena Liana Successive cambia + Am Menispermeae Cissampelos Liana Successive cambia +/- W Cocculus Tree or liana Successive cambia + AfAs Diploclisia Liana Successive cambia + As Hypserpa Liana Diverse2 + +/- As Legnephora Liana Successive cambia +/- + As Limacia Liana ? + +/- As Limaciopsis Liana Successive cambia + + Af Pachygone Liana Successive cambia + As Stephania Liana One cambium + AfAs Strychnopsis Liana ? + Md Peniantheae Penianthus Tree One cambium + + Af

Tiliacoreae Albertisia Liana Successive cambia + +/- AfAs Anisocycla Liana Successive cambia + AfMd Beirnaertia Liana Successive cambia + Af Chondrodendron Liana Successive cambia +/- Am Curarea Liana Successive cambia +/- Am Haematocarpus Liana Successive cambia + As Macrococculus Liana Successive cambia + As Pycnarrhena Liana Successive cambia + As Sciadotenia Liana Successive cambia + Am Synclisia Liana Onecambium + + Af Syrrheonema Liana Successive cambia + Af Tiliacora Liana Successive cambia + AfAs Triclisia Liana Successive cambia + +/- AfMd

Downloaded from Brill.com10/09/2021 07:28:22PM via free access Jacques & De Franceschi - Menispermaceae - wood anatomy 167

Tinosporeae Chasmanthera Liana One cambium + Af Chlaenandra Liana Successive cambia + As Dioscoreophyllum Liana Successive cambia3 + Af Odontocarya Liana One cambium + Am Parabaena Liana One cambium As Rhigiocarya Liana One cambium4 Af Syntriandrium Liana One cambium + Af Tinospora Liana Onecambium + AfAs

Legends: ? Information not available. * New rays sometimes appear during the bundle growths and divide them into two parts. + present. - absent. +/- present or absent. 1 Af: Africa; Am: South and/or Meso-America; As: Asia; Md: Madagascar; W: worldwide. 2 See discussion on diversity found in this genus. 3 Dioscoreophyllum successive cambia are not homologous with other successive cambia (see dis­ cussion). 4 According to Obaton (1960).

The tribes Anomospermeae Miers and Hyperbaeneae Diels show only wood with successive cambia. In the tribes Fibraureae Diels and Peniantheae Diels, wood lacks successive cambia. In Coscinieae Hook.f. & Thoms. and Menispermeae DC., both types can be found. In Tinosporeae Hook.f. & Thoms. we also found both types, but wood with successive cambia is abnormal: Dioscoreophyllum has successive cambia that are not homologous to those in other Menispermaceae, and Chiaenandra has a very irregularly organized wood. So the general type ofTinosporeae corresponds to normal secondary growth. In Tiliacoreae Miers, the general type has successive cambia, only Synclisia lacks them. Hypserpa Miers is the only example of an intrageneric variation of the secondary growth type in the Menispermaceae. But, as stated in the Appendix sub Hypserpa poiyandra, we have reservations about this: the only available sampie for this species shows an unusual structure. Some errors might explain this: incorrect labelling of sampies, confusion during the collection, etc. This intrageneric variation, that may be artefactual, was already observed in Australian species of Hypserpa by Bamber and Ter Welle (1994). The only three genera having parts of phloem rays present very deeply in the xylem rays are Borismene, Fibraurea and Tinomiscium, ofthe tribe Fibraureae. This could be a distinctive characteristic of the tribe. Morphological and molecular studies (Jacques et ai. in press; Jacques, in preparation) are in progress to clarify phylogenetic relationships between Menispermaceae genera. Given the preliminary results, it seems that Menispermaceae are organized into two clades (Jacques, in prep.). The wood of the species of one clade is without successive cambia. The wood of the species of other clades often has successi ve cambia, but several instances of secondary loss of this character have to be hypothesized in this clade.

Downloaded from Brill.com10/09/2021 07:28:22PM via free access 168 IAWA Journal, Vol. 28 (2), 2007

After studying the wood of Menispermaceae, it seerns clear to us that wood anatorny can be useful for identification of Menispermaceae. As seen in Table 3, all the types occur throughout the distribution area of the family.

CONCLUSION

Menispermaceae wood can be separated into two types: lobed stern with cornpound wood in concentric rings (successive carnbia type), and circular stern with high and wide rays and wood in one ring (single carnbiurn type). Each type represents an adap­ tation to the liana habit. Sorne questions can only be addressed by further studies. The origin of the supemu­ rnerary carnbia could not be resolved precisely. We encourage further developrnental research on this topic. The present paper is deliberately purely descriptive, with alrnost no evolutionary perspective. The study ofMenispermaceae wood evolution will be included in a second paper atternpting a phylogenetic reconstruction based on rnolecular sequences and various rnorphological and anatomical characters (Jacques, in preparation).

ACKNOWLEDGEMENTS

We thank Nicole Salel for her help in preparing the slides, Pieter Baas, Imogen Poole and Hans Beeckman for their assistance in access to Leiden, Utrecht and Tervuren collections, Julie Nguyen for providing some wood sampIes, Bogor Botanic Garden (Indonesia) and Queen Sirikit Botanic Garden (Thailand) for help in collecting material, Catherine Gill for her useful comments on a previous version of the manuscipt, and Mary Gregory and an anonymous reviewer for their help to improve greatly the final version of the manuscript. This study was supported by a Synthesys grant (European Union-funded Integrated Infrastructure Initiative grant, NL-TAF 680) and by a grant from the LVMH-Asie foundation.

REFERENCES

Barnber, R.K. & B.J.H. Ter Welle. 1994. Adaptative trends in the wood anatomy oflianas. In: M. Iqbal (ed.), Growth patterns in vascular : 272-287. Dioscorides Press, Portland. Beurel, E & C. Doumenge. 1982. Recherche de relations entre anatomie et accrochage chez les lianes ligneuses tropicales. Unpubl. MsD thesis, Universite de Montpellier. 74 pp. Bhambie, S. 1972. Correlation between form, structure and habit in some lianas. Proc. Indian Acad. Sei. B, 75: 246-256. Carlquist, S. 1984. Wood and stern anatomy of Lardizabalaceae, with comments on the vining habit, ecology and systematics. Bot. 1. Linn. Soc. 88: 257-277. Carlquist, S. 1996. Wood and stern anatomy of Menispermaceae. Aliso 14: 155-170. Carlquist, S. 2001. Comparative wood anatomy. Springer, Berlin, Heidelberg. 448 pp. Chalk, L. & M.M. Chattaway. 1937. Identification of woods with inc1uded phloem. Trop. Woods 50: 1-31. Diels, L. 1910. Menispermaceae. In: A. Engler, Das Pflanzenreich IV, 94: 1-345. Dipasupil, P. C.M. 1955. Comparative anatomy of five species of the family Menispermaceae. Unpubl. PhD thesis, University of Michigan, Ann Arbor. 245 pp. Eichier, A.G. 1864. Menispermaceae. In: C.EP. von Martius, FI. Brasil. 13: 161-229.

Downloaded from Brill.com10/09/2021 07:28:22PM via free access Jacques & De Franceschi - Menispermaceae - wood anatomy 169

Gottwald, H. 1983. Wood anatomical studies of Boraginaceae (s.I.). I. Cordioideae. IAWA Bull. n.s.4: 161-178. IAWA Committee. 1989. IAWA list of microscopic features for hardwood identification. IAWA BuH. n.s. 10: 219-332. Jacques, EM.B., C. GaHut, R. Vignes-Lebbe & R. Zaragüeta i Bagils. "Statistical tests" and fos­ sils contributions to resolution ofphylogeny reconstruction: the example ofMenispermaceae. Taxon, in press. Maheu, M.J. 1902. Recherches anatomiques sur les Menispermacees. J. de Bot. 16: 365-378. Mennega, A.M.W. 1982. Stern structure of the New World Menispermaceae. J. Arnold Arbor. 63: 145-171. Metcalfe, C. R. & L. Chalk,. 1950. Anatomy of the Dicotyledons. Volume I. Clarendon Press, Oxford. 724 pp. Obaton, M. 1960. Les lianes ligneuses a structure anormale des forets denses d' Afrique occiden­ tale. Ann. Sei. Nat., 12eme serie, Botanique et biologie vegetale, I: 1-220. Pfeiffer, H. 1926. Das abnorme Dickenwachstum. Linsbauer, Handbuch der Pflanzenanatomie Abt. 9, No. 15. Gebr. Borntraeger, Berlin. Poole, I. & H.P. Wilkinson. 2000. Two early Eocene vines from south-east England. Bot. J. Linn. Soc. 133: 1-26. Rajput, S.K. & K.S. Rao. 2003. Cambial variant and xylem structure in the stern of Cocculus hirsutus (Menispermaceae). IAWA J. 24: 411-420. Santos, J. K. 1928. Stern and leaf structure of Tinospora rumphii Boerlage and Tinospora reticu­ lata Miers. Philip. J. Sci. 35: 187-208. Santos, J. K. 1931. Anomalous stern structure in Archangelisiaflava and Anamirta cocculus from the Philippines. Philip. J. Sci. 44: 385-407. Schenk, H. 1893. Beiträge zur Anatomie der Lianen. 11. Botanische Mittheilungen aus den Tropen 5: 1-271. Solereder, H. 1899. Systematische Anatomie der Dicotyledonen. Ferdinand Enke, Stuttgart. 984 pp. Vozenin-Serra, c., c. Prive-Gill & L. Ginsburg. 1989. Bois miocenes du gisement de Pong, Nord­ Ouest de la Thallande. Rev. Palaeobot. Palynol. 58: 333-355 [with English summary).

APPENDIX - Specimens studied

Abuta Aubl. Abuta brevifolia Krukoff & Moldenke: U 18066 (Uw). Abuta colombiana Moldenke: J. Cuatrecasas 14028 (Tw 39374). Abutafluminum Barneby & Krukoff: J. Schunke V. 1971/34 (Tw 31201). Abuta grandifolia (Martius) Sandwith: R. Liesner & A.c. Gonzalez 5555 (P), 7989 (Lw), U 18753 (Williams 3500, Uw), U 3361 (Lindeman4931, Uw, Tw 31210), U 1902b (Pranceetal. 13940, Uw), Krukoff5786 (Tw 34525). Abuta grisebachii Triana & Planchon: U 18666 (Krukoff7960, Uw), U 18667 (Krukoff7822, Uw), U 18669 (Krukoff8660, Uw). Abuta imene (Mart.) Eichl.: U 18691 (Kruko.ff8605, Uw), U 4700 (Lindeman 6985, Uw, Tw 35266), Tw 14612 (V.B. Philipps s.n.). Abuta rufeseens Aubl.: U 18660 (Krukoff & Moldenke 11083, Uw), U 18058 (Uw), U 18062 (Krukoff& Moldenke 10866, Uw), U 18079 (da Si/va 3125, Uw), U 18661 (Krukoff & Mol­ denke 10927, Uw), U 18665 (Uw), U 18730 (Prance 1103b, Uw). Abutasandwithiana Krukoff & Barneby: U 11941 (Uw), U 18739 (Prance 12461, Uw), U 18756 (Krukoff7640, Uw).

Downloaded from Brill.com10/09/2021 07:28:22PM via free access 170 IAWA Journal, Vol. 28 (2), 2007

Albertisia Becc. Albertisia exelliana (Troupin) Forman: F. Malaisse 45068 (Tw 45068). Albertisia papuana Becc.: F. Jacques 10 (P), Cult. in Hort. Bogor. s.n. (Lw). Albertisia villosa (ExeIl) Forman: G. Troupin 2051 (Tw 41134).

Anamirta Colebr. Anamirta cocculus (L.) Wight & Am.: E. Poilane 19643 (P), U 19183 (Uw).

Anisocycla Bail!. Anisocycla cymosa Troupin: J. Louis 1922 (Tw 33323), J. Louis 19610 (Tw 33337).

Anomospermum Miers Anomospermum chloranthum Diels: U 18671 (Krukoff& Moldenke 10639, Uw),J. Cuatrecasas 15628 (Tw 39459). Anomospermum reticulatum (Mart.) Eich!.: U 18614 (Uw).

Arcangelisia Becc. Arcangelisiaftava (L.) Merr.: J. Nguyen 108 (P), M. van Balgooy 3610 (Lw).

Beirnaertia J. Louis ex Troupin Beirnaertia cabindensis (ExeIl & Mendonc;a) Troupin: J. Louis 6054 (Tw 35835), G. Troupin 2074 (Tw 41147).

Borismene Barneby Borismene japurensis (Mart.) Barneby: A. Fournet 449 (P), U 20524 (Schunke 5388, Uw).

Caryomene Barneby & Krukoff Caryomene olivascens Barneby & Krukoff: U 18070 (Uw).

Chasmanthera Hochst. Chasmanthera dependens Hochst.: F.Malaisse 1110 (Tw 39939), G. Troupin 2076 (Tw 41149).

Chlaenandra Miq. Chlaenandra ovata Miq.: B.M. Vink 11348 (Lw).

Chondrodendron Benth. & Hook. f. Chondrodendron microphyllum (Eich!.) Moldenke: U 18063 (Uw). Chondrodendron tomentosum Ruiz & Pav.: T. Plowman 7495 (P), U 18073 (Uw), M. Olalla 1 (Tw 29338).

Cissampelos L. Cissampelos pareira L.: U 5437 (Uw).

Cocculus DC. Cocculus laurifolius DC.: F. Jacques 20 (P), P. Gasson FG x-I-4 (Lw). Cocculus pendulus (Forst.) Diels: D. De Franceschi s.n. (P).

Coscinium Colebr. CosciniumJenestratum (Gaertn.) Colebr.: E. Poilane 35641 (P), U 18746 (Uw).

Curarea Barneby & Krukoff Curarea candicans (L.c. Richard) Barneby & Krukoff: U21904 (L. St805, Uw), U 13861 (Uw). Curarea tecunarum Barneby & Krukoff: U 18682 (Krukoff7823, Uw), U 18678 (Krukoff7524, Uw), U 18680 (Krukoff7576, Uw), U 18681 (Krukoff7579, Uw), U 18683 (Krukoff7824, Uw), U 18684 (Krukoff7825, Uw), U 18685 (Krukoff7826, Uw), U 18686 (Krukoff7828, Uw), U 18687 (Krukoff8522, Uw), U 18688 (Uw), U 18689 (Krukoff8712, Uw), U 18690 (Krukoff8370, Uw), U 18692 (Gill6, Uw), U 18693 (GillI2, Uw), U 18054 (Uw). Curarea toxicoJera (Weddell) Barneby & Krukoff: U 18732 (Uw), U 25681 (Uw).

Downloaded from Brill.com10/09/2021 07:28:22PM via free access Jacques & De Franceschi - Menispermaceae - wood anatomy 171

Dioscoreophyllum Eng!. Dioscoreophyllum cumminsii (Stapt) Diels var. cumminsii: G. Troupin 2070 (Tw 41144).

Diploclisia Miers Diploclisia glaucescens (B!.) Diels: E. Poilane 5099 (P).

Elephantomene Barneby & Krukoff Elephantomene eburnea Barneby & Krukoff: U 21079 (Oldeman B3925, Uw), U 22251 (Uw), P. Maas etal. 2217 (Uw).

Fibraurea Lour. Fibraurea tinctoria Lour.: F. Jacques 4 (P), F. Jacques 5 (P), J. Nguyen 107 (P).

Haematocarpus Miers Haematocarpus subpeltatus Merr.: Prawiroatmodja & Soewoka 1843 (Lw).

Hyperbaena Miers ex Benth. Hyperbaena domingensis Eich!.: L.c. Richard s.n. (P), U 18622 (Uw).

Hypserpa Miers Hypserpa nitida Miers: C.E. Ridsdale SMHI 1647 (Lw). Hypserpa polyandra Becc.: M. Jacobs 9653 (Lw). Remark: This sampie shows a very unusual structure for this group (Menispermeae) and for the family as a whole. So, even although the herbarium sheet was checked, we warn the reader that wood sampie and herbarium sheet (identification) may possibly not correspond.

Legnephora Miers Legnephora minutiflora (K. Sch.) Diels: M. Jacobs 9533 (Lw).

Limacia Lour. Limacia blumei (Boer!.) Diels: F. Jacques 7 (P). Limacia oblonga Hook. f. & Thoms.: B. David 109 (P).

Limaciopsis Eng!. Limaciopsis loangensis Eng!.: G. Troupin 2081 (Tw 41153)

Macrococculus Becc. Macrococculus pomiferus Becc.: R. Pullen 7720 (Lw).

Odontocarya Miers Odontocarya wullschlaegelii (Eich!.) Barneby: B.R. Dicke & Ribeiro 1730 (Uw).

Orthomene Barneby & Krukoff Orthomene schomburgkii (Miers) Barneby & Krukoff: U 11758 (Poret 3750, Uw), U 18075 (Uw), U 18670 (Uw).

Pachygone Miers Pachygone dasycarpa Kurz.: E. Poilane 5606 (P).

Parabaena Miers Parabaena sagittata Miers ex Hook. f. & Thoms.: F. Jacques 69 (P).

Penianthus Miers Penianthus zenkeri (Eng!.) Diels: J.J. Bos 6893 (P), U 26834 (Uw).

Downloaded from Brill.com10/09/2021 07:28:22PM via free access 172 IAWA Journal, Vol. 28 (2), 2007

Pycnarrhena Miers Pycnarrhena cauliftora (Miers) Diels: F. Jacques 15 (P). Pycnarrhena celebica (Miers) Diels: F. Jacques 14 (P). Pycnarrhena lucida (Teijsm. & Binn.) Miq.: sine numero (Lw). Pycnarrhena tumefacta Miers: E. Fenix 28218 (P).

Sciadotenia Miers Sciadotenia eichleriana Moldenke: U 18658 (Uw). Sciadotenia sprucei Diels: U 18657 (Kruko.ff8020, Uw), U 18745 (Uw). Sciadotenia toxifera Krukoff & A.C. Smith: U 27607 (Mathias 6109, Uw), U 18615 (Uw), U 18617 (Uw), U 18925 (Uw).

Stephania Lour. Stephania sp.: J.F. Maxwell 76-451 (Lw).

Strychnopsis Bail!. Strychnopsis thouarsii Bail!.: R. Capuron 22805 (P).

Synclisia Benth. Synclisia scabrida Miers ex Oliv.: G. Troupin 2053 (Tw 41136).

Syntriandrium Eng!. Syntriandrium preussii Engl.: J. Louis 2677 (Tw 34755), G. Troupin 2078 (Tw 41151).

Syrrheonema Miers Syrrheonemafasciculatum Miers: J. Louis 1098 (Tw 35635), G. Troupin 2082 (Tw 41154).

Telitoxicum Moldenke Telitoxicum glaziovii Moldenke: U 18053 (Uw), U 18517 (Uw), N.T. Silva 3120 (Tw 31203). Telitoxicum krukovii Moldenke: U 8041 (Kruko.ff6912, Uw). Telitoxicum minutiftorum (Diels) Moldenke: U 18673 (Kruko.ff7536, Uw), U 18674 (Kruko.ff884D, Uw), U 18675 (Kruko.ff8033, Uw), U 18676 (Kruko.ff7564, Uw), U 18677 (Kruko.ff7566, Uw). Telitoxicum peruvianum Moldenke: J. Schunke V. 4746 (P).

Tiliacora Colebr. Tiliacora acuminata (Larn.) Hook. f. & Thoms.: F. Jacques 11 (P). Tiliacora chrysobotrya Welw. ex Filcaho: J. Louis 15877 (P), J. Louis 13498 (Tw 38776). Tiliacora dielsiana Huteh. & Dalz.: De Wilde 3670 (P). Tiliacorafunifera (Miers) Oliv.: J. Louis 13448 (P), 7988 (Lw). Tiliacora laurentii De Wild.: J. Louis 3273 (Tw 35007), J. Louis 8045 (Tw 38517).

Tinomiscium Miers Tinomiscium petiolare Hook. f. & Thoms.: F. Jacques 9 (P), F. Jacques 12 (P), F. Jacques 59 (P).

Tinospora Miers Tinospora arfakiana Becc.: A. Vinas & Kenisi LAE 5937 (Lw). Tinospora caffra (Miers) Troupin: F. Malaisse 10513 (Tw 38214). Tinospora macrocarpa Diels: C.E. Ridsdale SMHI 1783 (Lw).

Triclisia Benth. Triclisia dictyophylla Diels: R. Letouzey 3429 (P), Tw 34741, Tw 35048, J. Louis 143119 (Tw 38535), Tw 41361. Triclisia jumelleana Diels: L. Allorge 2731 (P). Triclisia patens Oliv.: A. Chevalier 12634 (P). Triclisia sacleuxii (Pierre) Diels: S. Bidgood et al. 1587 (P).

Downloaded from Brill.com10/09/2021 07:28:22PM via free access