Monday, June 17Th 2013 [email protected] a FEW DEFINITIONS

Total Page:16

File Type:pdf, Size:1020Kb

Monday, June 17Th 2013 Timothy.Walker@Obg.Ox.Ac.Uk a FEW DEFINITIONS Sex, drugs, & York - Monday, June 17th 2013 [email protected] A FEW DEFINITIONS: Taxonomy = the science of describing, naming & classifying living organisms Binomial nomenclature = formal scientific Latin names in two parts; Genus & species (or specific epithet) Angiosperms = the flowering plants Phylogenetics = the study of evolutionary relationships within and between groups of organisms Fact No.1: Taxonomy is the oldest profession in the World GENESIS chapter 2: 19 And out of the ground the LORD God formed every beast of the field, and every fowl of the air; and brought them unto Adam to see what he would call them: and whatsoever Adam called every living creature, that was the name thereof. 20 And Adam gave names to all cattle, and to the fowl of the air, and to every beast of the field; but for Adam there was not found an help meet for him. 21 And the LORD God caused a deep sleep to fall upon Adam, and he slept: and He took one of his ribs, and closed up the flesh instead thereof; 22 And the rib, which the LORD God had taken from man, made He a woman, and brought her unto the man. Fact No.2: Biology is a process Biology is not a static and un-altering product. This means that species cannot always be clearly & easily forced into neat boxes. NAMING & CLASSIFYING these are not necessarily the same thing (but they can be) Why do we NAME plants? Moon daisy, dog daisy, ox-eye daisy or marguerite? Always Leucanthemum vulgare everywhere The purpose of NAMING plants is for communication & gaining access to knowledge WHICH IS BETTER; vernacular or scientific names? NAMES of plants can be vernacular or scientific The advantage of vernacular names is that they are in the local language & so easier to remember. Also they can often be descriptive. The advantage of scientific names is that they are universal & unique to that species The accepted system of naming & classifying plants uses Latin names for each rank in a hierarchy. Latin is used because no one can claim that one nationality of botanists has an unfair advantage. ◄ Mahonia fortunei Why do we CLASSIFY plants? A purpose of CLASSIFYING is to create groups in order to organise information & knowledge. Without classification there would be chaos. HOW DO YOU CLASSIFY YOURS? A purpose of CLASSIFYING is to create groups in order to organise information & knowledge. Without classification there would be chaos. A purpose of CLASSIFYING is to create groups in order to organise information & knowledge. Without classification there would be chaos. GROUPS & CLASSIFICATIONS of plants can be vernacular or scientific WHICH IS BETTER; vernacular or scientific classification? The advantage of vernacular groups is that they are for a specific, local, practical purposes The advantage of scientific groups is that they are hierarchical predictive (practical) universal and each plant has one exclusive place Moss, fern, conifer, flowering plant The advantage of using scientific names AND groups is that they can be combined and related to each other. There are rules for the scientific naming of plants – the International Code for Botanical Nomenclature – and there are now some rules for scientific classification - it is not just intuition A BRIEF HISTORY of pre-Darwin NAMING & CLASSIFYING plants Chinese herbals Theophrastus 3rd century BC Theophrastus on umbels Umbellifers DIOSCORIDES 1st century AD De Materia Medica Robert Morison 17th century Oxford John Ray 1634-1703 - the 2nd greatest English natural historian ever 1) Defined “species” What is a species? A species is a group of individual plants that share a unique combination of characters (or features) which can be replicated John Ray 1634-1703 2) If you want to conserve a species then you need seeds not just cuttings etc. John Ray 1634-1703 3) He saw that when classifying plants, you must use every character that you can measure and that you cannot ignore anything without good reason John Ray 1634-1703 4) He put all flowering plants into either the monocots or the dicots Seeds with a single cotyledon Flowers with perianth and androecium segments in multiple of three Leaves with parallel veins Roots that function for one year only John Ray 1634-1703 5) He recognised many families that we still use Borage family Linnaeus 1707-1778 “The value of an aggregate of characters is very evident in natural history. Hence also, it has been found that a classification founded on any single character, however important that may be, has always failed.” Charles Darwin – Origin of Species Ray was right & Linnaeus was wrong 1753 is the starting point for legitimate species names Medicinal plants De Jussieu late 18th century French botanist 1789 is the starting point for the creation of legitimate family names. A family is a group of similar genera. All of the species in these genera share a unique combination of characters. One genus is considered to be typical of the family and the family name is derived from that genus by adding –aceae. 19th century Kew Mr George Bentham & Sir Joseph Hooker 19th century plant hunting expedition Making herbarium sheet for pasteurii Herbarium sheets Bentham & Hooker Genera Plantarum (1862-1883) 1) retained Ray’s Monocot/Dicot split 2) divided Dicots into three sub-classes i) petals free (not joined to each other) ii) petals fused (at least two petals joined) iii) petals absent (no obvious petals) 3) within these three sub-classes of dicots & the monocots, families were grouped on visible characters into orders Bentham & Hooker Genera Plantarum (1862-1883) No attempt was made to reflect evolution, perhaps because much of their work was carried out before the publication of The Origin of Species in 1859. Joseph Hooker was a regular correspondent of Charles Darwin Charles Darwin chapter 13 of the Origin of Species The birth of truly natural classifications From the first dawn of life, all organic being are found to resemble each other in descending degrees, so that they can be classified in groups under groups. This classification is evidently not arbitrary like the grouping of the stars in the constellations. Charles Darwin – Origin of Species In the hierarchy, each rank is just a group of the rank below. The accepted hierarchy is KINGDOM - kinky PHYLUM - prostitutes CLASS - can ORDER - offer FAMILY - fairly GENUS - good SPECIES - sex But once we know it is a flowering plant we generally only use FAMILY GENUS SPECIES The Natural System is founded on descent with modification; the characters which naturalists consider as showing true affinity between any two or more species, are those which have been inherited from a common parent. Charles Darwin – Origin of Species I believe that propinquity of descent is the descent, is the bond, hidden as it is by various degrees of modification, which is partially revealed to us by our classifications Charles Darwin – Origin of Species 1876 – Haekel’s phylogeny of land plants Fig. 1. Phylogenetic support across the NCBI taxonomy tree of eukaryotes Published by AAAS The less any part of the organisation is concerned with special habitats, the more important it becomes for classification. The mere physiological importance of an organ does not determine the classificatory value. Charles Darwin – Origin of Species For example, we do not automatically put all carnivorous plants in the same family Modern Kew 21st century Kew We have no written pedigrees; we have to make out continuity of descent by resemblances of any kind Charles Darwin – Origin of Species John Ray 1634-1703 You must use every character that you can measure and that you cannot ignore anything without good reason By 1998 we had some EXTRA CHARACTERS In addition to the morphological data that has been around since Theophrastus was a lad, the APG botanists looked at plants using electron microscopes and DNA sequencers. Molecular characters • 1953: Discovery of molecular structure of DNA • late 1980’s, DNA sequencing possible for relatively large numbers of taxa • 1998 - the first publication from the Angiosperm Phylogeny Group (APG I) but no one would publish it Because the major journals would not publish the new ideas it was left to The Independent, 23-11-1998 though they got some of the story wrong (the red bits) “The science of botany has been turned upside down by a new classification of the world’s flowering plants and trees based on their DNA rather than their appearance” The Independent, 23-11-1998 When it is published next month in the Annals of Missouri Botanic Garden the classification, which for the first time establishes the relationships of all plant families through their genetic material will do away with 200 years of previous plant taxonomy dating back to Linnaeus. This has hitherto been based on flowers and other morphological characters CONCLUSIONS • The 1998 classification of flowering plants did not turn 200 years of botany on its head but rather added accurate resolution at the level of family • Some of these results were completely unexpected on the basis of morphology and highlighted the limitations of morphological data at some parts of the angiosperm tree. • But these results mostly corroborated much of what had been discovered or observed on the basis of morphology Changes prompted by the new classification 1) 73% of Bentham & Hooker’s families did not change 2) 13% had to change 3) 14% are still uncertain Plane trees & the Sacred Lotus, closest relatives? THE NEW BIT - MONOPHYLY formal adoption of Darwin’s philosophy All groups at every rank in the hierarchy must be monophyletic. A monophyletic group contains all of the descendants of an ancestral plant A BIG change that confirmed our worries: The dicots are NOT monophyletic meaning that there are some oddballs but the monocots defined by John Ray 300 years ago are still intact The independent, problem,basal dicots plants do not have pollen with three apertures (and other things) and so they are not true dicots Phylogeny Evolution other problem plants The Eudicots (the true dicots) The Monocots basal angiosperms Naturalists try to arrange species, genera, families in each class, in what is called THE NATURAL SYSTEM.
Recommended publications
  • Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders
    REVIEW published: 21 August 2018 doi: 10.3389/fphar.2018.00557 Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders Maria A. Neag 1, Andrei Mocan 2*, Javier Echeverría 3, Raluca M. Pop 1, Corina I. Bocsan 1, Gianina Cri¸san 2 and Anca D. Buzoianu 1 1 Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania, 2 Department of Pharmaceutical Botany, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania, 3 Department of Environmental Sciences, Universidad de Santiago de Chile, Santiago de Chile, Chile Edited by: Berberine-containing plants have been traditionally used in different parts of the world for Anna Karolina Kiss, the treatment of inflammatory disorders, skin diseases, wound healing, reducing fevers, Medical University of Warsaw, Poland affections of eyes, treatment of tumors, digestive and respiratory diseases, and microbial Reviewed by: Pinarosa Avato, pathologies. The physico-chemical properties of berberine contribute to the high diversity Università degli Studi di Bari Aldo of extraction and detection methods. Considering its particularities this review describes Moro, Italy various methods mentioned in the literature so far with reference to the most important Sylwia Zielinska, Wroclaw Medical University, Poland factors influencing berberine extraction. Further, the common separation and detection *Correspondence: methods like thin layer chromatography, high performance liquid chromatography, and Andrei Mocan mass spectrometry are discussed in order to give a complex overview of the existing [email protected] methods. Additionally, many clinical and experimental studies suggest that berberine Specialty section: has several pharmacological properties, such as immunomodulatory, antioxidative, This article was submitted to cardioprotective, hepatoprotective, and renoprotective effects.
    [Show full text]
  • MAHONIA Nuttall, Gen
    Fl. China 19: 772–782. 2011. 3. MAHONIA Nuttall, Gen. N. Amer. Pl. 1: 211. 1818, nom. cons. 十大功劳属 shi da gong lao shu Ying Junsheng (应俊生 Ying Tsun-shen); David E. Boufford, Anthony R. Brach Odostemon Rafinesque. Shrubs or small trees, evergreen, 0.3–8 m tall. Spines absent. Leaves imparipinnate, alternate, sessile or petiolate; petiole to 14 cm; leaflets 3–41; lateral leaflets usually sessile; terminal leaflet sessile or petiolulate; margins of leaflets entire, variously toothed, or with coarse or fine serrations. Inflorescence terminal, of (1–)3–18-fascicled simple or branched racemes or panicles, 3–35 cm, subtended by leafletlike bracts. Pedicel 1.5–24 mm, subtending bract shorter or longer than pedicel. Flowers yellow, with 3 whorls of sepals and 1 whorl of petals, with or without glands at base of petals. Anther connective not prolonged, apiculate or conspicuously prolonged. Ovary ellipsoid; ovules 1–7; styles absent or to 3 mm, persistent on mature fruit. Fruit berries, bluish or black, often glaucous. Seeds 1–7. About 60 species: mainly in E and SE Asia, also in W North America, Central America, and W South America; 31 species (27 endemic) in China; six additional species (five endemic) are insufficiently known. Most of the Chinese wild populations of Mahonia have been extirpated, probably as a result of over-collecting for medicinal use, and the plants now being described are probably individuals that vary only in minor ways from the relatively few specimens that exist in herbaria. Ahrendt (J. Linn. Soc., Bot. 57: 1–410. 1961) recognized two “groups” in Mahonia: “Orientales” and “Occidentales.” All of the Asian species of Mahonia, plus a single North American species from the Pacific Northwest, M.
    [Show full text]
  • ABSTRACT ROUNSAVILLE, TODD JEFFREY. Cytogenetics
    ABSTRACT ROUNSAVILLE, TODD JEFFREY. Cytogenetics, Micropropagation, and Reproductive Biology of Berberis, Mahonia, and Miscanthus. (Under the direction of Thomas G. Ranney). Research was conducted to determine the genome sizes and ploidy levels for a diverse collection of Berberis L. and Mahonia Nutt. genotypes, develop a micropropagation protocol for Mahonia „Soft Caress‟, and examine the fertility and reproductive pathways among clones of diploid and triploid Miscanthus sinensis Andersson. Berberis and Mahonia are sister taxa within the Berberidaceae with strong potential for ornamental improvement. Propidium iodide (PI) flow cytometric analysis was conducted to determine genome sizes. Mean 1CX genome size varied between the two Mahonia subgenera (Occidentales = 1.17 pg, Orientales = 1.27 pg), while those of Berberis subgenera were similar (Australes = 1.45 pg, Septentrionales = 1.47 pg), but larger than those of Mahonia. Traditional cytology was performed on representative species to calibrate genome sizes with ploidy levels. While the majority of species were determined to be diploid with 2n = 2x = 28, artificially-induced autopolyploid Berberis thunbergii seedlings were confirmed to be tetraploid and an accession of Mahonia nervosa was confirmed to be hexaploid. Genome sizes and ploidy levels are presented for the first time for the majority of taxa sampled and will serve as a resource for plant breeders, ecologists, and systematists. Mahonia „Soft Caress‟ is a unique new cultivar exhibiting a compact form and delicate evergreen leaves, though propagation can be a limiting factor for production. Micropropagation protocols for M. „Soft Caress‟ were developed to expedite multiplication and serve as a foundation for future work with other Mahonia taxa.
    [Show full text]
  • Task Force on Landscape Heritage and Plant Diversity Has Determined Initial Designations
    THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL TASK FORCE ON LANDSCAPE HERITAGE & PLANT DIVERSITY nd 2 EDITION APPROVED BY THE CHANCELLORS BUILDINGS AND GROUNDS COMMITTEE February, 2005 This report is the product of a more than one-year-long effort from concerned members of the University of North Carolina community to ensure that the culturally, historically, and ecologically significant trees and landscaped spaces of the Chapel Hill campus are preserved and maintained in a manner befitting their beauty and grandeur. At the time of this writing, Carolina is in the middle of the most significant building and renovation period in its history. Such a program poses many significant challenges to the survival and well-being of our cherished trees and landscapes. This report attempts to identify, promote awareness, and provide guidelines for both the protection and enhancement of the grounds of the University of North Carolina at Chapel Hill. Furthermore, this report is intended to work within the framework of two earlier documents that help guide development of the campus: the 2002 UNC Master Plan and the 1997 Report of the Chancellor’s Task Force on Intellectual Climate at UNC. We hope that members of the university community as well as outside consultants and contractors will find this information both useful and pertinent. The Taskforce on Landscape Heritage and Plant Diversity 1 This report is the product of a more than one-year-long effort from concerned members of the University of North Carolina community to ensure that the culturally, historically, and ecologically significant trees and landscaped spaces of the Chapel Hill campus are preserved and maintained in a manner befitting their beauty and grandeur.
    [Show full text]
  • Cold Injury in the Landscape: Georgia, 1983-841
    Michael A. Dirr ORNAMENTALS Sept.-Oct. 1988 Horticulture Dept., University of Georgia, NORTHWEST Vol. 2, Issue 5 and ARCHIVES Pages 5-9 Gerald Smith Ext. Horticulturist, University of Georgia COLD INJURY IN THE LANDSCAPE: GEORGIA, 1983-841 This past winter (1983-1984) proved extremely harsh on landscape plants, especially broadleaf evergreens. Temperatures in Athens were mild in November with only one day below 32°F (30°F). In December, only five days of below zero temperatures (31, 27, 31, 30, 30) preceded the records lows of 7, 3, and 9°F on December 24, 25, and 26, respectively. A few hours of exposure to low temperatures are not as severe as prolonged exposure. Plants did not fully acclimate this fall because of the mild temperatures preceding the "freeze." Cold acclimation occurs in two stages. The first is triggered by short days; the second by repeated exposure to low temperatures. Maximum plant hardiness is usually attained by January and obviously many plants were simply not "ready" in December for the cold. The low temperatures coupled with the drying winds produced ideal conditions for injury. Succulent growth, especially that resulting from high fertilization, is more susceptible to cold damage. The tissue simply never hardens. Container-grown nursery stock heavily fertilized in the fall was noted to be more severely injured. This coupled with the fact that the root systems are not protected makes container stock prone to tremendous injury. Considerable research has shown that roots are much more cold sensitive than above ground plant parts. For example, boxwood or Japanese holly roots (white root tips) are killed at about 20 to 25°F while the tops are hardy to -5 to -10°F.
    [Show full text]
  • A Guide to Florida Friendly Landscaping: Florida Yards and Neighborhoods Handbook1
    SP-191 A Guide to Florida Friendly Landscaping: Florida Yards and Neighborhoods Handbook1 Amy Alexander et al.2 Abstract Florida-Friendly Yard — a yard that is beautiful and environmentally friendly. In these pages you will This FYN handbook provides helpful concepts, learn the basics of designing a landscape that features tools and techniques for creating your own carefully selected plants suited to your climate, soil 1. This information was originally published November 1994 as Bulletin 295, revised March 1996 as SP-191, and revised 2003, 2006, 2007. First published in EDIS as SP-191,in May of 2001. Subsequently published in 2006 and revised 2007, Florida Yards & Neighborhoods, Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL. Visit the EDIS Web site at http://edis.ifas.ufl.edu. Portions of this text may be reproduced for non-commercial use only. This booklet was funded in part by a Section 319 Nonpoint Source Management Program Implementation grant from the U.S. Environmental Protection Agency through a contract with the Nonpoint Source Management Section of the Florida Department of Environmental Protection. 2. Amy Alexander, biological scientist, Environmental Horticulture Department; Dale Armstrong, coordinator, Florida Yards & Neighborhoods, Pinellas County Extension Office, Largo, Fla.; Ben Bolusky, cheif executive officer, Florida Nursery, Growers and Landscape Association, Inc., Orlando, Fla.; Eileen Buss, associate
    [Show full text]
  • Effects of Rhizosphere Fungi on the Chemical Composition of Fruits of The
    Chen et al. BMC Microbiology (2021) 21:206 https://doi.org/10.1186/s12866-021-02216-z RESEARCH ARTICLE Open Access Effects of rhizosphere fungi on the chemical composition of fruits of the medicinal plant Cinnamomum migao endemic to southwestern China Jingzhong Chen1, Xiaolong Huang1, Bingli Tong1, Deng Wang1, Jiming Liu1*, Xiaofeng Liao2 and Qingwen Sun3 Abstract Background: This study examined how rhizosphere fungi influence the accumulation of chemical components in fruits of a small population species of Cinnamomum migao. Results: Ascomycota and Basidiomycota were dominant in the rhizosphere fungal community of C. migao. Pestalotiopsis and Gibellulopsis were associated with α-Terpineol and sabinene content, and Gibellulopsis was associated with crude fat and carbohydrate content. There were significant differences in rhizosphere fungal populations between watersheds, and there was no obvious change between fruiting periods. Gibberella, Ilyonectria, Micropsalliota, and Geminibasidium promoted sabinene accumulation, and Clitocybula promoted α-Terpineol accumulation. Conclusion: The climate-related differentiation of rhizosphere fungal communities in watershed areas is the main driver of the chemical composition of C. migao fruit. The control of the production of biologically active compounds by the rhizosphere fungal community provides new opportunities to increase the industrial and medicinal value of the fruit of C. migao. Keywords: Cinnamomum migao, Small watershed, Fruit period, Rhizosphere fungi, Chemical components Background organic
    [Show full text]
  • Plant Species and Communities in Poyang Lake, the Largest Freshwater Lake in China
    Collectanea Botanica 34: e004 enero-diciembre 2015 ISSN-L: 0010-0730 http://dx.doi.org/10.3989/collectbot.2015.v34.004 Plant species and communities in Poyang Lake, the largest freshwater lake in China H.-F. WANG (王华锋)1, M.-X. REN (任明迅)2, J. LÓPEZ-PUJOL3, C. ROSS FRIEDMAN4, L. H. FRASER4 & G.-X. HUANG (黄国鲜)1 1 Key Laboratory of Protection and Development Utilization of Tropical Crop Germplasm Resource, Ministry of Education, College of Horticulture and Landscape Agriculture, Hainan University, CN-570228 Haikou, China 2 College of Horticulture and Landscape Architecture, Hainan University, CN-570228 Haikou, China 3 Botanic Institute of Barcelona (IBB-CSIC-ICUB), pg. del Migdia s/n, ES-08038 Barcelona, Spain 4 Department of Biological Sciences, Thompson Rivers University, 900 McGill Road, CA-V2C 0C8 Kamloops, British Columbia, Canada Author for correspondence: H.-F. Wang ([email protected]) Editor: J. J. Aldasoro Received 13 July 2012; accepted 29 December 2014 Abstract PLANT SPECIES AND COMMUNITIES IN POYANG LAKE, THE LARGEST FRESHWATER LAKE IN CHINA.— Studying plant species richness and composition of a wetland is essential when estimating its ecological importance and ecosystem services, especially if a particular wetland is subjected to human disturbances. Poyang Lake, located in the middle reaches of Yangtze River (central China), constitutes the largest freshwater lake of the country. It harbours high biodiversity and provides important habitat for local wildlife. A dam that will maintain the water capacity in Poyang Lake is currently being planned. However, the local biodiversity and the likely effects of this dam on the biodiversity (especially on the endemic and rare plants) have not been thoroughly examined.
    [Show full text]
  • Comparison of the Composition of Three Mahonia Plants Based on GC-MS Analysis
    E3S Web of Conferences 131, 01125 (2019) https://doi.org/10.1051/e3sconf/201913101125 ChinaBiofilms 2019 Comparison of the Composition of Three Mahonia Plants Based on GC-MS Analysis Haitao Guo1.2, Xiaoming Xue1,2*, Chenghui Nan1.2, Xi Liu1, Zehui Wang3, and Bin Dao3 1Nanjing Forest Police College, Nanjing, 210023, China; 2Key Laboratory of National Forestry and Grassland Administration on Wildlife Evidence Technology,Nanjing,210023,China 3Yunnan Forestry Police Bureau,kunming, 650224, China Abstract. Plant material evidence inspection is Mahonia bealei (Fort.) Carr. ,Mahonia fortunei (Lindl.) and Mahonia bodinieri Gagnep. are three common medicinal plants commonly found in Mahonia. In this study, gas chromatography-mass spectrometry (GC-MS) was used to compare the chemical constituents of stems and leaves of these three plants. The results showed that 6 of the volatile oils of the three plant species contained the same chemical composition, which was neophytadiene, palmitic acid, n-dodecane, octacosane, erucamide, and vitamin E oil, but the percentage content was difference. The main components of the volatile oils of the three plant stems were different. Erucamide was only detected in Mahonia fortunei (Lindl.) Fedde, oleic acid amide was only detected in Mahonia bealei (Fort.) Carr. , and oxidized cyclooctene ,and four compounds such as triphenylphosphine oxide was detected in Mahonia bodinieri Gagnep. .. 1 Introduction The main components of the volatile oil of the leaves are: palmitic acid (54.49%), and the higher content is linoleic Mahonia plants belong to Bebreridaeeae shrubs or small acid (5.98%), α -farnesene (5.51%), methyl linolenic trees. There are about 100 species in the world, mainly acid (3.45%).
    [Show full text]
  • Tree, Shrub and Ground Cover Lists for Quality Points
    TREE, SHRUB AND GROUND COVER LISTS FOR QUALITY POINTS TABLE 17: Large Canopy Trees for Tree Quality Points TABLE 18: Medium Canopy Tree Species for Tree Quality Points TABLE 19: Small Canopy Tree Species for Landscape Quality Points TABLE 20: Palm-Type and Cycad Tree and Shrub List for Landscape Quality Points TABLE 21: Large Evergreen Shrubs for Landscape Quality Points TABLE 22: Large Deciduous Shrubs for Landscape Quality Points TABLE 23: Medium Evergreen Shrubs for Landscape Quality Points TABLE 24: Medium Deciduous Shrubs for Landscape Quality Points TABLE 25: Small Evergreen Shrubs for Landscape Quality Points TABLE 26: Small Deciduous Shrubs for Landscape Quality Points TABLE 27: Evergreen Ground Cover for Landscape Quality Points TABLE 6 LARGE CANOPY TREES FOR TREE QUALITY POINTS (Trees with a mature height of greater than 40', with a minimum of 30' canopy) * R/O denotes trees which receive retention points only Minimum planting space for large trees is 400 square feet: 16' x 25' or 20' x 20' Botanical Name Drought- Planting Retention Notes: Common Name Tolerance Points Factor Acer floridanum X 90 1.5 Yellow fall color (Acer barbatum) Native; Good for Florida Maple Parking Areas Acer rubrum X ,M 90 1.5 Cvs. 'Summer Red,' Red Maple 'Red Sunset'; Native Carya aquatica M R/O 1.5 Large Taproot; Water Hickory Native Carya cordiformis X R/O 1.5 Large Taproot; Bitternut Hickory Native Carya glabra X R/O 1.5 Large Taproot; Pignut Hickory Native Carya illinoensis X 40 .50 Edible Nuts; Weak wooded; Pecan Native Carya pallida X R/O 1.5 Large
    [Show full text]
  • Using Frontier Technologies for the Quality Assurance of Medicinal Herbs
    Using Frontier Technologies for the Quality Assurance of Medicinal Herbs RIRDC Publication No. 11/093 RIRDCInnovation for rural Australia Using Frontier Technologies for the Quality Assurance of Medicinal Herbs by Associate-Professor Eddie Pang November 2011 RIRDC Publication No. 11/093 RIRDC Project No. PRJ-000763 © 2011 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-273-7 ISSN 1440-6845 Using Frontier Technologies for the Quality Assurance of Medicinal Herbs Publication No. 11/093 Project No. PRJ-000763 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication. This publication is copyright.
    [Show full text]
  • Ploidy Levels and Genome Sizes of Berberis L. and Mahonia Nutt
    HORTSCIENCE 45(7):1029–1033. 2010. tion of M. nervosa (Pursh) Nutt.] in subgenus Occidentales Ahrendt. Recent phylogenetic analysis based on Ploidy Levels and Genome Sizes internal transcribed spacer (ITS) sequencing (Kim et al., 2004) has yielded further insight of Berberis L. and Mahonia Nutt. into the taxonomic relationships and evolu- tionary history of Mahonia and Berberis. For Species, Hybrids, and Cultivars example, the postulation of Ahrendt (1961) of Mahonia as the progenitor of Berberis was Todd J. Rounsaville1 and Thomas G. Ranney2,3 supported. Examining the contemporary dis- Department of Horticultural Science, Mountain Horticultural Crops persal of the two genera from South America Research and Extension Center, North Carolina State University, 455 northward reveals that although the distinc- tive compound-leaved Mahonia is first en- Research Drive, Mills River, NC 28759 countered in Central America, a number of Additional index words. chromosome number, cytology, DNA content, flow cytometry, Berberis characters persist within Mahonia genome size, polyploidy, systematics, taxonomy much further north. These transitional species, representing the aforementioned Mahonia sec- Abstract. An extensive survey of genome sizes and ploidy levels was conducted for tion Horridae, showed a closer relationship a diverse collection of Berberis and Mahonia taxa (Berberidaceae). Propidium iodide flow with Berberis and thus a paraphyletic subgenus cytometric analysis was conducted using Pisum sativum L. ‘Ctirad’ (2C DNA = 8.76 pg) as Occidentales (Kim et al., 2004). Although ITS an internal standard to determine genome sizes. Mean 1CX genome sizes varied between phylogeny supported the subgenera proposed the two Mahonia subgenera (Occidentales = 1.17 ± 0.02, Orientales = 1.27 ± 0.01), whereas by Ahrendt (1961) and Schneider (1905), those of Berberis subgenera were similar (Australes = 1.45 ± 0.03, Septentrionales = 1.47 ± groupings below the subgeneric levels were 0.02) and each significantly larger than those of Mahonia.
    [Show full text]