National Optical Astronomy Observatories

Total Page:16

File Type:pdf, Size:1020Kb

National Optical Astronomy Observatories NATIONAL OPTICAL ASTRONOMY OBSERVATORIES NATIONAL OPTICAL ASTRONOMY OBSERVATORIES FY 1998 PROVISIONAL PROGRAM PLAN July 31,1997 TABLE OF CONTENTS I. INTRODUCTION AND OVERVIEW 1 II. THE DEVELOPMENT PROGRAM: MILESTONES PAST AND FUTURE 2 A. Milestones for FY 1998 3 B. Milestones for FY 1997 4 m. NIGHTTIME PROGRAM 6 A. SOAR 6 B. Access to the Hobby-Eberly Telescope and to the MMT 7 C. Joint Nighttime Instrumentation Program 8 1. Overview 8 2. Description of Individual Major Projects 9 D. USGP 13 E. Telescope Operations and User Support 13 1. Telescope Upgrades at CTIO 13 2. Instrumentation Improvements at CTIO 17 3. Telescope Improvements at KPNO 20 4. Changes in User Services at KPNO 26 IV. NATIONAL SOLAR OBSERVATORY 27 A. Major Projects 27 1. Global Oscillation Network Group 27 2. RISE/PSPT Program 29 3. FY 1998 Program Plan Contribution for CLEAR Study 30 B. Instrumentation Program 31 1. NSO/Sacramento Peak 32 2. NSO/KittPeak 33 V. THE SCIENTIFIC STAFF 36 VI. EDUCATIONAL OUTREACH 37 VH. COMPUTER SERVICES 37 A. NOAO-Tucson 37 B. KPNO - Kitt Peak 38 C. CTIO - Cerro Tololo 39 D. CTIO Communications 40 E. NSO/Sacramento Peak 41 1. Main Lab Plan for FY 1998 41 2. Telescope Computers 42 F. NSO/Tucson 42 G. NSO/KittPeak 43 H. IRAF 44 VIH. FACILITIES MAINTENANCE. 46 A. CerroTololo 46 1. Fire Prevention and Fire Fighting 47 2. Renovation of the Vehicle Fleet 47 3. Improvement of the Main Access Road 47 4. Repainting 4-m Blanco Telescope 47 5. Cerro Tololo Power House 48 6. Water System - Cerro Tololo Pipeline 48 7. Control of Light Pollution 48 8. Enclosure for the TELOPS Cable Car 48 9. Bulldozer for Cerro Tololo 48 B. KPNO 48 C. Tucson: Central Facilities and Operations 50 D. NSO 51 1. Sac Peak 51 2. KittPeak 52 IX. CENTRAL SERVICES 53 A. NOAO Director's Office 53 B. Central Administrative Services 53 C. Tucson Facilities 53 X. THE BUDGET 54 A. KPNO Operations 54 B. USGP 56 C. Instrumentation Program 57 D. Budget Details 58 Appendix 1 - NOAO Organizational Chart Appendix 2 - NOAO Management Appendix 3 - Scientific Staff: Research Interests and Service Roles CTIO i KPNO xiii USGP xxviii INSTRUMENTATION DIVISION xxxv NSO xli Appendix 4 - User Statistics, FY 1996 Appendix 5 - Budget Tables Appendix 6 - KPNO and USGP Staffing Models I. INTRODUCTION AND OVERVIEW AURA has recently submitted a long range plan for NOAO for the time interval 1998-2002. That long range plan defines the program for a critical phase in the evolution of NOAO: the nighttime program will complete the transition from an earlier generation of telescopes and instruments to an almost completely new suite of facilities; and the solar program will be redefined, with the primary goal being initiation of construction of the first large-aperture solar telescope to be built in this country in nearly 40 years. The program plan for FY 1998, which is described in this current submission, provides more detail on the specific activities that will be undertaken during the first of the five years covered by the long range plan. To place the program plan in context, we summarize here the long-term goals of NOAO. Gemini South is currently scheduled to begin scientific operations in 2002. This milestone will mark the completion of an effort to replace essentially the entire complement of telescopes offered by NOAO to the community with the exception of the Blanco and Mayall 4-m telescopes, which will remain in operation. The construction that remains to be completed includes the 4-m SOAR telescope, for which it now appears that funding is available from Brazil, the University of North Carolina, and Michigan State University, and the 2.4-m wide-field O/IR imaging telescopes, which we believe are essential for supporting Gemini observations. Funding for these two telescopes has not yet been identified. During this same period, we expect to complete several major instruments, including 8K x 8K mosaic CCD imagers for both CTIO and KPNO; a multi-fiber spectrograph for the Blanco telescope, which will match the capability of the Hydra spectrograph already at WIYN; medium resolution IR spectrometers for both CTIO and KPNO, with the CTIO instrument being a clone of the Gemini IRS and the KPNO spectrograph being a simpler device with more limited capability; wide-field IR imagers for both sites, with one being a single channel device with a lKx IK detector and the other being the multi-channel SQITD, upgraded to 500 x 500 arrays; a single high resolution (R = 100,000) spectrometer to be shared by both sites and with Gemini; and possibly a very high throughput single object optical spectrometer. A high resolution IR imager will be shared between CTIO and Gemini South during commissioning. We expect to provide a low-order natural- guide-star adaptive optics system at WIYN. At the end of this time period, NOAO will be the only organization that offers observing time in both hemispheres, on telescopes with a range of apertures, and with a broad complement of infrared and optical instrumentation. In order to take advantage of this uniqueness, we must learn how to use this suite of telescopes in an optimum fashion. How do we match complex observing programs to telescopes in order to maximize the scientific output? How do we inform the community most effectively about options for their programs? How do we best support programs that require the use of more than one facility? What kinds of supporting infrastructure are required in order to use the time on Gemini and the large telescopes at the independent observatories most effectively? The long range plan outlined steps that we propose to take to develop answers to these questions and to provide user support that is unified across all of the facilities accessed through NOAO. The changes in the nighttime offerings of NOAO, including access to Gemini and some of the independent observatories through the NSF instrumentation program, represent a qualitative change in what we offer the community. There will be fewer (by about a factor of 2) individual nights available, but the throughput of photons per unit time will in some cases be literally orders of magnitude higher than it was two decades earlier. It is almost certainly true that we will support fewer users than we have in the past, but this higher throughput will enable new types of science, including much larger sample sizes for programs ranging from the study of stellar activity levels in nearby open clusters to the analysis of the dynamics of distant clusters of galaxies. The use of new observing modes, such as queue scheduling, can potentially increase efficiencies still further and enable studies, that have up until now been impossible, of variable objects and targets of opportunity. During the period covered by this long range plan, we will re-examine the way we schedule the telescopes and experiment with a variety of modes of observing (queue, remote, and service, in addition to conventional observing with the astronomer present) so that we can understand what strategies will best support the diverse science proposed by the large community served by NOAO. NOAO continues to look beyond 2002 in its long range planning. The crucial question is whether major gains in sensitivity and angular resolution beyond what is provided by the 8- to 10-m class telescopes linked to satellite telescopes for interferometry can be achieved most cost effectively in space or on the ground. We are working with a variety of groups and committees, including most notably ACCORD (the council of directors of major US observatories), to evaluate this issue. We also continue to work on the development of interferometry techniques through our participation in CHARA, which is building an interferometry on Mt. Wilson. The issues that will be addressed by NSO during the next five years are very different from the issues confronting the nighttime program. It has been nearly forty years since a large-aperture solar telescope was built by NSO. In that same period of time, the nighttime program has built two generations of facilities: the Mayall and Blanco telescopes, followed by new technology telescopes in the form of WIYN, SOAR, and Gemini. The GONG project is an excellent example of how new techniques can yield fundamental advances in our understanding of solar structure. Application of modern technologies to the construction of a large-aperture solar telescope for studies of the solar disk and atmosphere can be expected to lead to equally profound advances in our understanding of the nature, variability, and origin of solar activity. During the next five years, the central effort in the solar program will be to define the scientific requirements for a large-aperture telescope, establish the technical feasibility of building a telescope that will meet those requirements, identify the best possible site, and prepare and submit a proposal for such a telescope to the NSF. The remainder of the NSO program is well defined and includes the continuation of GONG for at least one 11-year solar cycle; the preparation of a proposal to upgrade the spatial resolution of the GONG cameras by a factor of 4; the construction by the time of the next solar maximum of SOLIS, which is a suite of instruments designed to support Synoptic Optical Long-term Investigations of the Sun; completion of the construction and the operation of the PSPT (Precision Solar Photometric Telescopes) to study irradiance variations; demonstration and use of a low-order adaptive optics system at the NSO/SP Vacuum Tower Telescope; and the continuation of the infrared program at the McMath-Pierce Telescope with upgraded cameras based on the IK x IK InSb arrays.
Recommended publications
  • The Observer's Handbook for 1915
    T he O b s e r v e r ’s H a n d b o o k FOR 1915 PUBLISHED BY The Royal Astronomical Society Of Canada E d i t e d b y C . A. CHANT SEVENTH YEAR OF PUBLICATION TORONTO 198 C o l l e g e S t r e e t Pr in t e d f o r t h e S o c ie t y CALENDAR 1915 T he O bserver' s H andbook FOR 1915 PUBLISHED BY The Royal Astronomical Society Of Canada E d i t e d b y C. A. CHANT SEVENTH YEAR OF PUBLICATION TORONTO 198 C o l l e g e S t r e e t Pr in t e d f o r t h e S o c ie t y 1915 CONTENTS Preface - - - - - - 3 Anniversaries and Festivals - - - - - 3 Symbols and Abbreviations - - - - -4 Solar and Sidereal Time - - - - 5 Ephemeris of the Sun - - - - 6 Occultation of Fixed Stars by the Moon - - 8 Times of Sunrise and Sunset - - - - 8 The Sky and Astronomical Phenomena for each Month - 22 Eclipses, etc., of Jupiter’s Satellites - - - - 46 Ephemeris for Physical Observations of the Sun - - 48 Meteors and Shooting Stars - - - - - 50 Elements of the Solar System - - - - 51 Satellites of the Solar System - - - - 52 Eclipses of Sun and Moon in 1915 - - - - 53 List of Double Stars - - - - - 53 List of Variable Stars- - - - - - 55 The Stars, their Magnitude, Velocity, etc. - - - 56 The Constellations - - - - - - 64 Comets of 1914 - - - - - 76 PREFACE The H a n d b o o k for 1915 differs from that for last year chiefly in the omission of the brief review of astronomical pro­ gress, and the addition of (1) a table of double stars, (2) a table of variable stars, and (3) a table containing 272 stars and 5 nebulae.
    [Show full text]
  • Mar. 10Th, 2016
    OAWS #2 Navigating the Night Sky Agenda • 1- It’s Dark! Now What! • 2- It’s Moving All the Time! • 3- What’s That Pattern? • 4- What Do I Need? • 5- Find Me! • 6- Books, Software and Catalogues • 7- Next Challenges It’s Dark! Now What? • As It Gets Dark – Moon, first stars, first planets – It takes between 1 to 2 hours after sunset before it gets dark. – Astronomy night begins when the Sun is 18 degrees below the horizon. – After sunset, planets and bright stars show up within half hour to 1 hour, dimmer stars and bright deep sky objects between 1 hour and 1.5 hours, Milky Way and dimmer deep sky objects after 1.5 hours. It’s Dark! Now What? • Brightest Stars – Sirius, Arcturus, Procyon, Rigel, Betelgeuse, Aldebaran, Capella, Vega, Altair, Antares, Spica, Regulus, Fomalhaut – (demo) • Recognizing Planets – Planets do not twinkle like stars. – Brightest planets: Venus, Jupiter – Other bright planets: Saturn, Mars, Mercury – Planets visible with a telescope: Uranus, Neptune, all minor planets It’s Moving All the Time! • Evening, Midnight, Late Night – Objects rising in the evening will be in the South around midnight and set near sunrise. – Objects in East move towards South then West. – Evening objects in the West will set soon. – Late night objects in the East will rise earlier next month. It’s Moving All the Time! • Sky Movement Throughout the Night – Objects rising in the Southeast will not stay in sky as long as objects rising the Northeast. – Objects rising the in South east will not get very high in the sky.
    [Show full text]
  • The First INTEGRAL-OMC Catalogue of Optically Variable Sources
    Astronomy & Astrophysics manuscript no. OMC-VAR-catalogue c ESO 2018 August 17, 2018 The first INTEGRAL–OMC catalogue of optically variable sources ? J. Alfonso-Garzon´ 1, A. Domingo1, J.M. Mas-Hesse1, and A. Gimenez´ 2;1 1 Centro de Astrobiolog´ıa – Departamento de Astrof´ısica (CSIC-INTA), POB 78, 28691 Villanueva de la Canada,˜ Spain e-mail: [email protected] 2 European Space Astronomy Centre (ESAC), European Space Agency, POB 78, 28691 Villanueva de la Canada,˜ Spain Received 24 July 2012; accepted 28 September 2012 ABSTRACT Context. The Optical Monitoring Camera (OMC) onboard INTEGRAL provides photometry in the Johnson V-band. With an aperture of 50 mm and a field of view of 5◦×5◦, OMC is able to detect optical sources brighter than V ∼ 18, from a previously selected list of potential targets of interest. After more than nine years of observations, the OMC database contains light curves for more than 70 000 sources (with more than 50 photometric points each). Aims. The objectives of this work have been to characterize the potential variability of the objects monitored by OMC, to identify periodic sources and to compute their periods, taking advantage of the stability and long monitoring time of the OMC. Methods. To detect potential variability, we have performed a chi-squared test, finding 5263 variable sources out of an initial sample of 6071 objects with good photometric quality and more than 300 data points each. We have studied the potential periodicity of these sources using a method based on the phase dispersion minimization technique, optimized to handle light curves with very different shapes.
    [Show full text]
  • Variable Star
    Variable star A variable star is a star whose brightness as seen from Earth (its apparent magnitude) fluctuates. This variation may be caused by a change in emitted light or by something partly blocking the light, so variable stars are classified as either: Intrinsic variables, whose luminosity actually changes; for example, because the star periodically swells and shrinks. Extrinsic variables, whose apparent changes in brightness are due to changes in the amount of their light that can reach Earth; for example, because the star has an orbiting companion that sometimes Trifid Nebula contains Cepheid variable stars eclipses it. Many, possibly most, stars have at least some variation in luminosity: the energy output of our Sun, for example, varies by about 0.1% over an 11-year solar cycle.[1] Contents Discovery Detecting variability Variable star observations Interpretation of observations Nomenclature Classification Intrinsic variable stars Pulsating variable stars Eruptive variable stars Cataclysmic or explosive variable stars Extrinsic variable stars Rotating variable stars Eclipsing binaries Planetary transits See also References External links Discovery An ancient Egyptian calendar of lucky and unlucky days composed some 3,200 years ago may be the oldest preserved historical document of the discovery of a variable star, the eclipsing binary Algol.[2][3][4] Of the modern astronomers, the first variable star was identified in 1638 when Johannes Holwarda noticed that Omicron Ceti (later named Mira) pulsated in a cycle taking 11 months; the star had previously been described as a nova by David Fabricius in 1596. This discovery, combined with supernovae observed in 1572 and 1604, proved that the starry sky was not eternally invariable as Aristotle and other ancient philosophers had taught.
    [Show full text]
  • Variable Star Section Circular
    British Astronomical Association VARIABLE STAR SECTION CIRCULAR No 112, June 2002 Contents Light Curves for some Eclipsing Binary Stars .............................. inside covers From the Director ............................................................................................. 1 Change in E-mail Address for Computer Secretary ......................................... 1 Letters ............................................................................................................... 2 Information on Photometry Available .............................................................. 2 Change to September Circular Deadline .......................................................... 2 The Fade of UY Cen ........................................................................................ 3 Meauring Times of Minimum of EBs using a CCD camera ............................ 4 Photometric Calibration of an MX516 CCD Camera ...................................... 7 Recent Papers on Variable Stars .................................................................... 14 IBVS............................................................................................................... 15 Eclipsing Binary Predictions .......................................................................... 18 ISSN 0267-9272 Office: Burlington House, Piccadilly, London, W1V 9AG PRELIMINARY ECLIPSING BINARY LIGHT CURVES TONY MARKHAM Here are some light curves showing the recent behaviour of some Eclipsing Binaries. The light curves for RZ Cas, Beta
    [Show full text]
  • The Fifth Edition of the General Catalogue of Variable Stars: Experiences in the Constellation Centaurus
    RAA 2018 Vol. 18 No. 7, 83(8pp) doi: 10.1088/1674–4527/18/7/83 c 2018 National Astronomical Observatories, CAS and IOP Publishing Ltd. Research in Astronomy and http://www.raa-journal.org http://iopscience.iop.org/raa Astrophysics The Fifth Edition of the General Catalogue of Variable Stars: experiences in the constellation Centaurus Nikolay N. Samus1, Elena N. Pastukhova1, Olga V. Durlevich2 and Elena V. Kazarovets1 1 Institute of Astronomy, Russian Academy of Sciences, 48, Pyatnitskaya Str., Moscow 119017, Russia; [email protected] 2 Sternberg Astronomical Institute, Lomonosov Moscow University, 13, University Ave., Moscow 119234, Russia Received 2018 March 14; accepted 2018 April 11 Abstract We have recently announced that the General Catalogue of Variable Stars enters the stage of its fifth, purely electronic edition (GCVS 5.1). We have included 1408 variable stars in the constellation Centaurus in this new version,GCVS 5.1. Working on this revision, we applied current possibilities from data mining, suggested new variability types for many variable stars and found new light elements for a large number of periodic variables. This paper describes the work completed during the preparation of GCVS 5.1 for Centaurus and discusses in detail a number of the most astrophysically significant cases. Key words: catalogs — techniques: photometric — stars: variables: general — binaries: eclipsing 1 INTRODUCTION catalogs or, in a number of cases when such identifica- tion was not possible, measured accurate coordinates us- We briefly discussed the history of variable-star cata- ing available images. Identification was found to be com- logs published in the USSR and Russia in Samus’ et al.
    [Show full text]
  • The 82Nd Name-List of Variable Stars. Part II – RA 18 to 20 and Novae
    Peremennye Zvezdy (Variable Stars) 39, No. 3, 2019 Received 23 September; accepted 5 October. The 82nd Name-List of Variable Stars. Part II { RA 18h to 20h and Novae E.V. Kazarovets1, N.N. Samus1;2, O.V. Durlevich2, A.V. Khruslov2;1, N.N. Kireeva1, E.N. Pastukhova1 1 Institute of Astronomy, Russian Academy of Sciences, 48, Pyatnitskaya Str., Moscow 119017, Russia [[email protected], [email protected], [email protected], [email protected]] 2 Sternberg Astronomical Institute, M.V. Lomonosov University of Moscow, 13, University Ave., Moscow 119992, Russia [[email protected], [email protected]] We present the second part of a new Name-List of variable stars containing information on 1353 variable stars recently designated in the system of the General Catalogue of Variable Stars. With the exception of Novae and other unusual variables named upon request from the IAU CBAT or by our initiative, these stars are in the range of J2000.0 right ascensions from 18 hours 00 minutes to 20 hours 00 minutes. 1 INTRODUCTION For many years, Name-Lists of variable stars were regularly published in the Information Bulletin on Variable Stars (IBVS), issued on behalf of variable-star-related commissions of the International Astronomical Union. Soon after the first part of the 82nd Name-List of variable stars (Kazarovets et al., 2019) had been published in the IBVS, the IBVS was discontinued. After discussions, we came to the decision to publish the second and third parts of the 82nd Name-List in the electronic journal \Peremennye Zvezdy/Variable Stars".
    [Show full text]
  • A Catalog of Variable Stars Based on the New Name List
    ISSN 1063-7729, Astronomy Reports, 2009, Vol. 53, No. 11, pp. 1013–1019. c Pleiades Publishing, Ltd., 2009. Original Russian Text c E.V. Kazarovets, N.N. Samus’, O.V. Durlevich, N.N. Kireeva, E.N. Pastukhova, G. Pojmanski, 2009, published in Astronomicheski˘ı Zhurnal, 2009, Vol. 86, No. 11, pp. 1088–1094. A Catalog of Variable Stars Based on the New Name List E. V. Kazarovets1, N.N.Samus’1, 2*, O.V.Durlevich2, N. N. Kireeva1, E.N.Pastukhova1,andG.Pojmanski3 1Institute of Astronomy, Russian Academy of Sciences, Pyatnitskaya ul. 48, Moscow, 119017 Russia 2Sternberg Astronomical Institute, Universitetskii pr. 13, Moscow, 119992 Russia 3Astronomical Observatory, University of Warsaw, Al. Ujazdowskie 4, Warsaw, 00-478 Poland Received April 30, 2009; in final form, June 25, 2009 Abstract—We present a new electronic version of the General Catalog of Variable Stars (GCVS) based on thenewIAUnamelistofconfirmed variable stars. The catalog contains 1270 stars, most of them contained earlier in the New Catalog of Suspected Variable Stars or its supplement. A number of recent studies— including those by authors of the catalog, who investigated many stars using data from modern automatic surveys, determined light-curve elements for periodic stars, and plotted numerous light curves—have made it possible to move these stars to the GCVS. Among the catalog objects, 24 stars are novae or other unusual variable stars that acquired their GCVS names out of the usual order, upon communication from the Bureau of Astronomical Telegrams of the International Astronomical Union. We present the GCVS names, coordinates, classifications (in two forms: the GCVS system and a new, proposed system), brightness- variation limits, and light-curve elements for the catalog stars, as well as bibliographic references and remarks when necessary.
    [Show full text]
  • Doppler Imaging of Young Solar-Type Stars Using the Anu 2.3 M Siding Spring Telescope
    UNIVERSITY OF SOUTHERN QUEENSLAND DOPPLER IMAGING OF YOUNG SOLAR-TYPE STARS USING THE ANU 2.3 M SIDING SPRING TELESCOPE. Adissertationsubmittedby Donna Marie Burton B.Sc. (Computing) For the award of Master of Science School of Agricultural, Computational, Environmental Sciences University of Southern Queensland 5August2013 i © Copyright Donna Marie Burton 2013 ii Abstract The study of surface activity on young solar-type stars provides an opportu- nity to improve understanding of stellar dynamos and indirectly gain insight into early solar evolution. Doppler Imaging (DI) can be used to map stellar surface activity, and utilises rotation-induced Doppler-broadening of spectral lines to calculate the surface distribution of a fundamental parameter such as temperature. DI requires high-resolution spectroscopic observations distributed over one or more stellar rotation periods. To date only a limited number of single young solar analogues have been observed using this technique. Observations of many stars at various evolutionary states and with varying physical parameters are necessary to comprehensively constrain stellar dynamo models. These observations require long-term access to a telescope with a high-resolution echelle spectrograph to undertake multiple epoch studies of stellar activity. This project has used the ANU 2.3 metre telescope to test Doppler Imaging with two active young stars, AB Doradus (AB Dor) and HIP43720, with the HIP43720 observations contemporaneous with the Anglo-Australian Telescope (AAT) observations. Analysis of the AB Dor mapping and comparison of the 2.3 metre and AAT results for HIP43720 indicates that the ANU 2.3 metre telescope with its high resolution echelle spectrograph is capable of undertaking scientifically useful Doppler Imaging for stellar dynamo surveys.
    [Show full text]
  • An Introduction to Observing Variable Stars
    Observing basics: V An introduction to variable star observing by Roger Pickard At the start of the 19th century very few vari- able stars were known, certainly less than a few dozen. Nowadays, the ‘Bible’ for all types of variable star (the General Catalogue of Variable Stars) lists over 40,000 variables! Even simple observation of these stars can yield information about their mass, radius, luminosity and evolu- tion. And what’s more it can be done with the simplest of equipment. Figure 1. BAAVSS lightcurve of the LPV Omicron Ceti (Mira). We usually observe variable stars by watch- ing (measuring or estimating) their variations over time, be it hours, days, weeks, months or even The VSS observing Charts years. These variations take the form of changes in brightness (magnitude) and are viewed picto- programmes The VSS publishes charts for most of the stars on rially by means of graphs termed lightcurves (Fig- its programmes. Each chart shows the position of ures 1 and 2), where the magnitude (y axis) is The Variable Star Section (VSS) splits its ob- the variable against the background sky pattern, plotted against time on the x axis. servational programmes into several different and the positions and magnitudes of a series of categories, which include the telescopic, bin- standard comparison stars (the ‘sequence’) against ocular, eclipsing binary, nova/supernova search which you make your magnitude estimates. Com- Instrumentation and CCD programmes. The latter is designed puter generated star charts are excellent for pro- to help those with CCDs to obtain scientifi- ducing finder charts for those variable stars which The simplest instrument to use to make obser- cally useful results.
    [Show full text]
  • Nainital Microlensing Survey – Detection of Short Period Cepheids in the Disk of M 31
    A&A 512, A66 (2010) Astronomy DOI: 10.1051/0004-6361/200913408 & c ESO 2010 Astrophysics Nainital Microlensing Survey – detection of short period Cepheids in the disk of M 31 Y. C. Joshi1,2, D. Narasimha3,A.K.Pandey1,R.Sagar1 1 Aryabhatta Research Institute of Observational Sciences (ARIES), Manora peak, Nainital, India e-mail: [email protected] 2 Astrophysics Research Centre, School of Mathematics & Physics, Queen’s University, Belfast, BT7 1NN, UK 3 Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, India Received 6 October 2009 / Accepted 28 December 2009 ABSTRACT Context. Cepheids are the primary distance indicators for the external galaxies, so discovery of large number of Cepheid variables in far-off galaxies offers a unique opportunity to determine the accurate distance of the host galaxy through their period-luminosity relation. Aims. The main purpose of this study is to identify short-period and relatively faint Cepheids in the crowded field of M 31 disk, which was observed as part of the Nainital Microlensing Survey. Methods. The Cousins R and I band photometric observations were carried out in the direction of M 31 with the aim of detecting microlensing events. The data was obtained with a 1-m telescope on more than 150 nights over the period between November 1998 and January 2002. The data was analysed using the pixel technique and the mean magnitudes of the Cepheids were determined by correlating their pixel fluxes with the corresponding PSF-fitted photometric magnitudes. Results. In the present study we report identification of short-period Cepheid variables in the M 31 disk.
    [Show full text]
  • May 2017 BRAS Newsletter
    May 2017 Issue Next Meeting: Monday, May 8th at 7PM at HRPO nd (2 Mondays, Highland Road Park Observatory) Presenter: Club member Don Weinell, “My 4 Year Bicycle Trip Over The Oregon Trail, with slides.” What's In This Issue? President’s Message Secretary's Summary Outreach Report Event Photos Light Pollution Committee Report Recent Forum Entries 20/20 Vision Campaign Messages from the HRPO American Radio Relay League Field Day Observing Notes – Libra – The Scales & Mythology Like this newsletter? See past issues back to 2009 at http://brastro.org/newsletters.html Newsletter of the Baton Rouge Astronomical Society May 2017 President’s Message International Astronomy Day 2017 brought winds strong enough to force cancellation of some rides/events. Considering this, I believe it was a success. The last Sidewalk Astronomy for this season was held on May 2nd at Perkins Rowe. Even with the Sun setting late, I would consider it a success also. Thank you to all who have participated in this season’s Sidewalk Astronomy, and contributed to its success. This month’s BRAS meeting will have as our speaker club member Don Weinell, and his talk will be about his bicycle trip over the entire Oregon Trail (completed in sections between 2012 and 2016). Don kept a journal of his trip, and upon re-writing it into a better format, a publisher is publishing it – release is this month! Don will talk about the trip and has a lot of pictures to show. Come to the meeting and support Don! The Light Pollution Committee, with Thomas Halligan as chair, has finished composing the letter to be sent to the Mayor of Baton Rouge, and to Entergy in regards the Valhalla project.
    [Show full text]