Automorphisms of Complexes of Curves and of Teichm Uller Spaces

Total Page:16

File Type:pdf, Size:1020Kb

Automorphisms of Complexes of Curves and of Teichm Uller Spaces Automorphisms of complexes of curves and of Teichmuller spaces Nikolai V Ivanov To every compact orientable surface one can asso ciate following Harvey Ha Ha a combinatorial ob ject the socalled complex of curves which is analogous to Tits buildings asso ciated to semisimple Lie groups The basic result of the present pap er is an analogue of a fundamental theorem of Tits for these complexes It asserts that every automorphism of the complex of curves of a surface is induced by some elementoftheTeichmuller mo dular group of this surface or what is the same by some dieomorphism of the surface in question This theorem allows us to give a completely new pro of of a famous theorem of Royden R ab out isometries of the Teichmuller space In contrast with Roydens pro of which is lo cal and analytic this new pro of is a global and geometric one and reveals a deep analogy between Roydens theorem and the Mostows rigidity theorem Mo Mo Another application of our basic theorem is a complete description of isomorphisms b etween subgroups of nite index of a Teichmuller mo dular group This result in its turn has some further applications to mo dular groups Acknowledgments The rst version of this work cf I was nished during my stay at IHES BuressurYvette France in Summer of I would like to thank the Director of IHES Professor M Berger and Profes sor M Gromov for their hospitality Also I am grateful to Professors F Bonahon M Gromov D Kazhdan G Mess F Paulin L Sieb enmann D Sullivan M Troyanov and J Velling for stimulating discussions of this work at BuressurYvette Orsay and MarseillesLuminy Later on I had enjoyed numerous discussions of this work with other mathematicians to o many to name them all here I am esp ecially grateful to J S Birman R Hain Supp orted in part by the NSF Grant DMS W Harvey W Goldman H Masur J D McCarthy R Penner and M Seppala FinallyI thank the referee for several suggestions how to improve the exp osition Statement of the main results Let S be a compact orientable surface p ossibly with nonempty b oundary The complex of curves C S ofS is a simplicial complex in the sense given to this term in S Chapter for example Thus it consists of a set of vertices and a set of simplexeswhich are nonemptysets of vertices The vertices of C S are isotopy classes hC i of simple closed curves also called circles C on S which are nontrivialie are not contractible in S to a pointorto S A set of vertices is declared to b e a simplex if and only if these vertices can b e represented by pairwise disjoint circles Every dieomorphism S S takes nontrivial circles to nontrivial circles and obviously preserves the disjointness of circles Thus it denes an automorphism C S C S Clearly this automorphism dep ends only on the isotopy class of the dieomorphism S S Hence we get an action of the group of isotopy classes of dieomorphisms of S on C S This group is known as the mapping class group of S or as the Teichmul ler modular group of S We denote this group by Mo d Note S that we include the isotopy classes of orientationreversing dieomorphisms in Mo d Often this version of the mapping class group is called the extended S mapping class group Theorem If the genus of S is at least then al l automorphisms of C S are given by elements of Mo d That is Aut C S Mo d S S If S is either a sphere with four holes or a torus or a torus with one hole then C S is an innite set of vertices without any edges ie dim C S and the conclusion of this theorem is obviously false If S is a sphere with at most tree holes then C S is empty and the conclusion of the theorem is vacuous In the remaining cases of genus or surfaces the question ab out validityof the conclusion of the theorem was op en till recently Cf Section for further details The role of the complexes of curves in the theory of Teichmuller spaces is similar to the role of Tits buildings in the theory of symmetric spaces of noncompact typ e Originally only cohomological asp ects of this analogy were discovered cf for example Ha H or I Theorem together with other results of this pap er exhibits new sides of this analogy It is similar to a wellknown theorem of Tits T asserting that all automorphisms of Tits buildings stem from automorphisms of corresp onding algebraic groups In its turn this theorem of Tits extends the basic theorem of pro jective geom etry according to which all maps of a pro jective space to itself preserving lines planes etc are pro jectively linear Theorem Let be subgroups of nite index of Mo d If the genus S of S is at least and S is not closed surfaceofgenus then al l isomorphisms have the form x gxg g Mo d If is a subgroup of nite S index in Mo d and if the genus of S is at least then the group of outer S automorphisms Out is nite The second assertion of this theorem obviously follows from the rst one except when S is a closed surface of genus In the case of a closed surface of genus some additional automorphisms can app ear exactly as in McC I This theorem extends the authors theorem I I cf also McC to the eect that all automorphisms of Mo d are inner except when S is S closed surface of genus The assertion ab out niteness of Out proves a conjecture stated in I in connection with this theorem It is analogous to the Mostows theorem ab out niteness of outer automorphisms groups of lattices in semisimple Lie groups Mo Theorem is a simple corollary of Theorem given some ideas and results of I Another application of Theorem is concerned with the Teichmuller space T of the surface S We dene the Teichmuller space T as the space S S of isotopy classes of conformal structures on S nS without ideal b oundary curves only with punctures and consider T together with its Teichmuller S metric The mo dular group Mo d naturally acts on T as a group of isome S S tries Theorem If the genus of S is at least then al l isometries of T belong S to the group Mo d S This theorem is due to Royden R for closed surfaces S and to Earle and Kra EK for surfaces with nonempty b oundary Theorem allows us to give a completely new pro of of this theorem This new pro of follows the same general outline as Mostows pro of Mo of the rigidity theorem for symmetric spaces of rank at least In particular Theorem plays a role similar to the role of the ab ove mentioned theorem of Tits ab out automorphisms of buildings in Mostows pro of The analogy between Roydens theorem and the Mostow rigidity theorem is quite unexp ected and was not anticipated b efore Some recent remarks by Kra cf Kr p fo otnote suggest that this new pro of maybe in some sense the right one Note that the conclusion of Theorem is also true for almost all surfaces of genus and and the pro of of Earle and Kra EK works uniformly well in all cases Since Theorem was recently extended to most of these surfaces cf Section our pro of applies to most of the surfaces of genus and also Further results along these lines are discussed in Section Sketch of the pro of of Theorem The starting p ointofthe pro of is Fig Figure Lemma Let be isotopy classes of two nontrivial circles on S The geometric intersection number in Thurstons sense i is equal to if and only if there exist isotopy classes of nontrivial circles having the fol lowing two properties i i if and only if ith and jth circles on Fig are disjoint i j ii if is the isotopy class of a circle C then C divides S into two parts and one of these parts is a torus with one hole containing some representa tives of the isotopy classes Figure Note that i if and only if the vertices are connected i j i j by an edge in the complex C S It follows that the prop erty i can be recognized in C S and hence is preserved by all automorphisms of C S It turns out that the prop erty ii also can be recognized in C S To see this start with a vertex hC i of C S Let L be the link of in C S Let us consider the graph L having the same vertices as L and having as edges exactly that pairs of vertices that are not connected by an edge in L or what is the same in C S It is clear that the connected comp onents of L corresp ond to the connected comp onents of the result S of cutting S C along C After recognizing the comp onents we can return to the structure of the complex of curves on corresp onding sets of vertices If it is known b eforehand that the b oundary of a surface R is nonempty one can recognize the top ological typ e of R using only the structure of a simplicial complex of C R in the following way it is sucient to use the fact that if R then dim C R g b and C R is homotopy equivalenttoawedge of spheres of dimension g b where g is the genus and b is the number of b oundary comp onents of R at least if g The latter result is due to Harer H cf I for an alternative pro of By applying this remark to R S we see that the prop erty ii also can be recognized in C S and C is preserved by automorphisms of C S Hence Lemma implies that the prop erty of two isotopy classes to have the geometric intersection number can b e recognized in C S and so is preserved by all automorphisms of C S Lemma immediately implies that some useful geometric congurations such as chains with i i for j i j j n i i i j are mapp ed by automorphisms of C S into similar congurations More precisely every automorphisms of C S agrees on the set f g n with some element of Mo d Esp ecially imp ortant are the conguration of S circles presented in Fig in the case of b oundary comp onents
Recommended publications
  • Construction of Free Subgroups in the Group of Units of Modular Group Algebras
    CONSTRUCTION OF FREE SUBGROUPS IN THE GROUP OF UNITS OF MODULAR GROUP ALGEBRAS Jairo Z. Gon¸calves1 Donald S. Passman2 Department of Mathematics Department of Mathematics University of S~ao Paulo University of Wisconsin-Madison 66.281-Ag Cidade de S. Paulo Van Vleck Hall 05389-970 S. Paulo 480 Lincoln Drive S~ao Paulo, Brazil Madison, WI 53706, U.S.A [email protected] [email protected] Abstract. Let KG be the group algebra of a p0-group G over a field K of characteristic p > 0; and let U(KG) be its group of units. If KG contains a nontrivial bicyclic unit and if K is not algebraic over its prime field, then we prove that the free product Zp ∗ Zp ∗ Zp can be embedded in U(KG): 1. Introduction Let KG be the group algebra of the group G over the field K; and let U(KG) be its group of units. Motivated by the work of Pickel and Hartley [4], and Sehgal ([7, pg. 200]) on the existence of free subgroups in the inte- gral group ring ZG; analogous conditions for U(KG) have been intensively investigated in [1], [2] and [3]. Recently Marciniak and Sehgal [5] gave a constructive method for produc- ing free subgroups in U(ZG); provided ZG contains a nontrivial bicyclic unit. In this paper we prove an analogous result for the modular group algebra KG; whenever K is not algebraic over its prime field GF (p): Specifically, if Zp denotes the cyclic group of order p, then we prove: 1- Research partially supported by CNPq - Brazil.
    [Show full text]
  • Special Unitary Group - Wikipedia
    Special unitary group - Wikipedia https://en.wikipedia.org/wiki/Special_unitary_group Special unitary group In mathematics, the special unitary group of degree n, denoted SU( n), is the Lie group of n×n unitary matrices with determinant 1. (More general unitary matrices may have complex determinants with absolute value 1, rather than real 1 in the special case.) The group operation is matrix multiplication. The special unitary group is a subgroup of the unitary group U( n), consisting of all n×n unitary matrices. As a compact classical group, U( n) is the group that preserves the standard inner product on Cn.[nb 1] It is itself a subgroup of the general linear group, SU( n) ⊂ U( n) ⊂ GL( n, C). The SU( n) groups find wide application in the Standard Model of particle physics, especially SU(2) in the electroweak interaction and SU(3) in quantum chromodynamics.[1] The simplest case, SU(1) , is the trivial group, having only a single element. The group SU(2) is isomorphic to the group of quaternions of norm 1, and is thus diffeomorphic to the 3-sphere. Since unit quaternions can be used to represent rotations in 3-dimensional space (up to sign), there is a surjective homomorphism from SU(2) to the rotation group SO(3) whose kernel is {+ I, − I}. [nb 2] SU(2) is also identical to one of the symmetry groups of spinors, Spin(3), that enables a spinor presentation of rotations. Contents Properties Lie algebra Fundamental representation Adjoint representation The group SU(2) Diffeomorphism with S 3 Isomorphism with unit quaternions Lie Algebra The group SU(3) Topology Representation theory Lie algebra Lie algebra structure Generalized special unitary group Example Important subgroups See also 1 of 10 2/22/2018, 8:54 PM Special unitary group - Wikipedia https://en.wikipedia.org/wiki/Special_unitary_group Remarks Notes References Properties The special unitary group SU( n) is a real Lie group (though not a complex Lie group).
    [Show full text]
  • Chapter 1 GENERAL STRUCTURE and PROPERTIES
    Chapter 1 GENERAL STRUCTURE AND PROPERTIES 1.1 Introduction In this Chapter we would like to introduce the main de¯nitions and describe the main properties of groups, providing examples to illustrate them. The detailed discussion of representations is however demanded to later Chapters, and so is the treatment of Lie groups based on their relation with Lie algebras. We would also like to introduce several explicit groups, or classes of groups, which are often encountered in Physics (and not only). On the one hand, these \applications" should motivate the more abstract study of the general properties of groups; on the other hand, the knowledge of the more important and common explicit instances of groups is essential for developing an e®ective understanding of the subject beyond the purely formal level. 1.2 Some basic de¯nitions In this Section we give some essential de¯nitions, illustrating them with simple examples. 1.2.1 De¯nition of a group A group G is a set equipped with a binary operation , the group product, such that1 ¢ (i) the group product is associative, namely a; b; c G ; a (b c) = (a b) c ; (1.2.1) 8 2 ¢ ¢ ¢ ¢ (ii) there is in G an identity element e: e G such that a e = e a = a a G ; (1.2.2) 9 2 ¢ ¢ 8 2 (iii) each element a admits an inverse, which is usually denoted as a¡1: a G a¡1 G such that a a¡1 = a¡1 a = e : (1.2.3) 8 2 9 2 ¢ ¢ 1 Notice that the axioms (ii) and (iii) above are in fact redundant.
    [Show full text]
  • MODULAR GROUP IMAGES ARISING from DRINFELD DOUBLES of DIHEDRAL GROUPS Deepak Naidu 1. Introduction the Modular Group SL(2, Z) Is
    International Electronic Journal of Algebra Volume 28 (2020) 156-174 DOI: 10.24330/ieja.768210 MODULAR GROUP IMAGES ARISING FROM DRINFELD DOUBLES OF DIHEDRAL GROUPS Deepak Naidu Received: 28 October 2019; Revised: 30 May 2020; Accepted: 31 May 2020 Communicated by A. C¸i˘gdem Ozcan¨ Abstract. We show that the image of the representation of the modular group SL(2; Z) arising from the representation category Rep(D(G)) of the Drinfeld double D(G) is isomorphic to the group PSL(2; Z=nZ) × S3, when G is either the dihedral group of order 2n or the dihedral group of order 4n for some odd integer n ≥ 3. Mathematics Subject Classification (2020): 18M20 Keywords: Drinfeld double, modular tensor category, modular group, con- gruence subgroup 1. Introduction The modular group SL(2; Z) is the group of all 2 × 2 matrices of determinant 1 whose entries belong to the ring Z of integers. The modular group is known to play a significant role in conformal field theory [3]. Every two-dimensional rational con- formal field theory gives rise to a finite-dimensional representation of the modular group, and the kernel of this representation has been of much interest. In particu- lar, the question whether the kernel is a congruence subgroup of SL(2; Z) has been investigated by several authors. For example, A. Coste and T. Gannon in their paper [4] showed that under certain assumptions the kernel is indeed a congruence subgroup. In the present paper, we consider the kernel of the representation of the modular group arising from Drinfeld doubles of dihedral groups.
    [Show full text]
  • The Modular Group Action on Real SL(2)–Characters of a One-Holed Torus
    ISSN 1364-0380 (on line) 1465-3060 (printed) 443 Geometry & Topology G T T G G T T Volume 7 (2003) 443–486 G T G T T G T Published: 18 July 2003 G T G T G Republished with corrections: 21 August 2003 T G T G G T G G G T T The modular group action on real SL(2)–characters of a one-holed torus William M Goldman Mathematics Department, University of Maryland College Park, MD 20742 USA Email: [email protected] Abstract The group Γ of automorphisms of the polynomial κ(x,y,z)= x2 + y2 + z2 − xyz − 2 is isomorphic to PGL(2, Z) ⋉ (Z/2 ⊕ Z/2). For t ∈ R, the Γ-action on κ−1(t) ∩ R3 displays rich and varied dynamics. The action of Γ preserves a Poisson structure defining a Γ–invariant area form on each κ−1(t) ∩ R3 . For t < 2, the action of Γ is properly discontinuous on the four con- tractible components of κ−1(t) ∩ R3 and ergodic on the compact component (which is empty if t < −2). The contractible components correspond to Teichm¨uller spaces of (possibly singular) hyperbolic structures on a torus M¯ . For t = 2, the level set κ−1(t) ∩ R3 consists of characters of reducible representations and comprises two er- godic components corresponding to actions of GL(2, Z) on (R/Z)2 and R2 respectively. For 2 <t ≤ 18, the action of Γ on κ−1(t) ∩ R3 is ergodic. Corresponding to the Fricke space of a three-holed sphere is a Γ–invariant open subset Ω ⊂ R3 whose components are permuted freely by a subgroup of index 6 in Γ.
    [Show full text]
  • Notes on Modular Forms
    Notes on Modular Forms Dan Schultz August 20, 2015 Contents 0.1 Notation . .2 1 Introduction 4 1.1 Partitions and the η function . .4 1.2 Sums of squares and the θ function . .4 1.3 Ramanujan's τ Function . .5 1.4 Mock Modular Forms . .5 1.5 Special Values of the j Function . .6 2 Elliptic Functions and Basic Modular Forms on SL2(Z) 7 2.1 Theory of Elliptic Functions . .7 2.2 The Weierstrass } Function . .8 2.3 Eisenstein Series . .9 2.4 Modular Discriminant ∆(τ) and Klein's Absolute Invariant j(τ)............ 10 2.5 Basic Properties of SL2(Z)................................. 11 2.6 The η function and E2 ................................... 12 2.7 Recursions for the Eisenstein Series . 15 2.8 Elliptic Θ Functions . 15 2.9 Γ(2) and the Asymptotic of Θ Near the Cusps . 19 2.10 Addition Formulas . 23 2.11 Γ(3) and the Asymptotic of η Near the Cusps . 24 2.12 Exercises . 28 3 Theory of Modular Forms on SL2(Z) 31 3.1 Definition of a Modular Form . 31 3.2 Valence Formula . 32 3.3 Dimension Formulas and Generators . 33 3.4 Applications to Identities . 34 3.5 Exercises . 35 4 Theory of Modular Forms on Congruence Subgroups of SL2(Z) 36 4.1 Definition of modular forms on Γ with [Γ(1) : Γ] < 1 .................. 36 4.2 Dimension formulas . 38 4.3 Counting i for Γ(N) and Γ1(N) and Γ0(N)....................... 40 4.4 General properties of Ak(Γ) ................................ 42 4.5 Working with finite index subgroups of Γ(1) .
    [Show full text]
  • The Modular Group and the Fundamental Domain Seminar on Modular Forms Spring 2019
    The modular group and the fundamental domain Seminar on Modular Forms Spring 2019 Johannes Hruza and Manuel Trachsler March 13, 2019 1 The Group SL2(Z) and the fundamental do- main Definition 1. For a commutative Ring R we define GL2(R) as the following set: a b GL (R) := A = for which det(A) = ad − bc 2 R∗ : (1) 2 c d We define SL2(R) to be the set of all B 2 GL2(R) for which det(B) = 1. Lemma 1. SL2(R) is a subgroup of GL2(R). Proof. Recall that the kernel of a group homomorphism is a subgroup. Observe ∗ that det is a group homomorphism det : GL2(R) ! R and thus SL2(R) is its kernel by definition. ¯ Let R = R. Then we can define an action of SL2(R) on C ( = C [ f1g ) by az + b a a b A:z := and A:1 := ;A = 2 SL (R); z 2 : (2) cz + d c c d 2 C Definition 2. The upper half-plane of C is given by H := fz 2 C j Im(z) > 0g. Restricting this action to H gives us another well defined action ":" : SL2(R)× H 7! H called the fractional linear transformation. Indeed, for any z 2 H the imaginary part of A:z is positive: az + b (az + b)(cz¯ + d) Im(z) Im(A:z) = Im = Im = > 0: (3) cz + d jcz + dj2 jcz + dj2 a b Lemma 2. For A = c d 2 SL2(R) the map µA : H ! H defined by z 7! A:z is the identity if and only if A = ±I.
    [Show full text]
  • Modular Curves, Raindrops Through Kaleidoscopes
    (October 9, 2011) Modular curves, raindrops through kaleidoscopes Paul Garrett [email protected] http:=/www.math.umn.edu/egarrett/ • H as homogeneous space for SL2(R) • The simplest non-abelian quotient SL2(Z)nH • Non-abelian solenoid: raindrop through a kaleidoscope • Enabling the action of SL2(R) Solenoids are limits of one-dimensional things, circles. As complicated as the solenoids might be, all the limitands are the same, just circles. Hoping for a richer supply of phenomena, we should wonder about limits of two-dimensional things (surfaces). It was convenient that all the circles in the solenoids were uniformized compatibly, that is, were compatibly expressed as quotients of R. For ease of description, we choose to look at surfaces X which are quotients of [1] the upper half-plane H in C, with quotient mappings H ! X that fit together compatibly. The real line R, being a group, is a homogeneous space in the sense that (of course) it acts transitively on itself. The upper half-plane H is not reasonably a group itself, but is acted upon by SL2(R) (2-by-2 real matrices with determinant 1) acting by so-called linear fractional transformations a b az + b (z) = c d cz + d We verify that this action is transitive, making H a homogeneous space for the group SL2(R). The oddity of the action can be put in a larger context, which we will do a bit later. Modular curves are quotients H ! ΓnH where Γ varies among certain finite-index subgroups of SL2(Z), the group of 2-by-2 integer matrices with determinant 1.
    [Show full text]
  • Modular Forms for the Orthogonal Group O(2,5)
    Modular Forms for the Orthogonal Group O(2,5) Der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westfälischen Technischen Hochschule Aachen vorgelegte Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften von Diplom-Mathematiker Ingo Herbert Klöcker aus Aachen For Odo, Sandra, and Maja Contents Introduction 1 0. Basic Notation 5 1. Orthogonal Groups 7 1.1. Lattices and orthogonal groups . 7 1.2. O(2, l + 2) and the attached half-space . 9 1.3. The orthogonal modular group . 10 1.4. Generators of certain orthogonal modular groups . 13 1.5. The commutator subgroups of certain orthogonal modular groups . 21 1.6. Abelian characters of the orthogonal modular groups . 22 1.6.1. The determinant . 22 1.6.2. The orthogonal character(s) . 22 1.6.3. The Siegel character . 22 1.7. Parabolic subgroups . 26 2. Modular Forms 29 2.1. Orthogonal modular forms . 29 2.2. Rankin-Cohen type differential operators . 35 2.3. Jacobi forms . 38 2.4. Maaß spaces . 42 2.5. Restrictions of modular forms to submanifolds . 45 2.5.1. The general case . 45 2.5.2. Restrictions of modular forms living on HD4 . 49 2.5.3. Restrictions of modular forms living on HA3 . 50 2.5.4. Restrictions of modular forms living on H (3) . 51 A1 2.6. Hermitian modular forms of degree 2 ..................... 53 2.7. Quaternionic modular forms of degree 2 ................... 57 2.8. Quaternionic theta series . 60 3. Vector-valued Modular Forms 65 3.1. The metaplectic group . 65 3.2. Vector-valued modular forms .
    [Show full text]
  • The Maximal Discrete Extension of the Hermitian Modular Group
    The maximal discrete extension of the Hermitian modular group by Aloys Krieg, Martin Raum and Annalena Wernz1 Abstract. Let Γ ( K) denote the Hermitian modular group of degree n over an n O imaginary-quadratic number field K. In this paper we determine its maximal discrete extension in SU(n,n; C), which coincides with the normalizer of Γ ( K). The descrip- n O tion involves the n-torsion subgroup of the ideal class group of K. This group is defined over a particular number field Kn and we can describe the ramified primes in it. In the case n = 2 we give an explicit description, which involves generalized Atkin-Lehner involutions. Moreover we find ab natural characterization of this group in SO(2, 4). Keywords. Hermitian modular group, normalizer, maximal discrete extension, Atkin- Lehner involution, orthogonal group Mathematics Subject Classification. 11F06, 11F55 1Aloys Krieg, Annalena Wernz, Lehrstuhl A f¨ur Mathematik, RWTH Aachen University, D-52056 Aachen, Germany arXiv:1910.12466v2 [math.NT] 27 Jan 2021 [email protected], [email protected] Martin Raum, Chalmers tekniska h¨ogskola och G¨oteborgs Universitet, Institutionen f¨or Matematiska vetenskaper, SE-412 96, G¨oteborg, Sweden [email protected] Martin Raum was partially supported by Vetenskapsr˚adet Grant 2015-04139. Annalena Wernz was partially supported by Graduiertenkolleg Experimentelle und konstruktive Al- gebra at RWTH Aachen University. 1 The Hermitian modular group of degree n over an imaginary-quadratic number field K was introduced by H. Braun [2]. We determine its maximal discrete extension in SU(n,n; C), which is called the extended Hermitian modular group.
    [Show full text]
  • Automorphic Products on Unitary Groups
    Automorphic Products on Unitary Groups Vom Fachbereich Mathematik der Technischen Universität Darmstadt zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Dissertation von Dipl.-Math. Eric Ferdinand Wilhelm Hofmann aus Nürnberg Referent: Prof. Dr. Jan H. Bruinier Koreferent: Prof. Dr. Jens Funke Tag der Einreichung: 9. Dezember 2010 Tag der mündlichen Prüfung: 8. Februar 2011 Darmstadt D 17 To my parents Contents Zusammenfassung 9 0. Introduction 11 1. Lattices, groups and symmetric domains 19 1.1. Unitary groups . 19 1.1.1. The subjacent space . 19 1.1.2. Lattices and unitary groups . 21 Hermitian lattices . 21 Unitary groups . 23 1.1.3. Models for the symmetric domain . 23 The Siegel domain model . 25 1.1.4. Cusps and parabolic subgroups . 27 1.1.5. Compactification . 29 1.1.6. Modular forms . 30 Fourier-Jacobi expansion and Koecher principle . 32 1.2. Orthogonal Groups . 34 1.2.1. Quadratic spaces and orthogonal groups . 35 1.2.2. Coordinates for the Grassmannian . 36 Witt decomposition and basis for the hyperbolic part . 36 Grassmannian coordinates . 38 1.2.3. The tube domain model . 38 Complexification . 38 The tube domain . 39 The modular variety . 41 1.2.4. Cusps and boundary components . 41 Boundary components . 42 The normalizer of a boundary component . 43 1.2.5. Automorphy factor . 47 1.2.6. Automorphic forms . 49 Two definitions . 49 Fourier expansion and Koecher principle . 51 Fourier-Jacobi expansion and induced Jacobi forms . 53 The Siegel operator . 54 2. Theta lifts and Borcherds theory for O(2, b) 57 2.1. Prerequisites for Borcherds theory .
    [Show full text]
  • Introductory Lectures on SL(2,Z) and Modular Forms
    Introductory Lectures on SL(2,Z) and modular forms. W.J. Harvey, King’s College London December 2008 . 1 Introduction to the main characters. (1.1) We begin with a definition. The modular group is the subgroup SL(2, Z) of the matrix group SL(2, R) consisting of matrices with integer entries and determinant 1. There is an important action of SL(2, R) on the upper half plane U = {z = x + iy | y > 0}, as fractional linear (Mobius) transformations: aτ + b τ 7→ . (1) cτ + d It is readily verified that the kernel of this action (the subgroup which ∼ acts trivially, fixing all points) is the centre C2 = h±I2i. The quotient group P SL(2, R) acts faithfully on U and also on the boundary Rb = R ∪ ∞ =∼ S1; it is shown in elementary accounts of complex analysis or hyperbolic geometry (see for example [?], [?]) that the group action on Rb is triply transitive. In other words, any ordered triple of points of Rb can be mapped to the triple 0.1, ∞ 2 (1.2) The hyperbolic metric dsh is given by the formula 2 −2 2 2 dsh = y (dx + dy ) (2) on U: this is a Riemannian metric on the upper half plane. Because the action defined in citeeq1 is transitive on the points of U and also on the set of unit tangent directions at each point (two simple exercises for the reader), this space is a symmetric space in the sense of differential geometry. Invariance of the metric under the (differential of the) action by SL(2, R) is verified by a simple calculation (Exercise 1).
    [Show full text]