The maximal discrete extension of the Hermitian modular group by Aloys Krieg, Martin Raum and Annalena Wernz1 Abstract. Let Γ ( K) denote the Hermitian modular group of degree n over an n O imaginary-quadratic number field K. In this paper we determine its maximal discrete extension in SU(n,n; C), which coincides with the normalizer of Γ ( K). The descrip- n O tion involves the n-torsion subgroup of the ideal class group of K. This group is defined over a particular number field Kn and we can describe the ramified primes in it. In the case n = 2 we give an explicit description, which involves generalized Atkin-Lehner involutions. Moreover we find ab natural characterization of this group in SO(2, 4). Keywords. Hermitian modular group, normalizer, maximal discrete extension, Atkin- Lehner involution, orthogonal group Mathematics Subject Classification. 11F06, 11F55 1Aloys Krieg, Annalena Wernz, Lehrstuhl A f¨ur Mathematik, RWTH Aachen University, D-52056 Aachen, Germany arXiv:1910.12466v2 [math.NT] 27 Jan 2021
[email protected],
[email protected] Martin Raum, Chalmers tekniska h¨ogskola och G¨oteborgs Universitet, Institutionen f¨or Matematiska vetenskaper, SE-412 96, G¨oteborg, Sweden
[email protected] Martin Raum was partially supported by Vetenskapsr˚adet Grant 2015-04139. Annalena Wernz was partially supported by Graduiertenkolleg Experimentelle und konstruktive Al- gebra at RWTH Aachen University. 1 The Hermitian modular group of degree n over an imaginary-quadratic number field K was introduced by H. Braun [2]. We determine its maximal discrete extension in SU(n,n; C), which is called the extended Hermitian modular group.