Automorphic Products on Unitary Groups

Total Page:16

File Type:pdf, Size:1020Kb

Automorphic Products on Unitary Groups Automorphic Products on Unitary Groups Vom Fachbereich Mathematik der Technischen Universität Darmstadt zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Dissertation von Dipl.-Math. Eric Ferdinand Wilhelm Hofmann aus Nürnberg Referent: Prof. Dr. Jan H. Bruinier Koreferent: Prof. Dr. Jens Funke Tag der Einreichung: 9. Dezember 2010 Tag der mündlichen Prüfung: 8. Februar 2011 Darmstadt D 17 To my parents Contents Zusammenfassung 9 0. Introduction 11 1. Lattices, groups and symmetric domains 19 1.1. Unitary groups . 19 1.1.1. The subjacent space . 19 1.1.2. Lattices and unitary groups . 21 Hermitian lattices . 21 Unitary groups . 23 1.1.3. Models for the symmetric domain . 23 The Siegel domain model . 25 1.1.4. Cusps and parabolic subgroups . 27 1.1.5. Compactification . 29 1.1.6. Modular forms . 30 Fourier-Jacobi expansion and Koecher principle . 32 1.2. Orthogonal Groups . 34 1.2.1. Quadratic spaces and orthogonal groups . 35 1.2.2. Coordinates for the Grassmannian . 36 Witt decomposition and basis for the hyperbolic part . 36 Grassmannian coordinates . 38 1.2.3. The tube domain model . 38 Complexification . 38 The tube domain . 39 The modular variety . 41 1.2.4. Cusps and boundary components . 41 Boundary components . 42 The normalizer of a boundary component . 43 1.2.5. Automorphy factor . 47 1.2.6. Automorphic forms . 49 Two definitions . 49 Fourier expansion and Koecher principle . 51 Fourier-Jacobi expansion and induced Jacobi forms . 53 The Siegel operator . 54 2. Theta lifts and Borcherds theory for O(2, b) 57 2.1. Prerequisites for Borcherds theory . 57 2.1.1. The Weil representation and vector valued modular forms . 58 Scalar valued modular forms . 58 The Weil representation . 59 Vector valued modular forms . 61 5 2.1.2. Heegner divisors and Weyl chambers . 62 Lattices revisited . 63 Heegner divisors . 64 Weyl chambers . 65 2.2. The Borcherds lift . 67 3. Embedding from the unitary to the orthogonal world 71 3.1. The Embedding of SU(1, q) into SO(2, 2q) ....................... 72 3.1.1. Setup and general considerations . 72 Complex scalars as endomorphisms of V ................... 74 R0 Parabolic subgroups . 74 3.1.2. Choice of cusp and basis for the hyperbolic part . 76 Basis for the span of ` and `0 .......................... 77 3.2. Complex structures and symmetric domains . 79 3.2.1. Constructing the embedding . 80 Complex structure . 81 Embedding of symmetric domains and choice of cone . 83 3.3. Behavior on the boundary . 86 4. Borcherds products for SU(1, q) 89 4.1. Some prerequisites . 89 4.1.1. Heegner divisors and Weyl chambers . 90 Heegner divisors . 90 4.1.2. Weyl chambers . 92 4.2. The main theorem . 93 4.3. Values of Borcherds products at the cusps . 99 4.3.1. The Borcherds lift on a one-dimensional boundary component . 100 4.3.2. The behavior of Ξf (z) on the boundary of U ................ 102 H ! 5. Lifting forms from 0 – Borcherds products for SU(1, 1) 103 5.1. The BorcherdsM lift for SO(1, 1) and SO(2, 2) ...................... 103 5.1.1. Prelude: Lifting constants . 104 5.1.2. The Weyl vector term for Jb(τ) ......................... 105 The integral . 106 K Negative norm vectors and calculation of Φm(v ) .............. 108 Heegner divisors and Weyl chambers . 109 5.1.3. Intermezzo: The Borcherds lift for SO(2, 2) ................. 110 Fourier expansions of Borcherds lift . 111 Borcherds products for Jb(τ) .......................... 113 5.2. The lift to SU(1, 1) ..................................... 114 5.2.1. The lattice and the upper half-planes . 114 Heegner divisors and Weyl chambers . 116 CM-orders of Heegner divisors . 116 Embedding and choice of basis . 118 5.2.2. Number fields with even discriminant . 119 Fourier expansions . 120 6 Contents Borcherds products . 121 5.2.3. Number fields with odd discriminant . 124 The Borcherds lift . 125 5.2.4. Further examples: Lift of Jb(τ) with squarefree b .............. 127 List of Notation 133 Bibliography 139 Lebenslauf 145 Contents 7 Zusammenfassung Das Ziel der vorliegenden Dissertation ist es, die Konstruktion von Borcherdsprodukten für unitäre Gruppen der Signatur (1, q) über imaginär-quadratischen Zahlkörpern durchzuführen. Die Grundlage hierfür bildet die Arbeit [5] von Borcherds. In dieser wird die singuläre Theta-Korrespondenz dazu verwendet, eine multiplikative Liftung von schwach holomorphen vektorwertigen Modulformen für die elliptische Modulgruppe SL2(Z) zu meromorphen auto- morphen Formen für orthogonale Gruppen der Signatur (2, b) zu realisieren. Die so erhaltenen Funktionen verfügen über eine Darstellung als unendliche Produkte, wodurch sie als Verall- gemeinerung klassischer Eta-Produkte angesehen werden können. Sie werden nach ihrem Entdecker als Borcherdsprodukte bezeichnet. Diese Liftung war von Borcherds bereits in einer vorherigen Arbeit [4] konstruiert worden, die hierbei verwendete Methode war jedoch deutlich weniger konzeptuell. Tatsächlich ist die Konstruktion in [5] weit allgemeiner; sie liefert auch eine additive Liftung, welche eine Reihe vorher bekannter Liftungen als Spezialfälle umfasst, welche sich durch Theta-Korrespondenzen realisieren lassen. Von einer singulären Theta-Korrespondenz spricht man im vorliegenden Fall, da das Theta- Integral Z d x d y f τ , τ, Z y b=2 ( ) Θ( ) y2 F stark divergiert und erst durch ein aus der theoretischen Physik stammendes Verfahren regularisiert werden muss, welches von Harvey und Moore [34] auf Integrale mit Theta- Kernen übertragen wurde, siehe auch [38]. Neben der unendlichen Produktentwicklung sei an dieser Stelle auch auf eine weitere cha- rakteristische Eigenschaft der von Borcherds konstruierten automorphen Formen hingewiesen: Ihre Pol- und Nullstellengebilde werden durch die Hauptteile der Fourierentwicklung der als Eingabewerte für die Liftung dienenden Funktionen vorgegeben. Diese Eigenschaft erlaubt somit die Konstruktion von Funktionen mit vorgegeben Divisoren auf den jeweiligen orthogo- nalen Modulvarietäten, was als einer der Gründe für die vielseitigen Anwendungen, welche aus Borcherds’ Konstruktion hervorgegangen sind, angesehen werden kann. Nach Borcherds spricht man in diesem Zusammenhang von „Heegner-Divisoren“, eine Begriffsbildung, wel- che auf die, einen Spezialfall darstellenden, Heegner-Punkte auf elliptischen Modulkurven hinweist. In der vorliegenden Dissertation wird nun das für die Borcherdsprodukte zentrale Resultat, Theorem 13.3 aus [5], auf unitäre Gruppen der Signatur (1, q) übertragen. Die dazu gewählte Methode ist die des Rückzugs unter einer Einbettung zwischen den hermitesch symmetrischen Gebieten der Gruppen SU(1, q) und SO(2, 2q). Sei hierzu F = Q(pd) mit d einer negativen ganzen Zahl und V , , ein hermitescher Raum über F. Dann besitzt V die Struktur eines quadratischen Raumsh· über·〉 Q mit der qua- dratischen Form, welche zu der symmetrischen Bilinearform , : Tr , assoziiert ist, ( ) = F=Q woraus man eine Inklusion der Isometriegruppen erhält, nämlich· · von SU(V )(h·R·〉) in SO(V )(R). Diese Beobachtung ermöglicht es, eine Einbettung zwischen den zugehörigen symmetrischen Gebieten zu konstruieren. 9 Diese erfolgt im dritten Kapitel der vorliegenden Arbeit. In den vorausgehenden beiden Kapiteln werden einige Grundlagen hierzu bereitgestellt. Im ersten Kapitel wird die Theorie der symmetrischen Gebiete und der automorphen Formen zunächst für unitäre und danach für orthogonale Gruppen entwickelt. In dem Abschnitt über unitäre Gruppen werden auch einige Elemente der Theorie hermitescher Gitter bereitgestellt. Außerdem wird im Anschluss an die Konstruktion des symmetrischen Gebiets auch die Kom- paktifizierung der unitären Modulvarietät nach Baily-Borel beschrieben. Unitäre Modulformen und ihre Fourier-Jacobi Entwicklungen schließen diesen Abschnitt. In dem Abschnitt über orthogonale Gruppen wird besonderer Wert auf die Konstruktion verschiedener Realisierungen des symmetrischen Gebiets gelegt, da diese für die spätere Einbettung von großer Bedeutung sind. Ebenfalls ausführlich behandelt wird die geometrische Struktur seiner Randkomponenten. Die Definition der Modulformen wird durch eine Beschreibung ihrer Fourier-Entwicklung und die Behandlung ihres Verhaltens auf Randkomponenten des symmetrischen Gebiets ergänzt. Im zweiten Kapitel wird die Konstruktion von Borcherds referiert. Vorher werden dafür notwendige Begriffe wie die Weil-Darstellung und die Definition von Weyl-Kammern eingeführt, wozu auch die Theorie von quadratischen Gittern vertieft wird. Besonders relevant ist hier der Begriff der Heegner-Divisoren, dessen Definition ausführlich behandelt wird. Das vierte Kapitel beinhaltet die wichtigsten Ergebnisse der Arbeit. Zunächst werden Heegner-Divisoren und Weyl-Kammern auf dem symmetrischen Gebiet der unitären Gruppe eingeführt, woraufhin dann das Hauptresultat dieser Dissertation, ein Analogon zu Borcherds’ Satz 13.3 aus [5], formuliert und bewiesen werden kann. Ein Korollar gibt eine einfachere Version für den wichtigen Spezialfall unimodularer Gitter an, und allgemeiner für Gitter, die sich in einen unimodularen isotropen Teil und einen definiten Teil zerlegen lassen. Das Kapitel schließt mit einer Untersuchung der Werte, welche die vorher konstruierten Borcherdsprodukte auf den Randpunkten der Baily-Borel Kompaktifizierung annehmen. Im abschließenden fünften Kapitel wird als Anwendung des Hauptsatzes sowie einer auf Bruinier zurückgehenden Verallgemeinerung des Borcherds-Lifts die Situation diskutiert, in welcher das zugrunde liegende Gitter eine hermitesche hyperbolische Ebene ist und somit der hermitesche
Recommended publications
  • Topological Modes in Dual Lattice Models
    Topological Modes in Dual Lattice Models Mark Rakowski 1 Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland Abstract Lattice gauge theory with gauge group ZP is reconsidered in four dimensions on a simplicial complex K. One finds that the dual theory, formulated on the dual block complex Kˆ , contains topological modes 2 which are in correspondence with the cohomology group H (K,Zˆ P ), in addition to the usual dynamical link variables. This is a general phenomenon in all models with single plaquette based actions; the action of the dual theory becomes twisted with a field representing the above cohomology class. A similar observation is made about the dual version of the three dimensional Ising model. The importance of distinct topological sectors is confirmed numerically in the two di- 1 mensional Ising model where they are parameterized by H (K,Zˆ 2). arXiv:hep-th/9410137v1 19 Oct 1994 PACS numbers: 11.15.Ha, 05.50.+q October 1994 DIAS Preprint 94-32 1Email: [email protected] 1 Introduction The use of duality transformations in statistical systems has a long history, beginning with applications to the two dimensional Ising model [1]. Here one finds that the high and low temperature properties of the theory are related. This transformation has been extended to many other discrete models and is particularly useful when the symmetries involved are abelian; see [2] for an extensive review. All these studies have been confined to hypercubic lattices, or other regular structures, and these have rather limited global topological features. Since lattice models are defined in a way which depends clearly on the connectivity of links or other regions, one expects some sort of topological effects generally.
    [Show full text]
  • Construction of Free Subgroups in the Group of Units of Modular Group Algebras
    CONSTRUCTION OF FREE SUBGROUPS IN THE GROUP OF UNITS OF MODULAR GROUP ALGEBRAS Jairo Z. Gon¸calves1 Donald S. Passman2 Department of Mathematics Department of Mathematics University of S~ao Paulo University of Wisconsin-Madison 66.281-Ag Cidade de S. Paulo Van Vleck Hall 05389-970 S. Paulo 480 Lincoln Drive S~ao Paulo, Brazil Madison, WI 53706, U.S.A [email protected] [email protected] Abstract. Let KG be the group algebra of a p0-group G over a field K of characteristic p > 0; and let U(KG) be its group of units. If KG contains a nontrivial bicyclic unit and if K is not algebraic over its prime field, then we prove that the free product Zp ∗ Zp ∗ Zp can be embedded in U(KG): 1. Introduction Let KG be the group algebra of the group G over the field K; and let U(KG) be its group of units. Motivated by the work of Pickel and Hartley [4], and Sehgal ([7, pg. 200]) on the existence of free subgroups in the inte- gral group ring ZG; analogous conditions for U(KG) have been intensively investigated in [1], [2] and [3]. Recently Marciniak and Sehgal [5] gave a constructive method for produc- ing free subgroups in U(ZG); provided ZG contains a nontrivial bicyclic unit. In this paper we prove an analogous result for the modular group algebra KG; whenever K is not algebraic over its prime field GF (p): Specifically, if Zp denotes the cyclic group of order p, then we prove: 1- Research partially supported by CNPq - Brazil.
    [Show full text]
  • Special Unitary Group - Wikipedia
    Special unitary group - Wikipedia https://en.wikipedia.org/wiki/Special_unitary_group Special unitary group In mathematics, the special unitary group of degree n, denoted SU( n), is the Lie group of n×n unitary matrices with determinant 1. (More general unitary matrices may have complex determinants with absolute value 1, rather than real 1 in the special case.) The group operation is matrix multiplication. The special unitary group is a subgroup of the unitary group U( n), consisting of all n×n unitary matrices. As a compact classical group, U( n) is the group that preserves the standard inner product on Cn.[nb 1] It is itself a subgroup of the general linear group, SU( n) ⊂ U( n) ⊂ GL( n, C). The SU( n) groups find wide application in the Standard Model of particle physics, especially SU(2) in the electroweak interaction and SU(3) in quantum chromodynamics.[1] The simplest case, SU(1) , is the trivial group, having only a single element. The group SU(2) is isomorphic to the group of quaternions of norm 1, and is thus diffeomorphic to the 3-sphere. Since unit quaternions can be used to represent rotations in 3-dimensional space (up to sign), there is a surjective homomorphism from SU(2) to the rotation group SO(3) whose kernel is {+ I, − I}. [nb 2] SU(2) is also identical to one of the symmetry groups of spinors, Spin(3), that enables a spinor presentation of rotations. Contents Properties Lie algebra Fundamental representation Adjoint representation The group SU(2) Diffeomorphism with S 3 Isomorphism with unit quaternions Lie Algebra The group SU(3) Topology Representation theory Lie algebra Lie algebra structure Generalized special unitary group Example Important subgroups See also 1 of 10 2/22/2018, 8:54 PM Special unitary group - Wikipedia https://en.wikipedia.org/wiki/Special_unitary_group Remarks Notes References Properties The special unitary group SU( n) is a real Lie group (though not a complex Lie group).
    [Show full text]
  • The Mathematics of Lattices
    The Mathematics of Lattices Daniele Micciancio January 2020 Daniele Micciancio (UCSD) The Mathematics of Lattices Jan 2020 1 / 43 Outline 1 Point Lattices and Lattice Parameters 2 Computational Problems Coding Theory 3 The Dual Lattice 4 Q-ary Lattices and Cryptography Daniele Micciancio (UCSD) The Mathematics of Lattices Jan 2020 2 / 43 Point Lattices and Lattice Parameters 1 Point Lattices and Lattice Parameters 2 Computational Problems Coding Theory 3 The Dual Lattice 4 Q-ary Lattices and Cryptography Daniele Micciancio (UCSD) The Mathematics of Lattices Jan 2020 3 / 43 Key to many algorithmic applications Cryptanalysis (e.g., breaking low-exponent RSA) Coding Theory (e.g., wireless communications) Optimization (e.g., Integer Programming with fixed number of variables) Cryptography (e.g., Cryptographic functions from worst-case complexity assumptions, Fully Homomorphic Encryption) Point Lattices and Lattice Parameters (Point) Lattices Traditional area of mathematics ◦ ◦ ◦ Lagrange Gauss Minkowski Daniele Micciancio (UCSD) The Mathematics of Lattices Jan 2020 4 / 43 Point Lattices and Lattice Parameters (Point) Lattices Traditional area of mathematics ◦ ◦ ◦ Lagrange Gauss Minkowski Key to many algorithmic applications Cryptanalysis (e.g., breaking low-exponent RSA) Coding Theory (e.g., wireless communications) Optimization (e.g., Integer Programming with fixed number of variables) Cryptography (e.g., Cryptographic functions from worst-case complexity assumptions, Fully Homomorphic Encryption) Daniele Micciancio (UCSD) The Mathematics of Lattices Jan 2020 4 / 43 Point Lattices and Lattice Parameters Lattice Cryptography: a Timeline 1982: LLL basis reduction algorithm Traditional use of lattice algorithms as a cryptanalytic tool 1996: Ajtai's connection Relates average-case and worst-case complexity of lattice problems Application to one-way functions and collision resistant hashing 2002: Average-case/worst-case connection for structured lattices.
    [Show full text]
  • Chapter 1 GENERAL STRUCTURE and PROPERTIES
    Chapter 1 GENERAL STRUCTURE AND PROPERTIES 1.1 Introduction In this Chapter we would like to introduce the main de¯nitions and describe the main properties of groups, providing examples to illustrate them. The detailed discussion of representations is however demanded to later Chapters, and so is the treatment of Lie groups based on their relation with Lie algebras. We would also like to introduce several explicit groups, or classes of groups, which are often encountered in Physics (and not only). On the one hand, these \applications" should motivate the more abstract study of the general properties of groups; on the other hand, the knowledge of the more important and common explicit instances of groups is essential for developing an e®ective understanding of the subject beyond the purely formal level. 1.2 Some basic de¯nitions In this Section we give some essential de¯nitions, illustrating them with simple examples. 1.2.1 De¯nition of a group A group G is a set equipped with a binary operation , the group product, such that1 ¢ (i) the group product is associative, namely a; b; c G ; a (b c) = (a b) c ; (1.2.1) 8 2 ¢ ¢ ¢ ¢ (ii) there is in G an identity element e: e G such that a e = e a = a a G ; (1.2.2) 9 2 ¢ ¢ 8 2 (iii) each element a admits an inverse, which is usually denoted as a¡1: a G a¡1 G such that a a¡1 = a¡1 a = e : (1.2.3) 8 2 9 2 ¢ ¢ 1 Notice that the axioms (ii) and (iii) above are in fact redundant.
    [Show full text]
  • Electromagnetic Duality for Children
    Electromagnetic Duality for Children JM Figueroa-O'Farrill [email protected] Version of 8 October 1998 Contents I The Simplest Example: SO(3) 11 1 Classical Electromagnetic Duality 12 1.1 The Dirac Monopole ....................... 12 1.1.1 And in the beginning there was Maxwell... 12 1.1.2 The Dirac quantisation condition . 14 1.1.3 Dyons and the Zwanziger{Schwinger quantisation con- dition ........................... 16 1.2 The 't Hooft{Polyakov Monopole . 18 1.2.1 The bosonic part of the Georgi{Glashow model . 18 1.2.2 Finite-energy solutions: the 't Hooft{Polyakov Ansatz . 20 1.2.3 The topological origin of the magnetic charge . 24 1.3 BPS-monopoles .......................... 26 1.3.1 Estimating the mass of a monopole: the Bogomol'nyi bound ........................... 27 1.3.2 Saturating the bound: the BPS-monopole . 28 1.4 Duality conjectures ........................ 30 1.4.1 The Montonen{Olive conjecture . 30 1.4.2 The Witten e®ect ..................... 31 1.4.3 SL(2; Z) duality ...................... 33 2 Supersymmetry 39 2.1 The super-Poincar¶ealgebra in four dimensions . 40 2.1.1 Some notational remarks about spinors . 40 2.1.2 The Coleman{Mandula and Haag{ÃLopusza¶nski{Sohnius theorems .......................... 42 2.2 Unitary representations of the supersymmetry algebra . 44 2.2.1 Wigner's method and the little group . 44 2.2.2 Massless representations . 45 2.2.3 Massive representations . 47 No central charges .................... 48 Adding central charges . 49 1 [email protected] draft version of 8/10/1998 2.3 N=2 Supersymmetric Yang-Mills .
    [Show full text]
  • The Enumerative Geometry of Rational and Elliptic Tropical Curves and a Riemann-Roch Theorem in Tropical Geometry
    The enumerative geometry of rational and elliptic tropical curves and a Riemann-Roch theorem in tropical geometry Michael Kerber Am Fachbereich Mathematik der Technischen Universit¨atKaiserslautern zur Verleihung des akademischen Grades Doktor der Naturwissenschaften (Doctor rerum naturalium, Dr. rer. nat.) vorgelegte Dissertation 1. Gutachter: Prof. Dr. Andreas Gathmann 2. Gutachter: Prof. Dr. Ilia Itenberg Abstract: The work is devoted to the study of tropical curves with emphasis on their enumerative geometry. Major results include a conceptual proof of the fact that the number of rational tropical plane curves interpolating an appropriate number of general points is independent of the choice of points, the computation of intersection products of Psi- classes on the moduli space of rational tropical curves, a computation of the number of tropical elliptic plane curves of given genus and fixed tropical j-invariant as well as a tropical analogue of the Riemann-Roch theorem for algebraic curves. Mathematics Subject Classification (MSC 2000): 14N35 Gromov-Witten invariants, quantum cohomology 51M20 Polyhedra and polytopes; regular figures, division of spaces 14N10 Enumerative problems (combinatorial problems) Keywords: Tropical geometry, tropical curves, enumerative geometry, metric graphs. dedicated to my parents — in love and gratitude Contents Preface iii Tropical geometry . iii Complex enumerative geometry and tropical curves . iv Results . v Chapter Synopsis . vi Publication of the results . vii Financial support . vii Acknowledgements . vii 1 Moduli spaces of rational tropical curves and maps 1 1.1 Tropical fans . 2 1.2 The space of rational curves . 9 1.3 Intersection products of tropical Psi-classes . 16 1.4 Moduli spaces of rational tropical maps .
    [Show full text]
  • Hilbert Geometry of the Siegel Disk: the Siegel-Klein Disk Model
    Hilbert geometry of the Siegel disk: The Siegel-Klein disk model Frank Nielsen Sony Computer Science Laboratories Inc, Tokyo, Japan Abstract We study the Hilbert geometry induced by the Siegel disk domain, an open bounded convex set of complex square matrices of operator norm strictly less than one. This Hilbert geometry yields a generalization of the Klein disk model of hyperbolic geometry, henceforth called the Siegel-Klein disk model to differentiate it with the classical Siegel upper plane and disk domains. In the Siegel-Klein disk, geodesics are by construction always unique and Euclidean straight, allowing one to design efficient geometric algorithms and data-structures from computational geometry. For example, we show how to approximate the smallest enclosing ball of a set of complex square matrices in the Siegel disk domains: We compare two generalizations of the iterative core-set algorithm of Badoiu and Clarkson (BC) in the Siegel-Poincar´edisk and in the Siegel-Klein disk: We demonstrate that geometric computing in the Siegel-Klein disk allows one (i) to bypass the time-costly recentering operations to the disk origin required at each iteration of the BC algorithm in the Siegel-Poincar´edisk model, and (ii) to approximate fast and numerically the Siegel-Klein distance with guaranteed lower and upper bounds derived from nested Hilbert geometries. Keywords: Hyperbolic geometry; symmetric positive-definite matrix manifold; symplectic group; Siegel upper space domain; Siegel disk domain; Hilbert geometry; Bruhat-Tits space; smallest enclosing ball. 1 Introduction German mathematician Carl Ludwig Siegel [106] (1896-1981) and Chinese mathematician Loo-Keng Hua [52] (1910-1985) have introduced independently the symplectic geometry in the 1940's (with a preliminary work of Siegel [105] released in German in 1939).
    [Show full text]
  • Lattice Basics II Lattice Duality. Suppose First That
    Math 272y: Rational Lattices and their Theta Functions 11 September 2019: Lattice basics II Lattice duality. Suppose first that V is a finite-dimensional real vector space without any further structure, and let V ∗ be its dual vector space, V ∗ = Hom(V; R). We may still define a lattice L ⊂ V as a discrete co-compact subgroup, or concretely (but not canonically) as the Z-span of an R-basis e1; : : : ; en. The dual lattice is then L∗ := fx∗ 2 V ∗ : 8y 2 L; x∗(y) 2 Zg: 1 This is indeed a lattice: we readily see that if e1; : : : ; en is a Z-basis for L then the dual basis ∗ ∗ ∗ ∗ e1; : : : ; en is a Z-basis for L . It soon follows that L = Hom(L; Z) (that is, every homomorphism L ! Z is realized by a unique x∗ 2 L∗), and — as suggested by the “dual” terminology — the ∗ ∗ ∗ ∗ canonical identification of the double dual (V ) with V takes the dual basis of e1; : : : ; en back to ∗ e1; : : : ; en, and thus takes the dual of L back to L. Once we have chosen some basis for V, and thus an identification V =∼ Rn, we can write any basis as the columns of some invertible matrix M, and then that basis generates the lattice MZn; the dual basis then consists of the row vectors of −1 n −1 ∗ ∗ M , so the dual lattice is Z M (in coordinates that make e1; : : : ; en unit vectors). We shall soon use Fourier analysis on V and on its quotient torus V=L. In this context, V ∗ is the Pontrjagin dual of V : any x∗ 2 V ∗ gives a continuous homomorphism y 7! exp(2πi x∗(y)) from V to the unit circle.
    [Show full text]
  • MODULAR GROUP IMAGES ARISING from DRINFELD DOUBLES of DIHEDRAL GROUPS Deepak Naidu 1. Introduction the Modular Group SL(2, Z) Is
    International Electronic Journal of Algebra Volume 28 (2020) 156-174 DOI: 10.24330/ieja.768210 MODULAR GROUP IMAGES ARISING FROM DRINFELD DOUBLES OF DIHEDRAL GROUPS Deepak Naidu Received: 28 October 2019; Revised: 30 May 2020; Accepted: 31 May 2020 Communicated by A. C¸i˘gdem Ozcan¨ Abstract. We show that the image of the representation of the modular group SL(2; Z) arising from the representation category Rep(D(G)) of the Drinfeld double D(G) is isomorphic to the group PSL(2; Z=nZ) × S3, when G is either the dihedral group of order 2n or the dihedral group of order 4n for some odd integer n ≥ 3. Mathematics Subject Classification (2020): 18M20 Keywords: Drinfeld double, modular tensor category, modular group, con- gruence subgroup 1. Introduction The modular group SL(2; Z) is the group of all 2 × 2 matrices of determinant 1 whose entries belong to the ring Z of integers. The modular group is known to play a significant role in conformal field theory [3]. Every two-dimensional rational con- formal field theory gives rise to a finite-dimensional representation of the modular group, and the kernel of this representation has been of much interest. In particu- lar, the question whether the kernel is a congruence subgroup of SL(2; Z) has been investigated by several authors. For example, A. Coste and T. Gannon in their paper [4] showed that under certain assumptions the kernel is indeed a congruence subgroup. In the present paper, we consider the kernel of the representation of the modular group arising from Drinfeld doubles of dihedral groups.
    [Show full text]
  • The Modular Group Action on Real SL(2)–Characters of a One-Holed Torus
    ISSN 1364-0380 (on line) 1465-3060 (printed) 443 Geometry & Topology G T T G G T T Volume 7 (2003) 443–486 G T G T T G T Published: 18 July 2003 G T G T G Republished with corrections: 21 August 2003 T G T G G T G G G T T The modular group action on real SL(2)–characters of a one-holed torus William M Goldman Mathematics Department, University of Maryland College Park, MD 20742 USA Email: [email protected] Abstract The group Γ of automorphisms of the polynomial κ(x,y,z)= x2 + y2 + z2 − xyz − 2 is isomorphic to PGL(2, Z) ⋉ (Z/2 ⊕ Z/2). For t ∈ R, the Γ-action on κ−1(t) ∩ R3 displays rich and varied dynamics. The action of Γ preserves a Poisson structure defining a Γ–invariant area form on each κ−1(t) ∩ R3 . For t < 2, the action of Γ is properly discontinuous on the four con- tractible components of κ−1(t) ∩ R3 and ergodic on the compact component (which is empty if t < −2). The contractible components correspond to Teichm¨uller spaces of (possibly singular) hyperbolic structures on a torus M¯ . For t = 2, the level set κ−1(t) ∩ R3 consists of characters of reducible representations and comprises two er- godic components corresponding to actions of GL(2, Z) on (R/Z)2 and R2 respectively. For 2 <t ≤ 18, the action of Γ on κ−1(t) ∩ R3 is ergodic. Corresponding to the Fricke space of a three-holed sphere is a Γ–invariant open subset Ω ⊂ R3 whose components are permuted freely by a subgroup of index 6 in Γ.
    [Show full text]
  • Classification of Special Reductive Groups 11
    CLASSIFICATION OF SPECIAL REDUCTIVE GROUPS ALEXANDER MERKURJEV Abstract. We give a classification of special reductive groups over arbitrary fields that improves a theorem of M. Huruguen. 1. Introduction An algebraic group G over a field F is called special if for every field extension K=F all G-torsors over K are trivial. Examples of special linear groups include: 1. The general linear group GLn, and more generally the group GL1(A) of invertible elements in a central simple F -algebra A; 2. The special linear group SLn and the symplectic group Sp2n; 3. Quasi-trivial tori, and more generally invertible tori (direct factors of quasi-trivial tori). 4. If L=F is a finite separable field extension and G is a special group over L, then the Weil restriction RL=F (G) is a special group over F . A. Grothendieck proved in [3] that a reductive group G over an algebraically closed field is special if and only if the derived subgroup of G is isomorphic to the product of special linear groups and symplectic groups. In [4] M. Huruguen proved the following theorem. Theorem. Let G be a reductive group over a field F . Then G is special if and only if the following three condition hold: (1) The derived subgroup G0 of G is isomorphic to RL=F (SL1(A)) × RK=F (Sp(h)) where L and K are ´etale F -algebras, A an Azumaya algebra over L and h an alternating non-degenerate form over K. (2) The coradical G=G0 of G is an invertible torus.
    [Show full text]