ISSN 1364-0380 (on line) 1465-3060 (printed) 443 Geometry & Topology G T T G G T T Volume 7 (2003) 443–486 G T G T T G T Published: 18 July 2003 G T G T G Republished with corrections: 21 August 2003 T G T G G T G G G T T The modular group action on real SL(2)–characters of a one-holed torus William M Goldman Mathematics Department, University of Maryland College Park, MD 20742 USA Email:
[email protected] Abstract The group Γ of automorphisms of the polynomial κ(x,y,z)= x2 + y2 + z2 − xyz − 2 is isomorphic to PGL(2, Z) ⋉ (Z/2 ⊕ Z/2). For t ∈ R, the Γ-action on κ−1(t) ∩ R3 displays rich and varied dynamics. The action of Γ preserves a Poisson structure defining a Γ–invariant area form on each κ−1(t) ∩ R3 . For t < 2, the action of Γ is properly discontinuous on the four con- tractible components of κ−1(t) ∩ R3 and ergodic on the compact component (which is empty if t < −2). The contractible components correspond to Teichm¨uller spaces of (possibly singular) hyperbolic structures on a torus M¯ . For t = 2, the level set κ−1(t) ∩ R3 consists of characters of reducible representations and comprises two er- godic components corresponding to actions of GL(2, Z) on (R/Z)2 and R2 respectively. For 2 <t ≤ 18, the action of Γ on κ−1(t) ∩ R3 is ergodic. Corresponding to the Fricke space of a three-holed sphere is a Γ–invariant open subset Ω ⊂ R3 whose components are permuted freely by a subgroup of index 6 in Γ.