Lecture 4 Biodiversity of Animals on the Rocky Shore

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 4 Biodiversity of Animals on the Rocky Shore LECTURE 4 BIODIVERSITY OF ANIMALS ON THE ROCKY SHORE NB It is possible to preface this lecture with an introduction to zonation. Please select COMBINATION OPTION 2 (118 slides) NB If you wish to present a complete lecture on zonation, plants and animals please select COMBINATION OPTION 3 (197 slides) Slide no. 1 Title Slide. 2 Introductory. Illustrated: common periwinkle Littorina littorea ; shore crab Carcinus maenas ; beadlet anemone Actinia equina ; encrusting red algae such as Lithophyllum spp. all in a small rock pool near Plockton in NW Scotland. The colours are real! 3 Rocky shore study in progress. 4-5 An invitation to examine the undersides of stones etc. with the important message: PLEASE TURN THE BOULDERS BACK to preserve the organisms being being studied. 6 Animals of the upper shore. 7 Sea slater Ligia oceanica , a large woodlouse which can be found beneath stones during daylight, but scuttles about the surface in large numbers as it feeds at night. 8-15 Sand hoppers Orchestia gamarellus (NB often mis-spelled 'Orchestria') and Talitrus saltator . I think this is Orchestia although the tell-tale large 'claw' on the second leg (uropod) cannot be seen in any of the pictures. Yonge (1949) wrote: "These animals may fairly be grouped with the sea-slater and the rough periwinkle [slide 36 et seq. ] as creatures which have very nearly crossed the threshold of the shore on to dry land". He quotes from Paley's Natural Theology wherein is described a scene I doubt we might witness in these days of anthropogenic reduction in diversity and numbers of wildlife: "Walking by the sea- side, in a calm evening, upon a sandy shore, with an ebbing tide, I have frequently remarked the appearance of a dark cloud, or rather very thick mist, hanging over the edge of the water, to a height perhaps of half a yard, and a breadth of two or three yards, stretching along thew coast as far as the eye could reach, and always retiring with the water. When this cloud came to be examined, it proved to be nothing else than so much space filled with young Shrimps , [Yonge presumes sandhoppers] in the act of bounding into the air from the shallow margin of the water, or from the wet sand". 16 Animals of the middle shore. 17 A second invitation to examine the undersides of stones etc. with the message: PLEASE TURN THE BOULDER BACK to preserve the organisms being being studied. 18 The centipede Strigamia maritima is not well known, but in some areas is very common. It doesn't look much like garden centipedes, whereas the non- Ligia woodlice with which it frequently shares this habitat seem very familiar. 19-21 Where there is a modicum of sea water Gammarus spp. can be found. They lurk in huge numbers under suitable stones and can be found beneath seaweed and in rock pools: just about everywhere. Sorting them our to species is a job for the specialist or the meticulous enthusiast. 22-23 Acorn barnacles can inhabit rock surfaces in unbelievable numbers. There are only two main species to trouble us on the seashore, but others may be found below low water or in specialist situations, such as piggy-backing on periwinkles (Balanus hameri ?). Look closely and you will discover that such barnacles are different from the commmon species such as Semibalanus balanoides which also grows on molluscs, but those that don't move e.g. mussels. As adults, these are static crustaceans. The larva (cypris) attaches itself to rocks etc. by its head and develops a shell with an aperture through which it spreads its paddling legs when under water to collect suspended food material. Surprisingly, fertilisation does not occur at random in the sea, but the male finds females with its enormously long penis and fertilises them in situ . 24 Not far below high water on exposed shores there is a relatively narrow band of barnacles that, on very close inspection (a hand lens is essential, and prolonged stooping and painful, barnacle-pitted knees are inevitable), can be identified as Chthamalus montagui . (Careful of spelling and pronunciation; this is not 'Chthalamus'). It has a relatively well-constructed shell, not easily damaged with a finger nail, which is much more robust than that of the neighbouring barnacle species. 25 Two main features characterise C. montagui . The aperture is shaped like an old- fashioned kite (diamond-shaped, but longer below and shorter above the mid line) and the rostral plate underlaps those on either side (compare with description and illustration of S. balanoides , slide 27). 26 The most numerous barnacle on British shores is Semibalanus balanoides which forms a wide zone lower down the shore than C. montagui . It is absent from exposed shores and can be incredibly numerous on sheltered shores. It is poorly constructed, and breaks up fatally when picked at by a curious biologist. This fragility enables populations to compete for space, and vigorous individuals can exclude others, weaker than themselves, gaining more room in which to grow. Sometimes these barnacles do not evict one another, instead growing to great height (in barnacle terms) side-by-side. 27 Two main features characterise S. balanoides . The aperture is a regular, equilateral diamond shape and the rostral plate overlaps those on either side (compare with description and illustration of C. stellatus , slide 25). 28 The common limpet Patella vulgata is a gastropod with an uncoiled body, much like early molluscs, though this is very much a 21st century animal. It tends to inhabit a specific place on its rock, crawling away to graze when covered by the tide, but returning for the intertidal period of exposure. 29 Lower shore limpets tend to get covered in barnacles or seaweeds which may help disguise them from gulls which certainly feed on them. 30 For various reasons, perhaps poor camouflage, bad weather or the attentions of a large fish, some never make it back to base after a feeding trip. 31-32 The common, edible, mussel Mytilus edulis can be found in large colonies on solid rock and large boulders, particularly near fresh water or where organic pollution makes suspended food available to this filter feeder. It can also be found on particulate shores where it exists as lone individualsor small groups, often atttched by its byssus to stones, vacated shells or other sedentary molluscs such as cockles. The byssus is a feature shared by a number of other bivalves and is a tuft of exceptionally strong proteinaceous fibres which rapidly cement themselves to anything within reach. Small mussels of this and other species can be found densely packed along cracks in rock where few can attain maturity. 33 Periwinkles come in variety, tend to occupy overlappping, but definable zones and can be difficult to identify with certainty. However, if one eliminates all but the commonest four species, identification is possible and ecological data may be successfully gathered. 34-35 Common periwinkles Littorina littorea may be found from the middle of the shore downward. In counting them, care should be taken to look under stones and seaweed otherwise significantnumbers will be overlooked. (For identificationguide see slides 42-43). 36-37 Rough periwinkles L. saxatilis occupy the upper regions of the shore, being so tolerant of conditions above the tide that they are almost terrestrial animals (see notes to sldes 8-15). (For identification guide see slides 42-43). 38-41/44 Until relatively recently, flat periwinkles were considered to be a single species L. littoralis . However, these days there are two common species which, if you look closely, are not difficultto tell apart: L. obtusata and L. mariae . (For identification guide see slides 42-43). They can usually be found grazing on the fronds of the wrack seaweeds from mid-shore downwards where some colour morphs successfully mimic bladders, perhaps escaping the attention of fish that certainly feed on winkles. 42-43 Identifying four of the commonest periwinkles (hopefully, self explanatory). 45-56 Unlike the periwinkles that graze, dog whelks Nucella lapillus are predatory carnivores. They can be found wherever their favourite food, mussels and barnacles are and, if you lift them off their prey, you can often see what they have been up to, particularly on a live mussel (see slides 51-56). At first sight they may be mistaken for common periwinkles (slide 47), but the the shell is rougher and more 'spired', and the opening has a distinct channel where the occupant's respiration tube (siphon) emerges. Dog whelks have a radula for boring through the shells of prey and produce hydrochloric acid (dissolves the calcium carbonate of which shell is mostly constructed) to assist in this process. 57-59 The collembolan Anurida maritima (formerly known as Lipura maritima )isa minute primitive insect, fossilised ancestors of which have been discovered associtated with some of the first land plants in Devonian rocks (rhynie chert) which are some 450 millionyears old. Truly marine insects are very unusual and Anurida is no exception, for it never really comes into contact with sea water, being coated in wax and totally unsinkable. It never uses the sea as other real marine animals do for respiration, bodily mositure and reproductive processes, and might as well be considered a terrestrial insect did it not live exlusively on the sea shore. 60 Pomotoceros triquetur is just one of several sea shore worms that build a protective, calcareous tube to live in, but it is featured here because it is probably the commonest and most wide-spread. It is used in the laboratory to demonstrate animal fertilisation and embryology, for if evicted from their tubes and set aside, both male anf female worms release their gametes into the water, as they do from within in the wild.
Recommended publications
  • Star Asterias Rubens
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.04.425292; this version posted January 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. How to build a sea star V9 The development and neuronal complexity of bipinnaria larvae of the sea star Asterias rubens Hugh F. Carter*, †, Jeffrey R. Thompson*, ‡, Maurice R. Elphick§, Paola Oliveri*, ‡, 1 The first two authors contributed equally to this work *Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom †Department of Life Sciences, Natural History Museum, Cromwell Road, South Kensington, London SW7 5BD, United Kingdom ‡UCL Centre for Life’s Origins and Evolution (CLOE), University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom §School of Biological & Chemical Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom 1Corresponding Author: [email protected], Office: (+44) 020-767 93719, Fax: (+44) 020 7679 7193 Keywords: indirect development, neuropeptides, muscle, echinoderms, neurogenesis 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.04.425292; this version posted January 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. How to build a sea star V9 Abstract Free-swimming planktonic larvae are a key stage in the development of many marine phyla, and studies of these organisms have contributed to our understanding of major genetic and evolutionary processes.
    [Show full text]
  • BIOLOGY and METHODS of CONTROLLING the STARFISH, Asterias Forbesi {DESOR}
    BIOLOGY AND METHODS OF CONTROLLING THE STARFISH, Asterias forbesi {DESOR} By Victor L. Loosanoff Biological Laboratory Bureau of Commercial Fisheries U. S. Fish and Wildlife Service Milford, Connecticut CONTENTS Page Introduction. .. .. ... .. .. .. .. ... .. .. .. ... 1 Distribution and occurrence....................................................... 2 Food and feeding ...................................................................... 3 Methods of controL........................................ ........................... 5 Mechanical methods : Starfish mop...................................................... .................. 5 Oyster dredge... ........................ ............. ..... ... ...................... 5 Suction dredge..................................................................... 5 Underwater plow ..... ............................................................. 6 Chemical methods .................................................................. 6 Quicklime............................. ........................... ................... 7 Salt solution......... ........................................ ......... ............. 8 Organic chemicals....... ..... ... .... .................. ........ ............. ...... 9 Utilization of starfish................................................................ 11 References..... ............................................................... ........ 11 INTRODUCTION Even in the old days, when the purchas­ ing power of the dollar was much higher, The starfish has long
    [Show full text]
  • The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/328063815 The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS Article · January 2018 CITATIONS READS 0 6 5 authors, including: Ferdinard Olisa Megwalu World Fisheries University @Pukyong National University (wfu.pknu.ackr) 3 PUBLICATIONS 0 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Population Dynamics. View project All content following this page was uploaded by Ferdinard Olisa Megwalu on 04 October 2018. The user has requested enhancement of the downloaded file. Review Article Published: 17 Sep, 2018 SF Journal of Biotechnology and Biomedical Engineering The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization Rahman MA1*, Molla MHR1, Megwalu FO1, Asare OE1, Tchoundi A1, Shaikh MM1 and Jahan B2 1World Fisheries University Pilot Programme, Pukyong National University (PKNU), Nam-gu, Busan, Korea 2Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh Abstract The Sea stars (Asteroidea: Echinodermata) are comprising of a large and diverse groups of sessile marine invertebrates having seven extant orders such as Brisingida, Forcipulatida, Notomyotida, Paxillosida, Spinulosida, Valvatida and Velatida and two extinct one such as Calliasterellidae and Trichasteropsida. Around 1,500 living species of starfish occur on the seabed in all the world's oceans, from the tropics to subzero polar waters. They are found from the intertidal zone down to abyssal depths, 6,000m below the surface. Starfish typically have a central disc and five arms, though some species have a larger number of arms. The aboral or upper surface may be smooth, granular or spiny, and is covered with overlapping plates.
    [Show full text]
  • The Morphology and Evolution of Tooth Replacement in the Combtooth Blennies
    The morphology and evolution of tooth replacement in the combtooth blennies (Ovalentaria: Blenniidae) A THESIS SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF MINNESOTA BY Keiffer Logan Williams IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE Andrew M. Simons July 2020 ©Keiffer Logan Williams 2020 i ACKNOWLEDGEMENTS I thank my adviser, Andrew Simons, for mentoring me as a student in his lab. His mentorship, kindness, and thoughtful feedback/advice on my writing and research ideas have pushed me to become a more organized and disciplined thinker. I also like to thank my committee: Sharon Jansa, David Fox, and Kory Evans for feedback on my thesis and during committee meetings. An additional thank you to Kory, for taking me under his wing on the #backdattwrasseup project. Thanks to current and past members of the Simons lab/office space: Josh Egan, Sean Keogh, Tyler Imfeld, and Peter Hundt. I’ve enjoyed the thoughtful discussions, feedback on my writing, and happy hours over the past several years. Thanks also to the undergraduate workers in the Simons lab who assisted with various aspects of my work: Andrew Ching and Edward Hicks for helping with histology, and Alex Franzen and Claire Rude for making my terms as curatorial assistant all the easier. In addition, thank you to Kate Bemis and Karly Cohen for conducting a workshop on histology to collect data for this research, and for thoughtful conversations and ideas relating to this thesis. Thanks also to the University of Guam and Laurie Raymundo for hosting me as a student to conduct fieldwork for this research.
    [Show full text]
  • Atlantic Seabirds
    Atlantic Seabirds Vol. t. 110 . 2 ( / 999) Quarter ly journ al ofThe Seabird Group and the Dutch Seab ird Group Atlantic Seabirds Edited by Cl. Camphuysen & J.B. Reid ATLANTIC SEABIRDS is the quarterly journal of the SEABIRD GROUP and the DUTCH SEABIRD GROUP (Nederlandse Zeevogelgroep, NZG), and is the continuance of their respective journals, SEABIRD (following no. 20, 1998) and SULA (following vol. 12 no. 4, 1998). ATLANTIC SEABIRDS will publish papers and short communications on any aspect of seabird biology and these will be peer-reviewed. The geographical focus of the journal is the Atlantic Ocean and adjacent seas at all latitudes, but contributions are also welcome from other parts of the world provided they are of general interest. ATLANTIC SEABIRDS is indexed in the Aquatic Sciences and Fisheries abstracts, Ecology Abstracts and Animal Behaviour Abstracts of Cambridge Scientific databases and journals. The SEABIRD GROUP and the DUTCH SEABIRD GROUP retain copyright and written permission must be sought from the editors before any figure, table or plate, or extensive part of the text is reproduced. Such permission will not be denied unreasonably, but will be granted only after consultation with the relevant authons), Editors: c.r. Camphuysen (N~G), Ankerstraat 20, 1794 BJ Oosterend, Texel, The Netherlands, tel/fax + 31222318744, e-mail [email protected] Dr J.B. Reid (Seabird Group), clo Joint Nature Conservation Committee (JNCC), Dunnet House, 7 Thistle Place, Aberdeen AB10 1UZ, Scotland, Ll.K, e-mail [email protected]. Offers of papers should be addressed to either editor. Editorial board: Dr S.
    [Show full text]
  • Seashore Pocket Guide
    . y a B e e L d n a n i t r a M e b m o C , h t u o m n y L ) e v o b a ( . e m i t m e h t e v i g u o y f i e c i v e r c n e d d i h a m o r f t u o . a n i l l a r o c d n a e s l u d s a h c u s s d e e w a e s b a r C e l b i d E k u . v o g . k r a p l a n o i t a n - r o o m x e . w w w e r a t s a o c s ’ r o o m x E n o e f i l d l i w e r o h s a e s k c a b e v o m n e t f o l l i w s b a r c d n a h s i F . l l i t s y r e v g n i p e e k d e r r e v o c s i d n a c u o y s l o o p k c o r r o f k o o l o t s e c a l p e t i r u o v a f r u o f o e m o S , g n i h c t a w e m i t d n e p S .
    [Show full text]
  • Injury Affects Coelomic Fluid Proteome of the Common Starfish, Asterias Rubens Sergey V
    © 2019. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2019) 222, jeb198556. doi:10.1242/jeb.198556 RESEARCH ARTICLE Injury affects coelomic fluid proteome of the common starfish, Asterias rubens Sergey V. Shabelnikov1,*, Danila E. Bobkov2, Natalia S. Sharlaimova2 and Olga A. Petukhova2 ABSTRACT and exceeding 40% in sea urchins (Giese, 1966). Cellular elements 5– 6 −1 Echinoderms, possessing outstanding regenerative capabilities, found in CF at concentrations of 10 10 cells ml are collectively provide a unique model system for the study of response to injury. referred to as coelomocytes (Chia and Xing, 1996). Their However, little is known about the proteomic composition of coelomic morphology in starfish is well described (Kanungo, 1984; fluid, an important biofluid circulating throughout the animal’s body Sharlaimova et al., 2014). Coelomocytes are not only mediators of and reflecting the overall biological status of the organism. In this innate immune responses (Smith et al., 2010), but are also actively study, we used LC-MALDI tandem mass spectrometry to characterize involved in the early repair phase of starfish arm regeneration (Ben the proteome of the cell-free coelomic fluid of the starfish Asterias Khadra et al., 2017; Ferrario et al., 2018), providing wound closure ‘ ’ rubens and to follow the changes occurring in response to puncture and hemostatic activity. The number of circulating coelomocytes in wound and blood loss. In total, 91 proteins were identified, of which starfish rapidly increases in the first hours after arm tip amputation 61 were extracellular soluble and 16 were bound to the plasma (Pinsino et al., 2007) or an immune challenge (Coteur et al., 2002; membrane.
    [Show full text]
  • Study of Shanny (Lipophrys Pholis) Life Cycle Inferred from Microstructure and Microchemistry of Otoliths: Ontogeny, Coastal Recruitment and Connectivity
    D life ) pholis shanny of Lipophrys microchemistry of microchemistry otoliths: ontogeny, coastal recruitment and connectivity Carvalho Margarida Gama Ana à apresentada Doutoramento de Tese Porto do Universidade da Ciências de Faculdade Biologia 2017 Study Study ( inferred from cycle and microstructure Study of shanny (Lipophrys pholis) life cycle inferred 3.º from microestructure and microchemistry of otoliths: Ana Margarida Gama Carvalho 2017 FCUP PhD CICLO ontogeny, coastal recruitment and connectivity D Study of shanny (Lipophrys pholis ) life cycle inferred from microstructure and microchemistry of otoliths: ontogeny, coastal recruitment and connectivity Ana Margarida Gama Carvalho Doutoramento em Biologia Biologia 2017 Orientador Alberto Teodorico Correia, Prof Auxiliar da Universidade Fernando Pessoa/CIIMAR Coorientador Paulo Talhadas dos Santos, Prof Auxiliar da Faculdade de Ciências da Universidade do Porto/CIIMAR FCUP 1 Study of shanny (Lipophrys pholis) life cycle inferred from microstructure and microchemistry of otoliths: ontogeny, coastal recruitment and connectivity. Foreword According to the number 7 of Article 6 from the Regulation of the Doctoral Program in Biology, Faculdade de Ciências da Universidade do Porto (and in agreement with the Portuguese Law Decree nº 74/2006), this thesis integrates the articles and poster/oral comunications listed below, written in collaboration with co-authors. The candidate hereby declares that she contributed to conceiving the ideas, compiling and producing the data and analyzing the data, and also declares that she led the writing of all Chapters. Articles in indexed journals - Carvalho MG, Moreira C, Albuquerque R, Daros FA, Swearer SE, Queiroga H, Santos PT, Correia AT (In preparation) Use of otolith natal elemental signatures as natural tags to evaluate the larval dispersion, coastal recruitment, habitat connectivity and population structure of Lipophrys pholis - Carvalho MG, Moreira C, Cardoso JFMF, Brummer GVP, Veer HW, Queiroga H, Santos PT, Correia AT.
    [Show full text]
  • Asterias Rubens)
    View metadata,Downloaded citation and from similar orbit.dtu.dk papers on:at core.ac.uk Apr 01, 2019 brought to you by CORE provided by Online Research Database In Technology Annual variation in the composition of major nutrients of the common starfish (Asterias Rubens) van der Heide, Marleen Elise; Møller, Lene Friis; Petersen, Jens Kjerulf; Nørgaard, Jan Værum Published in: Animal Feed Science and Technology Link to article, DOI: 10.1016/j.anifeedsci.2018.02.007 Publication date: 2018 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): van der Heide, M. E., Møller, L. F., Petersen, J. K., & Nørgaard, J. V. (2018). Annual variation in the composition of major nutrients of the common starfish (Asterias Rubens). Animal Feed Science and Technology, 238, 91-97. DOI: 10.1016/j.anifeedsci.2018.02.007 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Ecological Enhancement Techniques to Improve Habitat Heterogeneity on Coastal Defence Structures
    Accepted Manuscript Ecological enhancement techniques to improve habitat heterogeneity on coastal defence structures AliceE. Hall, RogerJ.H. Herbert, J. Robert Britton, SusanL. Hull PII: S0272-7714(17)31132-0 DOI: 10.1016/j.ecss.2018.05.025 Reference: YECSS 5870 To appear in: Estuarine, Coastal and Shelf Science Received Date: 30 November 2017 Revised Date: 17 April 2018 Accepted Date: 29 May 2018 Please cite this article as: Hall, A., Herbert, R.H., Britton, J.R., Hull, S., Ecological enhancement techniques to improve habitat heterogeneity on coastal defence structures, Estuarine, Coastal and Shelf Science (2018), doi: 10.1016/j.ecss.2018.05.025. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http:// creativecommons.org/licenses/by-nc-nd/4.0/ ACCEPTED MANUSCRIPT 1 Ecological Enhancement Techniques to Improve Habitat 2 Heterogeneity on Coastal Defence Structures 3 a a a b 4 Alice. E. Hall , Roger. J.H. Herbert , J. Robert Britton , Susan. L. Hull 5 a Faculty of Science and Technology, Department of Life and Environmental Sciences, Bournemouth 6 University, Talbot Campus, Fern Barrow, Poole, BH12 5BB, UK 7 b University of Hull, Cottingham Road, Hull, HU6 7RX, UK 8 Corresponding author: E-mail address: [email protected] (A.E.
    [Show full text]
  • The Book of the Sea the Realms of the Baltic Sea
    The Book of the Sea The realms of the Baltic Sea BALTIC ENVIRONMENTAL FORUM 1 THE REALMS OF THE BALTIC SEA 4 THE BOOK OF THE SEA 5 THE REALMS OF THE BALTIC SEA The Book of the Sea. The realms of the Baltic Sea 2 THE BOOK OF THE SEA 3 THE REALMS OF THE BALTIC SEA The Book of the Sea The realms of the Baltic Sea Gulf of Bothnia Åland Islands Helsinki Oslo Gulf of Finland A compilation by Žymantas Morkvėnas and Darius Daunys Stockholm Tallinn Hiiumaa Skagerrak Saaremaa Gulf of Riga Gotland Kattegat Öland Riga Copenhagen Baltic Sea Klaipėda Bornholm Bay of Gdańsk Rügen Baltic Environmental Forum 2015 2 THE BOOK OF THE SEA 3 THE REALMS OF THE BALTIC SEA Table of Contents Published in the framework of the Project partners: Authors of compilation Žymantas Morkvėnas and Darius Daunys 7 Preface 54 Brown shrimp project „Inventory of marine species Marine Science and Technology 54 Relict amphipod Texts provided by Darius Daunys, Žymantas Morkvėnas, Mindaugas Dagys, 9 Ecosystem of the Baltic Sea and habitats for development of Centre (MarsTec) at Klaipėda 55 Relict isopod crustacean Linas Ložys, Jūratė Lesutienė, Albertas Bitinas, Martynas Bučas, 11 Geological development Natura 2000 network in the offshore University, 57 Small sandeel Loreta Kelpšaitė-Rimkienė, Dalia Čebatariūnaitė, Nerijus Žitkevičius, of the Baltic Sea waters of Lithuania (DENOFLIT)“ Institute of Ecology of the Nature 58 Turbot Greta Gyraitė, Arūnas Grušas, Erlandas Paplauskis, Radvilė Jankevičienė, 14 The coasts of the Baltic Sea (LIFE09 NAT/LT/000234), Research Centre, 59 European flounder Rita Norvaišaitė 18 Water balance financed by the European Union The Fisheries Service under the 60 Velvet scoter 21 Salinity LIFE+ programme, the Republic Ministry of Agriculture of the Illustrations by Saulius Karalius 60 Common scoter 24 Food chain of Lithuania and project partners.
    [Show full text]
  • Community Structure and Habitat Preferences of Intertidal Fishes of the Eastern Canary Islands: Fuerteventura, Gran Canaria
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1996 Community Structure and Habitat Preferences of Intertidal Fishes of the Eastern Canary Islands: Fuerteventura, Gran Canaria, and Lanzarote, With a Behavioral Description of Mauligobius Maderensis (Osteichthyes: Gobiidae). Richard Patrick Cody Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Cody, Richard Patrick, "Community Structure and Habitat Preferences of Intertidal Fishes of the Eastern Canary Islands: Fuerteventura, Gran Canaria, and Lanzarote, With a Behavioral Description of Mauligobius Maderensis (Osteichthyes: Gobiidae)." (1996). LSU Historical Dissertations and Theses. 6180. https://digitalcommons.lsu.edu/gradschool_disstheses/6180 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type o f computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]