The Functional Organization of Perception and Movement

Total Page:16

File Type:pdf, Size:1020Kb

The Functional Organization of Perception and Movement 16 The Functional Organization of Perception and Movement Sensory Information Processing Is Illustrated in the In this chapter we outline the neuroanatomi- Somatosensory System cal organization of perception and action. We focus Somatosensory Information from the Trunk and Limbs Is on touch because the somatosensory system is par- Conveyed to the Spinal Cord ticularly well understood and because touch clearly The Primary Sensory Neurons of the Trunk and Limbs illustrates the interaction of sensory and motor Are Clustered in the Dorsal Root Ganglia systems—how information from the body surface The Central Axons of Dorsal Root Ganglion Neurons Are ascends through the sensory relays of the nervous Arranged to Produce a Map of the Body Surface system to the cerebral cortex and is transformed into Each Somatic Submodality Is Processed in a Distinct motor commands that descend to the spinal cord to Subsystem from the Periphery to the Brain produce movements. The Thalamus Is an Essential Link Between Sensory We now have a fairly complete understanding Receptors and the Cerebral Cortex for All Modalities of how the physical energy of a tactile stimulus is Except Olfaction transduced by mechanoreceptors in the skin into Sensory Information Processing Culminates in the electrical activity, and how this activity at different Cerebral Cortex relays in the brain correlates with specifc aspects Voluntary Movement Is Mediated by Direct Connections of the experience of touch. Moreover, because the Between the Cortex and Spinal Cord pathways from one relay to the next are well deline- ated, we can see how sensory information is coded An Overall View at each relay. Trying to comprehend the functional organization of the brain might at frst seem daunting. But as we he human brain identifies objects and car- saw in the last chapter, the organization of the brain ries out actions in ways no current computer is simplifed by three anatomical considerations. First, Tcan even begin to approach. Merely to see—to there are relatively few types of neurons. Each of the look onto the world and recognize a face or facial many thousands of spinal motor neurons or millions expression—entails amazing computational achieve- of neocortical pyramidal cells has a similar structure ments. Indeed, all our perceptual abilities—seeing, and serves a similar function. Second, neurons in the hearing, smelling, tasting, and touching—are analyti- brain and spinal cord are clustered in discrete func- cal triumphs. Similarly, all of our voluntary actions are tional groups called nuclei, which are connected to triumphs of engineering. The brain accomplishes these form functional systems. Third, specifc regions of the computational feats because its information process- cerebral cortex are specialized for sensory, motor, or, as ing units—its nerve cells—are wired together in very we shall learn in detail in Chapters 17 and 18, associa- precise ways. tional functions. Chapter 16 / The Functional Organization of Perception and Movement 357 Sensory Information Processing Is Illustrated In the somatosensory system a light touch and a pain- in the Somatosensory System ful pin prick to the same area of skin are mediated by different pathways in the brain. Complex behaviors, such as using touch alone to differ- entiate a ball from a book, require the integrated action Somatosensory Information from the Trunk and of several nuclei and cortical regions. Information is Limbs Is Conveyed to the Spinal Cord processed in the brain in a hierarchical fashion. Thus information about a stimulus is conveyed through a Sensory information from the trunk and limbs enters succession of subcortical and then cortical regions and the spinal cord, which has a core H-shape region of at each level of processing the information becomes gray matter surrounded by white matter. The gray mat- increasingly complex. In addition, different types of ter on each side of the cord is divided into dorsal (or information, even within a single sensory modality, are posterior) and ventral (or anterior) horns (Figure 16–1). processed in several anatomically discrete pathways. The dorsal horn contains groups of sensory neurons Cell Stain Fiber Stain Dorsal roots Dorsal horn White matter Gray matter Figure 16–1 The major anatomical features of the spinal cord. Top: The left side depicts Ventral a cell stain of the gray matter and the right side horn Ventral roots a fber-stained section. Bottom: The ventral Ventral sulcus horn (green) contains large motor neurons, whereas the dorsal horn (orange) contains To brain smaller neurons. Fibers of the gracile fascicle Gracile fascicle Information stem Ascending axons carry somatosensory information from the lower from body's Cuneate fascicle limbs, whereas fbers of the cuneate fascicle surface carry somatosensory information from the upper body. Fiber bundles of the lateral and ventral columns include both ascending and descending fber bundles. Sensory neurons Motor neurons Innervation of skeletal muscle Lateral columns Ascending and descending axons Ventral columns 358 Part IV / The Neural Basis of Cognition (sensory nuclei) whose axons receive stimulus informa- First, relatively few sensory axons enter the cord at tion from the body’s surface. The ventral horn contains the sacral level. At higher levels (lumbar, thoracic, and groups of motor neurons (motor nuclei) whose axons cervical) the number of sensory axons entering the cord exit the spinal cord and innervate skeletal muscles. increases progressively. Conversely, most descending Unlike the sensory nuclei, the motor nuclei axons from the brain terminate at cervical levels, with form columns that run the length of the spinal cord. progressively fewer descending to lower levels of the Interneurons of various types in the gray matter inhibit spinal cord. Thus the number of fbers in the white the output of the spinal cord neurons. These inhibitory matter is highest at cervical levels (where there are the interneurons thus modulate both sensory informa- highest numbers of both ascending and descending tion fowing toward the brain and motor commands fbers) and lowest at sacral levels. As a result, sacral descending from the brain to the spinal motor neurons. levels of the spinal cord have much less white matter Motor neurons can also adjust the output of other than gray matter, whereas the cervical cord has more motor neurons via the interneurons. white matter than gray matter (Figure 16–2). The white matter surrounding the gray matter con- The second organizational feature is variation in tains bundles of ascending and descending axons that the size of the ventral and dorsal horns. The ventral are divided into dorsal, lateral, and ventral columns. horn is larger at the levels where the motor nerves that The dorsal columns, which lie between the two dorsal innervate the arms and legs exit the spinal cord. The horns of the gray matter, contain only ascending axons number of ventral motor neurons dedicated to a body that carry somatic sensory information to the brain region roughly parallels the dexterity of movements stem (Figure 16–1). The lateral columns include both of that region. Thus a larger number of motor neurons ascending axons and axons descending from the brain is needed to innervate the greater number of muscles stem and neocortex that innervate spinal interneurons and to regulate the greater complexity of movement and motor neurons. The ventral columns also include in the limbs as compared with the trunk. Likewise, ascending and descending axons. The ascending the dorsal horn is larger where sensory nerves from somatic sensory axons in the lateral and ventral col- the limbs enter the cord. Limbs have a greater density umns constitute parallel pathways that convey infor- of sensory receptors to mediate fner tactile discrimi- mation about pain and thermal sensation to higher nation and thus send more fbers to the cord. These levels of the central nervous system. The descending regions of the cord are known as the lumbosacral and axons control axial muscles and posture. cervical enlargements. The spinal cord is divided into four major regions: cervical, thoracic, lumbar, and sacral (Figure 16–2). The Primary Sensory Neurons of the Trunk and These regions are related to the embryological somites Limbs Are Clustered in the Dorsal Root Ganglia from which muscles, bones, and other components of the body develop (see Chapters 52 and 53). Axons The sensory neurons that convey information from the projecting from the spinal cord to body structures that skin, muscles, and joints of the limbs and trunk to the develop at the same segmental level join together in spinal cord are clustered together in dorsal root ganglia the intervertebral foramen with axons entering the spi- within the vertebral column immediately adjacent to nal cord to form spinal nerves. Spinal nerves at the cer- the spinal cord (Figure 16–3). These neurons are pseudo- vical level are involved with sensory perception and unipolar in shape; they have a bifurcated axon with motor function of the back of the head, neck, and arms; central and peripheral branches. The peripheral branch nerves at the thoracic level innervate the upper trunk; terminates in skin, muscle, or other tissue as a free nerve whereas lumbar and sacral spinal nerves innervate the ending or in association with specialized receptors. lower trunk, back, and legs. The central process enters the spinal cord. On entry Each of the four regions of the spinal cord con- the axon forms branches that either terminate within tains several segments; there are 8 cervical segments, the spinal gray matter or ascend to nuclei located near 12 thoracic segments, 5 lumbar segments, and 5 sacral the junction of the spinal cord with the medulla (Figure segments. Although the actual substance of the mature 16–3). These local and ascending branches provide two spinal cord does not look segmented, the segments of functional pathways for somatosensory information the four spinal regions are nonetheless defned by the entering the spinal cord from dorsal root ganglion cells.
Recommended publications
  • Five Topographically Organized Fields in the Somatosensory Cortex of the Flying Fox: Microelectrode Maps, Myeloarchitecture, and Cortical Modules
    THE JOURNAL OF COMPARATIVE NEUROLOGY 317:1-30 (1992) Five Topographically Organized Fields in the Somatosensory Cortex of the Flying Fox: Microelectrode Maps, Myeloarchitecture, and Cortical Modules LEAH A. KRUBITZER AND MIKE B. CALFORD Vision, Touch and Hearing Research Centre, Department of Physiology and Pharmacology, The University of Queensland, Queensland, Australia 4072 ABSTRACT Five somatosensory fields were defined in the grey-headed flying fox by using microelec- trode mapping procedures. These fields are: the primary somatosensory area, SI or area 3b; a field caudal to area 3b, area 1/2; the second somatosensory area, SII; the parietal ventral area, PV; and the ventral somatosensory area, VS. A large number of closely spaced electrode penetrations recording multiunit activity revealed that each of these fields had a complete somatotopic representation. Microelectrode maps of somatosensory fields were related to architecture in cortex that had been flattened, cut parallel to the cortical surface, and stained for myelin. Receptive field size and some neural properties of individual fields were directly compared. Area 3b was the largest field identified and its topography was similar to that described in many other mammals. Neurons in 3b were highly responsive to cutaneous stimulation of peripheral body parts and had relatively small receptive fields. The myeloarchi- tecture revealed patches of dense myelination surrounded by thin zones of lightly myelinated cortex. Microelectrode recordings showed that myelin-dense and sparse zones in 3b were related to neurons that responded consistently or habituated to repetitive stimulation respectively. In cortex caudal to 3b, and protruding into 3b, a complete representation of the body surface adjacent to much of the caudal boundary of 3b was defined.
    [Show full text]
  • Section of Neurosurgery, Department of Surgery, University of Michigan Hospital, Ann Arbor, Michigan
    ANATOMIC PATHWAYS RELATED TO PAIN IN FACE AND NECK* JAMES A. TAREN, M.D., AND EDGAR A. KAHN, M.D. Section of Neurosurgery, Department of Surgery, University of Michigan Hospital, Ann Arbor, Michigan (Received for publication May 19, 1961) HE remarkable ability of the higher V is most dorsal in the tract. Fig. 4 is a dia- portions of the central nervous system gram of the medulla 6 mm. below the obex T to readjust to surgical lesions presup- which we believe to be the optimal level for poses the existence of alternate pathways. tractotomy. The operation is done with the This hypothesis has been tested with regard patient in the sitting position to facilitate to a specific localized sensory input, pain exposure. The medullary incision, 4-5 mm. from the face. in depth, extends from the bulbar accessory Our method has been to study the degen- rootlet to a line extrapolated from the pos- eration of nerve fibers by Weil and Marchi terior rootlets of the ~ud cervical nerve root. techniques following various surgical lesions An adequate incision results in complete in man and monkey. The lesions have con- analgesia of all 8 divisions as well as analgesia sisted of total and selective retrogasserian in the distribution of VII, IX, and X except rhizotomy in 3 humans and 3 monkeys, for sparing of the vermilion border of the lips medullary tractotomy in ~ humans and (Fig. 5). A degree of ataxia of the ipsilateral monkeys, and extirpation of the cervical upper extremity usually accompanies effec- portion of the nucleus of the descending tract tive tractotomy and is caused by compromise of V in ~ monkeys.
    [Show full text]
  • 3D Histological Reconstruction of Fiber Tracts and Direct Comparison with Diffusion Tensor MRI Tractography
    3D Histological Reconstruction of Fiber Tracts and Direct Comparison with Diffusion Tensor MRI Tractography Julien Dauguet1, Sharon Peled2, Vladimir Berezovskii3, Thierry Delzescaux4, Simon K. Warfield1, Richard Born3, and Carl-Fredrik Westin5 1 Computational Radiology Laboratory, Children’s Hospital, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA 2 Harvard Center for Neurodegeneration and Repair, Boston, USA 3 Department of Neurobiology, Harvard Medical School, Boston, USA 4 Service Hospitalier Fr´ed´eric Joliot, CEA, Orsay, France 5 Laboratory of Mathematics in Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA Abstract. A classical neural tract tracer, WGA-HRP, was injected at multiple sites within the brain of a macaque monkey. Histological sections of the labeled fiber tracts were reconstructed in 3D, and the fibers were segmented and registered with the anatomical post-mortem MRI from the same animal. Fiber tracing along the same pathways was performed on the DTI data using a classical diffusion tracing technique. The fibers derived from the DTI were compared with those segmented from the histology in order to evaluate the performance of DTI fiber tracing. While there was generally good agreement between the two methods, our results reveal certain limitations of DTI tractography, particularly at regions of fiber tract crossing or bifurcation. 1 Introduction Tracing neural connections lies at the heart of neuroanatomy, and has profound implications for the study of neural function and for the study of developmental and adult plasticity of the nervous system. It is also important for the study of neurodegenerative diseases, and for the planning of neurosurgical procedures, such as tumor ablation.
    [Show full text]
  • Interoception: the Sense of the Physiological Condition of the Body AD (Bud) Craig
    500 Interoception: the sense of the physiological condition of the body AD (Bud) Craig Converging evidence indicates that primates have a distinct the body share. Recent findings that compel a conceptual cortical image of homeostatic afferent activity that reflects all shift resolve these issues by showing that all feelings from aspects of the physiological condition of all tissues of the body. the body are represented in a phylogenetically new system This interoceptive system, associated with autonomic motor in primates. This system has evolved from the afferent control, is distinct from the exteroceptive system (cutaneous limb of the evolutionarily ancient, hierarchical homeostatic mechanoreception and proprioception) that guides somatic system that maintains the integrity of the body. These motor activity. The primary interoceptive representation in the feelings represent a sense of the physiological condition of dorsal posterior insula engenders distinct highly resolved the entire body, redefining the category ‘interoception’. feelings from the body that include pain, temperature, itch, The present article summarizes this new view; more sensual touch, muscular and visceral sensations, vasomotor detailed reviews are available elsewhere [1,2]. activity, hunger, thirst, and ‘air hunger’. In humans, a meta- representation of the primary interoceptive activity is A homeostatic afferent pathway engendered in the right anterior insula, which seems to provide Anatomical characteristics the basis for the subjective image of the material self as a feeling Cannon [3] recognized that the neural processes (auto- (sentient) entity, that is, emotional awareness. nomic, neuroendocrine and behavioral) that maintain opti- mal physiological balance in the body, or homeostasis, must Addresses receive afferent inputs that report the condition of the Atkinson Pain Research Laboratory, Division of Neurosurgery, tissues of the body.
    [Show full text]
  • Chapter 8 Nervous System
    Chapter 8 Nervous System I. Functions A. Sensory Input – stimuli interpreted as touch, taste, temperature, smell, sound, blood pressure, and body position. B. Integration – CNS processes sensory input and initiates responses categorizing into immediate response, memory, or ignore C. Homeostasis – maintains through sensory input and integration by stimulating or inhibiting other systems D. Mental Activity – consciousness, memory, thinking E. Control of Muscles & Glands – controls skeletal muscle and helps control/regulate smooth muscle, cardiac muscle, and glands II. Divisions of the Nervous system – 2 anatomical/main divisions A. CNS (Central Nervous System) – consists of the brain and spinal cord B. PNS (Peripheral Nervous System) – consists of ganglia and nerves outside the brain and spinal cord – has 2 subdivisions 1. Sensory Division (Afferent) – conducts action potentials from PNS toward the CNS (by way of the sensory neurons) for evaluation 2. Motor Division (Efferent) – conducts action potentials from CNS toward the PNS (by way of the motor neurons) creating a response from an effector organ – has 2 subdivisions a. Somatic Motor System – controls skeletal muscle only b. Autonomic System – controls/effects smooth muscle, cardiac muscle, and glands – 2 branches • Sympathetic – accelerator “fight or flight” • Parasympathetic – brake “resting and digesting” * 4 Types of Effector Organs: skeletal muscle, smooth muscle, cardiac muscle, and glands. III. Cells of the Nervous System A. Neurons – receive stimuli and transmit action potentials
    [Show full text]
  • The Contribution of Sensory System Functional Connectivity Reduction to Clinical Pain in Fibromyalgia
    1 The contribution of sensory system functional connectivity reduction to clinical pain in fibromyalgia Jesus Pujol1,2, Dídac Macià1, Alba Garcia-Fontanals3, Laura Blanco-Hinojo1,4, Marina López-Solà1,5, Susana Garcia-Blanco6, Violant Poca-Dias6, Ben J Harrison7, Oren Contreras-Rodríguez1, Jordi Monfort8, Ferran Garcia-Fructuoso6, Joan Deus1,3 1MRI Research Unit, CRC Mar, Hospital del Mar, Barcelona, Spain. 2Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM G21, Barcelona, Spain. 3Department of Clinical and Health Psychology, Autonomous University of Barcelona, Spain. 4Human Pharmacology and Neurosciences, Institute of Neuropsychiatry and Addiction, Hospital del Mar Research Institute, Barcelona, Spain. 5Department of Psychology and Neuroscience. University of Colorado, Boulder, Colorado. 6Rheumatology Department, Hospital CIMA Sanitas, Barcelona, Spain. 7Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, Australia. 8Rheumatology Department, Hospital del Mar, Barcelona, Spain The submission contains: The main text file (double-spaced 39 pages) Six Figures One supplemental information file Corresponding author: Dr. Jesus Pujol Department of Magnetic Resonance, CRC-Mar, Hospital del Mar Passeig Marítim 25-29. 08003, Barcelona, Spain Email: [email protected] Telephone: + 34 93 221 21 80 Fax: + 34 93 221 21 81 Synopsis/ Summary Clinical pain in fibromyalgia is associated with functional changes at different brain levels in a pattern suggesting a general weakening of sensory integration. 2 Abstract Fibromyalgia typically presents with spontaneous body pain with no apparent cause and is considered pathophysiologically to be a functional disorder of somatosensory processing. We have investigated potential associations between the degree of self-reported clinical pain and resting-state brain functional connectivity at different levels of putative somatosensory integration.
    [Show full text]
  • Brain Maps – the Sensory Homunculus
    Brain Maps – The Sensory Homunculus Our brains are maps. This mapping results from the way connections in the brain are ordered and arranged. The ordering of neural pathways between different parts of the brain and those going to and from our muscles and sensory organs produces specific patterns on the brain surface. The patterns on the brain surface can be seen at various levels of organization. At the most general level, areas that control motor functions (muscle movement) map to the front-most areas of the cerebral cortex while areas that receive and process sensory information are more towards the back of the brain (Figure 1). Motor Areas Primary somatosensory area Primary visual area Sensory Areas Primary auditory area Figure 1. A diagram of the left side of the human cerebral cortex. The image on the left shows the major division between motor functions in the front part of the brain and sensory functions in the rear part of the brain. The image on the right further subdivides the sensory regions to show regions that receive input from somatosensory, auditory, and visual receptors. We then can divide these general maps of motor and sensory areas into regions with more specific functions. For example, the part of the cerebral cortex that receives visual input from the retina is in the very back of the brain (occipital lobe), auditory information from the ears comes to the side of the brain (temporal lobe), and sensory information from the skin is sent to the top of the brain (parietal lobe). But, we’re not done mapping the brain.
    [Show full text]
  • DR. Sanaa Alshaarawy
    By DR. Sanaa Alshaarawy 1 By the end of the lecture, students will be able to : Distinguish the internal structure of the components of the brain stem in different levels and the specific criteria of each level. 1. Medulla oblongata (closed, mid and open medulla) 2. Pons (caudal, mid “Trigeminal level” and rostral). 3. Mid brain ( superior and inferior colliculi). Describe the Reticular formation (structure, function and pathway) being an important content of the brain stem. 2 1. Traversed by the Central Canal. Motor Decussation*. Spinal Nucleus of Trigeminal (Trigeminal sensory nucleus)* : ➢ It is a larger sensory T.S of Caudal part of M.O. nucleus. ➢ It is the brain stem continuation of the Substantia Gelatinosa of spinal cord 3 The Nucleus Extends : Through the whole length of the brain stem and upper segments of spinal cord. It lies in all levels of M.O, medial to the spinal tract of the trigeminal. It receives pain and temperature from face, forehead. Its tract present in all levels of M.O. is formed of descending fibers that terminate in the trigeminal nucleus. 4 It is Motor Decussation. Formed by pyramidal fibers, (75-90%) cross to the opposite side They descend in the Decuss- = crossing lateral white column of the spinal cord as the lateral corticospinal tract. The uncrossed fibers form the ventral corticospinal tract. 5 Traversed by Central Canal. Larger size Gracile & Cuneate nuclei, concerned with proprioceptive deep sensations of the body. Axons of Gracile & Cuneate nuclei form the internal arcuate fibers; decussating forming Sensory Decussation. Pyramids are prominent ventrally. 6 Formed by the crossed internal arcuate fibers Medial Leminiscus: Composed of the ascending internal arcuate fibers after their crossing.
    [Show full text]
  • Function of Cerebral Cortex
    FUNCTION OF CEREBRAL CORTEX Course: Neuropsychology CC-6 (M.A PSYCHOLOGY SEM II); Unit I By Dr. Priyanka Kumari Assistant Professor Institute of Psychological Research and Service Patna University Contact No.7654991023; E-mail- [email protected] The cerebral cortex—the thin outer covering of the brain-is the part of the brain responsible for our ability to reason, plan, remember, and imagine. Cerebral Cortex accounts for our impressive capacity to process and transform information. The cerebral cortex is only about one-eighth of an inch thick, but it contains billions of neurons, each connected to thousands of others. The predominance of cell bodies gives the cortex a brownish gray colour. Because of its appearance, the cortex is often referred to as gray matter. Beneath the cortex are myelin-sheathed axons connecting the neurons of the cortex with those of other parts of the brain. The large concentrations of myelin make this tissue look whitish and opaque, and hence it is often referred to as white matter. The cortex is divided into two nearly symmetrical halves, the cerebral hemispheres . Thus, many of the structures of the cerebral cortex appear in both the left and right cerebral hemispheres. The two hemispheres appear to be somewhat specialized in the functions they perform. The cerebral hemispheres are folded into many ridges and grooves, which greatly increase their surface area. Each hemisphere is usually described, on the basis of the largest of these grooves or fissures, as being divided into four distinct regions or lobes. The four lobes are: • Frontal, • Parietal, • Occipital, and • Temporal.
    [Show full text]
  • A Core Speech Circuit Between Primary Motor, Somatosensory, and Auditory Cortex
    bioRxiv preprint doi: https://doi.org/10.1101/139550; this version posted May 19, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Speech core 1 A core speech circuit between primary motor, somatosensory, and auditory cortex: Evidence from connectivity and genetic descriptions * ^ Jeremy I Skipper ​ and Uri Hasson ​ ​ * Experimental​ Psychology, University College London, UK ^ Center​ for Mind/Brain Sciences (CIMeC), University of Trento, Italy, and Center for Practical Wisdom, Dept. of Psychology, The University of Chicago Running title: Speech core ​ Words count: 20,362 ​ Address correspondence to: Jeremy I Skipper University College London Experimental Psychology 26 Bedford Way London WC1H OAP United Kingdom E-mail: [email protected] ​ bioRxiv preprint doi: https://doi.org/10.1101/139550; this version posted May 19, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Speech core 2 Abstract What adaptations allow humans to produce and perceive speech so effortlessly? We show that speech is supported by a largely undocumented core of structural and functional connectivity between the central sulcus (CS or primary motor and somatosensory cortex) and the transverse temporal gyrus (TTG or primary auditory cortex). Anatomically, we show that CS and TTG cortical thickness covary across individuals and that they are connected by white matter tracts.
    [Show full text]
  • The Prefrontal Cortex
    Avens Publishing Group Inviting Innovations Open Access Review Article J Hum Anat Physiol July 2017 Volume:1, Issue:1 © All rights are reserved by Ogeturk. AvensJournal Publishing of Group Inviting Innovations Human Anatomy The Prefrontal Cortex: A Basic & Physiology Embryological, Histological, Anatomical, and Functional Ramazan Fazıl Akkoc and Murat Ogeturk* Department of Anatomy, Firat University, Turkey Guideline *Address for Correspondence Murat Ogeturk, Firat University, Faculty of Medicine, 23119 Elazig, Turkey, Tel: +90-424-2370000 (ext: 4654); Fax: +90-424-2379138; Keywords: Prefrontal cortex; Working memory; Frontal lobe E-Mail: [email protected] Abstract Submission: 24 May, 2017 Accepted: 11 July, 2017 The prefrontal cortex (PFC) unites, processes and controls the Published: 19 August, 2017 information coming from cortex and subcortical structures, and Copyright: © 2017 Akkoc RF. This is an open access article distributed decides and executes goal-oriented behavior. A major function of PFC under the Creative Commons Attribution License, which permits is to maintain the attention. Furthermore, it has many other functions unrestricted use, distribution, and reproduction in any medium, provided including working memory, problem solving, graciousness, memory, the original work is properly cited. and intellectuality. PFC is well developed in humans and localized to the anterior of the frontal lobe. This article presents a systematic review and detailed summary of embryology, histology, anatomy, functions and lesions of PFC. I. Lamina zonalis: Contains few Cajal horizontal cells. The axons of Martinotti cells located at deep layers, the last branches of the apical dendrites of pyramidal cells, and the last branches Introduction of the afferent nerve fibers extend to this lamina.
    [Show full text]
  • Cortex Brainstem Spinal Cord Thalamus Cerebellum Basal Ganglia
    Harvard-MIT Division of Health Sciences and Technology HST.131: Introduction to Neuroscience Course Director: Dr. David Corey Motor Systems I 1 Emad Eskandar, MD Motor Systems I - Muscles & Spinal Cord Introduction Normal motor function requires the coordination of multiple inter-elated areas of the CNS. Understanding the contributions of these areas to generating movements and the disturbances that arise from their pathology are important challenges for the clinician and the scientist. Despite the importance of diseases that cause disorders of movement, the precise function of many of these areas is not completely clear. The main constituents of the motor system are the cortex, basal ganglia, cerebellum, brainstem, and spinal cord. Cortex Basal Ganglia Cerebellum Thalamus Brainstem Spinal Cord In very broad terms, cortical motor areas initiate voluntary movements. The cortex projects to the spinal cord directly, through the corticospinal tract - also known as the pyramidal tract, or indirectly through relay areas in the brain stem. The cortical output is modified by two parallel but separate re­ entrant side loops. One loop involves the basal ganglia while the other loop involves the cerebellum. The final outputs for the entire system are the alpha motor neurons of the spinal cord, also called the Lower Motor Neurons. Cortex: Planning and initiation of voluntary movements and integration of inputs from other brain areas. Basal Ganglia: Enforcement of desired movements and suppression of undesired movements. Cerebellum: Timing and precision of fine movements, adjusting ongoing movements, motor learning of skilled tasks Brain Stem: Control of balance and posture, coordination of head, neck and eye movements, motor outflow of cranial nerves Spinal Cord: Spontaneous reflexes, rhythmic movements, motor outflow to body.
    [Show full text]