Effective Tool for Exploring Web: an Evaluation of Search Engines Sabha Ali [email protected]
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Metadata for Semantic and Social Applications
etadata is a key aspect of our evolving infrastructure for information management, social computing, and scientific collaboration. DC-2008M will focus on metadata challenges, solutions, and innovation in initiatives and activities underlying semantic and social applications. Metadata is part of the fabric of social computing, which includes the use of wikis, blogs, and tagging for collaboration and participation. Metadata also underlies the development of semantic applications, and the Semantic Web — the representation and integration of multimedia knowledge structures on the basis of semantic models. These two trends flow together in applications such as Wikipedia, where authors collectively create structured information that can be extracted and used to enhance access to and use of information sources. Recent discussion has focused on how existing bibliographic standards can be expressed as Semantic Metadata for Web vocabularies to facilitate the ingration of library and cultural heritage data with other types of data. Harnessing the efforts of content providers and end-users to link, tag, edit, and describe their Semantic and information in interoperable ways (”participatory metadata”) is a key step towards providing knowledge environments that are scalable, self-correcting, and evolvable. Social Applications DC-2008 will explore conceptual and practical issues in the development and deployment of semantic and social applications to meet the needs of specific communities of practice. Edited by Jane Greenberg and Wolfgang Klas DC-2008 -
Geohack - Boroo Gold Mine
GeoHack - Boroo Gold Mine DMS 48° 44′ 45″ N, 106° 10′ 10″ E Decim al 48.745833, 106.169444 Geo URI geo:48.745833,106.169444 UTM 48U 585970 5399862 More formats... Type landmark Region MN Article Boroo Gold Mine (edit | report inaccu racies) Contents: Global services · Local services · Photos · Wikipedia articles · Other Popular: Bing Maps Google Maps Google Earth OpenStreetMap Global/Trans-national services Wikimedia maps Service Map Satellite More JavaScript disabled or out of map range. ACME Mapper Map Satellite Topo, Terrain, Mapnik Apple Maps (Apple devices Map Satellite only) Bing Maps Map Aerial Bird's Eye Blue Marble Satellite Night Lights Navigator Copernix Map Satellite Fourmilab Satellite GeaBios Satellite GeoNames Satellite Text (XML) Google Earthnote Open w/ meta data Terrain, Street View, Earth Map Satellite Google Maps Timelapse GPS Visualizer Map Satellite Topo, Drawing Utility HERE Map Satellite Terrain MapQuest Map Satellite NASA World Open Wind more maps, Nominatim OpenStreetMap Map (reverse geocoding), OpenStreetBrowser Sentinel-2 Open maps.vlasenko.net Old Soviet Map Waze Map Editor, App: Open, Navigate Wikimapia Map Satellite + old places WikiMiniAtlas Map Yandex.Maps Map Satellite Zoom Earth Satellite Photos Service Aspect WikiMap (+Wikipedia), osm-gadget-leaflet Commons map (+Wikipedia) Flickr Map, Listing Loc.alize.us Map VirtualGlobetrotting Listing See all regions Wikipedia articles Aspect Link Prepared by Wikidata items — Article on specific latitude/longitude Latitude 48° N and Longitude 106° E — Articles on -
Rethinking the Recall Measure in Appraising Information Retrieval Systems and Providing a New Measure by Using Persian Search Engines
Archive of SID International Journal of Information Science and Management Vol. 17, No. 1, 2019, 1-16 Rethinking the Recall Measure in Appraising Information Retrieval Systems and Providing a New Measure by Using Persian Search Engines Mohsen Nowkarizi Mahdi Zeynali Tazehkandi Associate Prof. Department of Knowledge & M.A. Department of Knowledge & Information Information Sciences, Faculty of Education Sciences, Faculty of Education Sciences & Sciences & Psychology, Ferdowsi University Psychology, Ferdowsi University of Mashhad, of Mashhad, Mashhad, Iran Mashhad, Iran Corresponding Author: [email protected] Abstract The aim of the study was to improve Persian search engines’ retrieval performance by using the new measure. In this regard, consulting three experts from the Department of Knowledge and Information Science (KIS) at Ferdowsi University of Mashhad, 192 FUM students of different degrees from different fields of study, both male and female, were asked to conduct the search based on 32 simulated work tasks (SWT) on the selected search engines and report the results by citing the related URLs. The Findings indicated that to measure recall, one does not focus on how documents are selecting, but the retrieval of related documents that are indexed in the information retrieval system database is considered While to measure comprehensiveness, in addition to considering the related documents' retrieval in the system's database, the performance of the documents selecting on the web (performance of crawler) was also measured. At the practical level, there was no strong correlation between the two measures (recall and comprehensiveness) however, these two measure different features. Also, the test of repeated measures design showed that with the change of the measure from recall to comprehensiveness, the search engine’s performance score is varied. -
Paper Title (Use Style: Paper Title)
3th International Conference on Web Research Search Engine Pictures: Empirical Analysis of a Web Search Engine Query Log Farzaneh Shoeleh , Mohammad Sadegh Zahedi, Mojgan Farhoodi Iran Telecommunication Research Center, Tehran, Iran {f.shoeleh, s.zahedi, farhoodi}@itrc.ac.ir Abstract— Since the use of internet has incredibly increased, search engine log file which is quantitative. It should be noted it becomes an important source of knowledge about anything for that the human based measurement is more everyone. Therefore, the role of search engine as an effective accurate. However, the second category has become an approach to find information is critical for internet's users. The important role in search engine evaluation because of the study of search engine users' behavior has attracted considerable expensive and time-consuming of the first category. research attention. These studies are helpful in developing more effective search engine and are useful in three points of view: for In general, the goal of log analysis is to make sense out of users at the personal level, for search engine vendors at the the records of a software system. Indeed, search log analysis as business level, and for government and marketing at social a kind of Web analytics software parses the log file obtained society level. These kinds of studies can be done through from a search engine to drive information about when, how, analyzing the log file of search engine wherein the interactions and by whom a search engine is visited. between search engine and the users are captured. In this paper, we aim to present analyses on the query log of a well-known and The search logs capture a large and varied amount of most used Persian search engine. -
A Comparison of Information Seeking Using Search Engines and Social Networks
A Comparison of Information Seeking Using Search Engines and Social Networks Meredith Ringel Morris1, Jaime Teevan1, Katrina Panovich2 1Microsoft Research, Redmond, WA, USA, 2Massachusetts Institute of Technology, Cambridge, MA, USA {merrie, teevan}@microsoft.com, [email protected] Abstract et al. 2009 or Groupization by Morris et al. 2008). Social The Web has become an important information repository; search engines can also be devised using the output of so- often it is the first source a person turns to with an informa- cial tagging systems such as delicious (delicious.com). tion need. One common way to search the Web is with a Social search also encompasses active requests for help search engine. However, it is not always easy for people to from the searcher to other people. Evans and Chi (2008) find what they are looking for with keyword search, and at describe the stages of the search process when people tend times the desired information may not be readily available to interact with others. Morris et al. (2010) surveyed Face- online. An alternative, facilitated by the rise of social media, is to pose a question to one‟s online social network. In this book and Twitter users about situations in which they used paper, we explore the pros and cons of using a social net- a status message to ask questions of their social networks. working tool to fill an information need, as compared with a A well-studied type of social searching behavior is the search engine. We describe a study in which 12 participants posting of a question to a Q&A site (e.g., Harper et al. -
A Federated Search and Social Recommendation Widget
A Federated Search and Social Recommendation Widget Sten Govaerts1 Sandy El Helou2 Erik Duval3 Denis Gillet4 Dept. Computer Science1,3 REACT group2,4 Katholieke Universiteit Leuven Ecole Polytechnique Fed´ erale´ de Lausanne Celestijnenlaan 200A, Heverlee, Belgium 1015 Lausanne, Switzerland fsten.govaerts1, [email protected] fsandy.elhelou2, denis.gillet4g@epfl.ch ABSTRACT are very useful, but their generality can sometimes be an ob- This paper presents a federated search and social recommen- stacle and this can make it difficult to know where to search dation widget. It describes the widget’s interface and the un- for the needed information [2]. Federated searching over derlying social recommendation engine. A preliminary eval- collections of topic-specific repositories can assist with this uation of the widget’s usability and usefulness involving 15 and save time. When the user sends a search request, the subjects is also discussed. The evaluation helped identify us- federated search widget collects relevant resources from dif- ability problems that will be addressed prior to the widget’s ferent social media sites [3], repositories and search engines. usage in a real learning context. Before rendering aggregated results, the widget calls a per- sonalized social recommendation service deemed as crucial Author Keywords in helping users select relevant resources especially in our federated search, social recommendations, widget, Web, per- information overload age [4,5]. The recommendation ser- sonal learning environment (PLE), Pagerank, social media, vice ranks these resources according to their global popu- Web 2.0 larity and most importantly their popularity within the social network of the target user. Ranks are computed by exploiting attention metadata and social networks in the widget. -
Unicorn: a System for Searching the Social Graph
Unicorn: A System for Searching the Social Graph Michael Curtiss, Iain Becker, Tudor Bosman, Sergey Doroshenko, Lucian Grijincu, Tom Jackson, Sandhya Kunnatur, Soren Lassen, Philip Pronin, Sriram Sankar, Guanghao Shen, Gintaras Woss, Chao Yang, Ning Zhang Facebook, Inc. ABSTRACT rative of the evolution of Unicorn's architecture, as well as Unicorn is an online, in-memory social graph-aware index- documentation for the major features and components of ing system designed to search trillions of edges between tens the system. of billions of users and entities on thousands of commodity To the best of our knowledge, no other online graph re- servers. Unicorn is based on standard concepts in informa- trieval system has ever been built with the scale of Unicorn tion retrieval, but it includes features to promote results in terms of both data volume and query volume. The sys- with good social proximity. It also supports queries that re- tem serves tens of billions of nodes and trillions of edges quire multiple round-trips to leaves in order to retrieve ob- at scale while accounting for per-edge privacy, and it must jects that are more than one edge away from source nodes. also support realtime updates for all edges and nodes while Unicorn is designed to answer billions of queries per day at serving billions of daily queries at low latencies. latencies in the hundreds of milliseconds, and it serves as an This paper includes three main contributions: infrastructural building block for Facebook's Graph Search • We describe how we applied common information re- product. In this paper, we describe the data model and trieval architectural concepts to the domain of the so- query language supported by Unicorn. -
A Comparative Study of Search Engines Results Using Data Mining
International Journal of Statistics and Applied Mathematics 2020; 5(5): 30-33 ISSN: 2456-1452 Maths 2020; 5(5): 30-33 © 2020 Stats & Maths A comparative study of search engines results using www.mathsjournal.com Received: 16-07-2020 data mining and statistical analysis Accepted: 20-08-2020 Prabhu Pant Prabhu Pant, Pankaj Joshi and Sanjay Joshi Department of Information Technology, College of Technology, GBPUA&T, Abstract Pantnagar, Uttarakhand, India Web search engines are keys to the immense treasure of information. Dependency on the search engines is increasing drastically for both personal and professional use. It has become essential for the users to Pankaj Joshi understand the differences between the search engines in order to attain a higher satisfaction. There is a Department of Information great assortment of search engines which offer various options to the web user. Thus, it is significant to Technology, College of evaluate and compare search engines in the quest of a single search engine that would satisfy all the Technology, GBPUA&T, needs of the user. Pantnagar, Uttarakhand, India Keywords: Search engines, data analysis, URL Sanjay Joshi Department of Information Technology, College of Introduction Technology, GBPUA&T, Web search engines are among the most sought after tools over the internet. Millions of users Pantnagar, Uttarakhand, India access these search tools in quest of information from various spheres of life such as technology, tourism, travel, current affairs, literature, music, food, science and many more. Search engines have a huge database to which millions of pages are added everyday. Availability of pages searched by the search engines is dynamic, which means that the pages retrieved previously for a search query may not be available any longer as it might have been deleted by the author or turned obsolete. -
Annex I: List of Internet Robots, Crawlers, Spiders, Etc. This Is A
Annex I: List of internet robots, crawlers, spiders, etc. This is a revised list published on 15/04/2016. Please note it is rationalised, removing some previously redundant entries (e.g. the text ‘bot’ – msnbot, awbot, bbot, turnitinbot, etc. – which is now collapsed down to a single entry ‘bot’). COUNTER welcomes updates and suggestions for this list from our community of users. bot spider crawl ^.?$ [^a]fish ^IDA$ ^ruby$ ^voyager\/ ^@ozilla\/\d ^ÆÆ½âºóµÄ$ ^ÆÆ½âºóµÄ$ alexa Alexandria(\s|\+)prototype(\s|\+)project AllenTrack almaden appie Arachmo architext aria2\/\d arks ^Array$ asterias atomz BDFetch Betsie biadu biglotron BingPreview bjaaland Blackboard[\+\s]Safeassign blaiz\-bee bloglines blogpulse boitho\.com\-dc bookmark\-manager Brutus\/AET bwh3_user_agent CakePHP celestial cfnetwork checkprivacy China\sLocal\sBrowse\s2\.6 cloakDetect coccoc\/1\.0 Code\sSample\sWeb\sClient ColdFusion combine contentmatch ContentSmartz core CoverScout curl\/7 cursor custo DataCha0s\/2\.0 daumoa ^\%?default\%?$ Dispatch\/\d docomo Download\+Master DSurf easydl EBSCO\sEJS\sContent\sServer ELinks\/ EmailSiphon EmailWolf EndNote EThOS\+\(British\+Library\) facebookexternalhit\/ favorg FDM(\s|\+)\d feedburner FeedFetcher feedreader ferret Fetch(\s|\+)API(\s|\+)Request findlinks ^FileDown$ ^Filter$ ^firefox$ ^FOCA Fulltext Funnelback GetRight geturl GLMSLinkAnalysis Goldfire(\s|\+)Server google grub gulliver gvfs\/ harvest heritrix holmes htdig htmlparser HttpComponents\/1.1 HTTPFetcher http.?client httpget httrack ia_archiver ichiro iktomi ilse -
The Top 10 Alternative Search Engines (ASE) - Within Selected Categories Ranked by Webometric Indicators
The Top 10 Alternative search Engines (ASE) - within Selected Categories Ranked by Webometric Indicators Bernd Markscheff el Bastian Eine Within the scientifi c fi eld of webometrics many research objects had been analyzed and compared with the help of webometric indicators (e.g., the performance of a whole country, a research group or an indi- vidual). This paper presents a ranking of ASEs which is based on webo- metric indicators. As search engines have become an essential tool for searching for information on the web many alternative search services have specialized in fi nding topic- or format-specifi c search results. By creating a ranking of these ASEs within selected categories we present an overview of the ASEs which are currently available. Through webo- metric indicators the ASEs were compared and the most popular ASEs of the respective categories determined. Keywords: Search engines, Webometric indicators Bernd Markscheff el Chair of Information and 1. Introduction Knowledge Management Technische Universität While searching for information on the web, search en- Ilmenau gines can assist the user to fi nd satisfying results. Although, P.O. Box 100565 just a few dominate the search engine market a large num- 98684 Ilmenau ber of diff erent web search services and tools exist (Maaβ Germany et al., [1]). Beside the well known universal search engines bernd.markscheff el@ like Google, Yahoo and Bing several ASEs are specialized tuilmenau.de in providing options to search for special document types, specifi c topics or time-sensitive information (Gelernter [2]; Bastian Eine Consultant for Search Engine Originally presented at the 7th International Conference on Webometrics, Optimization and Online Informetrics and Scientometrics (WIS) and 12th COLLNET Meeting, Marketing September 20–23, 2011, Istanbul Bilgi University, Istanbul, Turkey. -
Searching the Enterprise
R Foundations and Trends• in Information Retrieval Vol. 11, No. 1 (2017) 1–142 c 2017 U. Kruschwitz and C. Hull • DOI: 10.1561/1500000053 Searching the Enterprise Udo Kruschwitz Charlie Hull University of Essex, UK Flax, UK [email protected] charlie@flax.co.uk Contents 1 Introduction 2 1.1 Overview........................... 3 1.2 Examples........................... 5 1.3 PerceptionandReality . 9 1.4 RecentDevelopments . 10 1.5 Outline............................ 11 2 Plotting the Landscape 13 2.1 The Changing Face of Search . 13 2.2 DefiningEnterpriseSearch . 14 2.3 Related Search Areas and Applications . 17 2.4 SearchTechniques. 34 2.5 Contextualisation ...................... 37 2.6 ConcludingRemarks. 49 3 Enterprise Search Basics 52 3.1 StructureofData ...................... 53 3.2 CollectionGathering. 59 3.3 SearchArchitectures. 63 3.4 Information Needs and Applications . 68 3.5 SearchContext ....................... 76 ii iii 3.6 UserModelling........................ 78 3.7 Tools, Frameworks and Resources . 81 4 Evaluation 82 4.1 RelevanceandMetrics. 83 4.2 Evaluation Paradigms and Campaigns . 85 4.3 TestCollections ....................... 89 4.4 LessonsLearned ....................... 94 5 Making Enterprise Search Work 95 5.1 PuttingtheUserinControl . 96 5.2 Relevance Tuning and Support . 103 6 The Future 110 6.1 GeneralTrends........................ 110 6.2 TechnicalDevelopments. 111 6.3 Moving towards Cooperative Search . 113 6.4 SomeResearchChallenges . 114 6.5 FinalWords ......................... 117 7 Conclusion 118 Acknowledgements 120 References 121 Abstract Search has become ubiquitous but that does not mean that search has been solved. Enterprise search, which is broadly speaking the use of information retrieval technology to find information within organisa- tions, is a good example to illustrate this. -
Effective Query Recommendation with Medoid-Based Clustering Using a Combination of Query, Click and Result Features
Effective Query Recommendation with Medoid-based Clustering using a Combination of Query, Click and Result Features Elham Esmaeeli-Gohari Faculty of Computer Engineering, Yazd University, Yazd, Iran [email protected] Sajjad Zarifzadeh* Faculty of Computer Engineering, Yazd University, Yazd, Iran [email protected] Received: 20/Nov/2019 Revised: 21/Dec/2019 Accepted: 29/Feb/2020 Abstract Query recommendation is now an inseparable part of web search engines. The goal of query recommendation is to help users find their intended information by suggesting similar queries that better reflect their information needs. The existing approaches often consider the similarity between queries from one aspect (e.g., similarity with respect to query text or search result) and do not take into account different lexical, syntactic and semantic templates exist in relevant queries. In this paper, we propose a novel query recommendation method that uses a comprehensive set of features to find similar queries. We combine query text and search result features with bipartite graph modeling of user clicks to measure the similarity between queries. Our method is composed of two separate offline (training) and online (test) phases. In the offline phase, it employs an efficient k-medoids algorithm to cluster queries with a tolerable processing and memory overhead. In the online phase, we devise a randomized nearest neighbor algorithm for identifying most similar queries with a low response-time. Our evaluation results on two separate datasets from AOL and Parsijoo search engines show the superiority of the proposed method in improving the precision of query recommendation, e.g., by more than 20% in terms of p@10, compared with some well-known algorithms.