International Gorilla Conservation Programme Greater Virunga Transboundary Collaboration
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Itombwe Massif, Democratic Republic of Congo: Biological Surveys and Conservation, with an Emphasis on Grauer's Gorilla and Birds Endemic to the Albertine Rift
Oryx Voi 33 No 4 October -.939 The Itombwe Massif, Democratic Republic of Congo: biological surveys and conservation, with an emphasis on Grauer's gorilla and birds endemic to the Albertine Rift llambu Omari, John A. Hart, Thomas M. Butynski, N. R. Birhashirwa, Agenonga Upoki, Yuma M'Keyo, Faustin Bengana, Mugunda Bashonga and Norbert Bagurubumwe Abstract In 1996, the first major biological surveys in species were recorded during the surveys, including the the Itombwe Massif in over 30 years revealed that sig- Congo bay owl Phodilus prigoginei, which was previously nificant areas of natural habitat and remnant faunal known from a single specimen collected in Itombwe populations remain, but that these are subject to ongo- nearly 50 years ago. No part of Itombwe is officially ing degradation and over-exploitation. At least 10 areas protected and conservation initiatives are needed ur- of gorilla Gorilla gorilla graueri occurrence, including gently. Given the remoteness and continuing political eight of 17 areas identified during the first survey of the instability of the region, conservation initiatives must species in the massif in 1959, were found. Seventy-nine collaborate with traditional authorities based in the gorilla nest sites were recorded and at least 860 gorillas massif, and should focus at the outset on protecting the were estimated to occupy the massif. Fifty-six species of gorillas and limiting further degradation of key areas. mammals were recorded. Itombwe supports the highest representation, of any area, of bird species endemic to Keywords Afromontane forests, Albertine Rift, Demo- the Albertine Rift highlands. Twenty-two of these cratic Republic of Congo, endemic avifauna, gorillas. -
Albertine Rift Nov04
africa & madagascar "meeting the challenge" Albertine Rift Montane Forests Ecoregion Programme 1. Background Duration: The Albertine Rift Montane Forests Ecoregion is an area of Current phase is 5 exceptional faunal and floral endemism. These afromontane years, from 2001 to forests also support many endangered species such as the 2005. Mountain and Eastern Lowland gorillas (Gorilla beringei beringei and G. b. graueri ), which are among the most charismatic Funding Status: flagship species in Africa, and an effective target for much of the Partly funded by WWF- current conservation investment in the area. DK and SE (25%); the remaining is yet to be The mountain chain comprising the Albertine Rift straddles the funded (currently borders of five different nations: Democratic Republic of Congo covered through Direct (over 70% of the Ecoregion), Uganda (20%), Rwanda (6%), Burundi Cost Recovery). (3%) and Tanzania (1%). Executing Agency: The Albertine Rift has been identified by all key international WWF Eastern Africa conservation NGOs as a top priority area for biodiversity Regional Programme conservation in Africa and the Ecoregion is a priority Ecoregion for Office (WWF EARPO). WWF-International. 2. Goal and Objectives The Goal of the Albertine Rift Ecoregion Programme is to ensure the long-term conservation of the Albertine Rift Montane Forests and other important interconnected ecosystems. The objectives are: ? To develop a strategic framework for conservation efforts in the ecoregion with a wide variety of stakeholders ? To implement and co-ordinate a set of comprehensive and inter-related field projects in the Albertine Rift ? To support national authorities in the planning and management of protected areas and buffer zones 3. -
Virunga Landscape
23. Virunga Landscape Th e Landscape in brief Coordinates: 1°1’29’’N – 1°44’21’’S – 28°56’11’’E – 30°5’2’’E. Area: 15,155 km2 Elevation: 680–5,119 m Terrestrial ecoregions: Ecoregion of the Afroalpine barrens of Ruwenzori-Virunga Ecoregion of the Afromontane forests of the Albertine Rift Ecoregion of the forest-savannah mosaic of Lake Victoria Aquatic ecoregions: Mountains of the Albertine Rift Lakes Kivu, Edward, George and Victoria Protected areas: Virunga National Park, DRC, 772,700 ha, 1925 Volcans National Park, Rwanda, 16,000 ha, 1925 Rutshuru Hunting Domain, 64,200 ha, 1946 added Bwindi-Impenetrable National Park situ- ated a short distance away from the volcanoes in southwest Uganda. Th is complex functions as a single ecosystem and many animals move across the borders, which permits restoration of the populations1. Physical environment Relief and altitude Th e Landscape is focused on the central trough of the Albertine Rift, occupied by Lake Figure 23.1. Map of Virunga Landscape (Sources: CARPE, Edward (916 m, 2,240 km²), and vast plains DFGFI, JRC, SRTM, WWF-EARPO). at an altitude of between 680 and 1,450 m. Its western edge stretches along the eastern bluff of Location and area the Mitumba Mountain Range forming the west- ern ridge of the rift. In the northeast, it includes he Virunga Landscape covers 15,155 km² the western bluff of the Ruwenzori horst (fault Tand includes two contiguous national parks, block) with its active glaciers, whose peak reaches Virunga National Park in DRC and Volcans a height of 5,119 m and whose very steep relief National Park in Rwanda, the Rutshuru Hunting comprises numerous old glacial valleys (Figure Zone and a 10 km-wide strip at the edge of the 23.2). -
Historical Background: Early Exploration in the East African Rift--The Gregory Rift Valley
Downloaded from http://sp.lyellcollection.org/ by guest on September 26, 2021 SIR PETER KENT Historical background: Early exploration in the East African Rift--The Gregory Rift Valley In relation to modern lines of communication it seems surprising that the Gregory Rift Valley was the last part of the system to become known. Much of the earlier exploration had however been centred on the problem of the sources of the Nile, and in consequence the Western or Albertine Rift was explored by Samuel Baker as early as 1862/63 (Baker 1866). Additionally there was a strong tendency to use the convenient base at Zanzibar Island for journeys inland by the Arab slave trading routes from Pangani and Bagamoyo; these led to the Tanganyika Rift and Nyasaland rather than to the area of modern Kenya. The first penetrations into the Gregory Rift area were in I883; Joseph Thomson made an extensive journey into Central Kenya which he described in his book of 1887, 'Through Masai Land' which had as a subtitle, 'a journey of exploration among the snowclad volcanic mountains and strange tribes of Eastern Equatorial Africa--being the narrative of the Royal Geographical Society's Expedition to Mount Kenya and Lake Victoria Nyanza i883-84'. In his classic journey Thomson practically encircled the lower slopes of Mount Kilimanjaro and reached the Gregory Rift wall near the Ngong Hills. He then went north to Lake Baringo and westwards to Lake Victoria, before returning to his starting point at Mombasa. His observations on the geology were of good standard for the time. -
Comparative Phylogeography of Three Endemic Rodents from the Albertine Rift, East Central Africa
Molecular Ecology (2007) 16, 663–674 doi: 10.1111/j.1365-294X.2007.03153.x ComparativeBlackwell Publishing Ltd phylogeography of three endemic rodents from the Albertine Rift, east central Africa MICHAEL H. HUHNDORF,*† JULIAN C. KERBIS PETERHANS†‡ and SABINE S. LOEW*† *Department of Biological Sciences, Behaviour, Ecology, Evolution and Systematics Section, Illinois State University, Normal, Illinois 61790-4120, USA, †Department of Zoology, The Field Museum, Chicago, Illinois, 60605-2496, USA, ‡University College, Roosevelt University, Chicago, Illinois, 60605, USA Abstract The major aim of this study was to compare the phylogeographic patterns of codistributed rodents from the fragmented montane rainforests of the Albertine Rift region of east central Africa. We sampled individuals of three endemic rodent species, Hylomyscus denniae, Hybomys lunaris and Lophuromys woosnami from four localities in the Albertine Rift. We analysed mitochondrial DNA sequence variation from fragments of the cytochrome b and con- trol region genes and found significant phylogeographic structuring for the three taxa examined. The recovered phylogenies suggest that climatic fluctuations and volcanic activity of the Virunga Volcanoes chain have caused the fragmentation of rainforest habitat during the past 2 million years. This fragmentation has played a major role in the diversification of the montane endemic rodents of the region. Estimation of the divergence times within each species suggests a separation of the major clades occurring during the mid to late Pleistocene. Keywords: Africa, Albertine Rift, control region, cytochrome b, phylogeography, rodent Received 26 May 2006; revision accepted 1 September 2006 The Albertine Rift is the western branch of the Great Rift Introduction Valley in central and east Africa. -
Biodiversity in Central African Forests: an Overview of Knowledge, Main Challenges and Conservation Measures
CHAPTER 3 BIODIVERSITY IN CENTRAL AFRICAN FORESTS: AN OVERVIEW OF KNOWLEDGE, MAIN CHALLENGES AND CONSERVATION MEASURES Alain Billand CIRAD Introduction As in previous State of the Forest (SOF) reports, the term biodiversity is defined here as “the variability among living organisms in the terrestrial and aquatic ecosystems of the Central African forests”. This definition includes diversity within species, between species and of ecosystems (according to Hooper et al., 2005). Such a broad definition of biodiversity neces- sitates great modesty on the part of anyone in- terested in acquiring knowledge of biodiversity Dubois © Grégoire and its sustainable management, including plan- ners and researchers. Actually, there continues to ested area in the Congo Basin. There are no spe- Photo 3.1: Area of swamp in be a significant shortage of scientific data on spe- cific biodiversity conservation measures, apart Gabon cies and highly complex ecological systems. from “ordinary” law, for other areas that have This chapter is divided into two parts: no particular status, calling attention to the remaining 60 % of land where biodiversity is • The first part summarizes what is known about under the greatest threat: the main groups and families of fauna. It sup- plements information contained in previous – These are the areas that are the least docu- State of the Forest reports (SOF 2006 and mented; 2008). These reports placed particular empha- – These areas are at the highest risk for defor- sis on improving expertise in monitoring em- estation; blematic biodiversity as well as its conservation: – These areas may have high economic poten- this concerns a small number of animal species, tial for agricultural expansion or increasing mainly large mammals. -
Rift-Valley-1.Pdf
R E S O U R C E L I B R A R Y E N C Y C L O P E D I C E N T RY Rift Valley A rift valley is a lowland region that forms where Earth’s tectonic plates move apart, or rift. G R A D E S 6 - 12+ S U B J E C T S Earth Science, Geology, Geography, Physical Geography C O N T E N T S 9 Images For the complete encyclopedic entry with media resources, visit: http://www.nationalgeographic.org/encyclopedia/rift-valley/ A rift valley is a lowland region that forms where Earth’s tectonic plates move apart, or rift. Rift valleys are found both on land and at the bottom of the ocean, where they are created by the process of seafloor spreading. Rift valleys differ from river valleys and glacial valleys in that they are created by tectonic activity and not the process of erosion. Tectonic plates are huge, rocky slabs of Earth's lithosphere—its crust and upper mantle. Tectonic plates are constantly in motion—shifting against each other in fault zones, falling beneath one another in a process called subduction, crashing against one another at convergent plate boundaries, and tearing apart from each other at divergent plate boundaries. Many rift valleys are part of “triple junctions,” a type of divergent boundary where three tectonic plates meet at about 120° angles. Two arms of the triple junction can split to form an entire ocean. The third, “failed rift” or aulacogen, may become a rift valley. -
Uganda Wildlife Assessment PDFX
UGANDA WILDLIFE TRAFFICKING REPORT ASSESSMENT APRIL 2018 Alessandra Rossi TRAFFIC REPORT TRAFFIC is a leading non-governmental organisation working globally on trade in wild animals and plants in the context of both biodiversity conservation and sustainable development. Reproduction of material appearing in this report requires written permission from the publisher. The designations of geographical entities in this publication, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of TRAFFIC or its supporting organisations con cern ing the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Published by: TRAFFIC International David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK © TRAFFIC 2018. Copyright of material published in this report is vested in TRAFFIC. ISBN no: UK Registered Charity No. 1076722 Suggested citation: Rossi, A. (2018). Uganda Wildlife Trafficking Assessment. TRAFFIC International, Cambridge, United Kingdom. Front cover photographs and credit: Mountain gorilla Gorilla beringei beringei © Richard Barrett / WWF-UK Tree pangolin Manis tricuspis © John E. Newby / WWF Lion Panthera leo © Shutterstock / Mogens Trolle / WWF-Sweden Leopard Panthera pardus © WWF-US / Jeff Muller Grey Crowned-Crane Balearica regulorum © Martin Harvey / WWF Johnston's three-horned chameleon Trioceros johnstoni © Jgdb500 / Wikipedia Shoebill Balaeniceps rex © Christiaan van der Hoeven / WWF-Netherlands African Elephant Loxodonta africana © WWF / Carlos Drews Head of a hippopotamus Hippopotamus amphibius © Howard Buffett / WWF-US Design by: Hallie Sacks This report was made possible with support from the American people delivered through the U.S. Agency for International Development (USAID). The contents are the responsibility of the authors and do not necessarily reflect the opinion of USAID or the U.S. -
The Biodiversity of the Albertine Rift
BIOLOGICAL CONSERVATION 134 (2007) 178– 194 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/biocon The biodiversity of the Albertine Rift Andrew J. Plumptrea,*, Tim R.B. Davenportb, Mathias Behanganac, Robert Kityoc, Gerald Eiluc, Paul Ssegawac, Corneille Ewangoa, Danny Meirted, Charles Kahindoc, Marc Herremansd,k, Julian Kerbis Peterhanse,f, John D. Pilgrimg,l, Malcolm Wilsonh, Marc Languyi, David Moyerj aWildlife Conservation Society, P.O. Box 7487, Kampala, Uganda bWildlife Conservation Society, P.O. Box 1475, Mbeya, Tanzania cMakerere University, P.O. Box 7062, Kampala, Uganda dRoyal Museum for Central Africa at Tervuren, Leuvensesteenweg 11, 3080 Tervuren, Belgium eRoosevelt University, University College, 430 S Michigan Avenue, Chicago, IL 60605, USA fField Museum of Natural History, Chicago, 1400 S. Lake Shore Drive, Chicago, IL 60605-2496, USA gCenter for Applied Biodiversity Science, Conservation International, 1919 M Street NW, Suite 600, Washington, DC 20036, USA hP.O. Box 178, Groblersdal 0470, Mpumalanga, South Africa iWWF Eastern Africa Regional Programme Office (EARPO), P.O. Box 62440, 00200 Nairobi, Kenya jWildlife Conservation Society, P.O. Box 936, Iringa, Tanzania kNatuurpunt.Studie, Coxiestraat 11, 2 800 Mechelen, Belgium lBirdLife International in Indochina, 4/209 Doi Can, Ba Dinh, Hanoi, Vietnam ARTICLE INFO ABSTRACT Article history: The Albertine Rift is one of the most important regions for conservation in Africa. It con- Received 16 June 2005 tains more vertebrate species than any other region on the continent and contains more Received in revised form endemic species of vertebrate than any other region on mainland Africa. This paper com- 17 July 2006 piles all currently known species distribution information for plants, endemic butterfly Accepted 8 August 2006 species and four vertebrate taxa from the Albertine Rift. -
Deformation and Sedimentary Evolution of the Lake Albert Rift (Uganda, East African Rift System)
Deformation and sedimentary evolution of the Lake Albert Rift (Uganda, East African Rift System) Brendan Simon, François Guillocheau, Cécile Robin, Olivier Dauteuil, Thierry Nalpas, Martin Pickford, Brigitte Senut, Philippe Lays, Philippe Bourges, Martine Bez To cite this version: Brendan Simon, François Guillocheau, Cécile Robin, Olivier Dauteuil, Thierry Nalpas, et al.. Defor- mation and sedimentary evolution of the Lake Albert Rift (Uganda, East African Rift System). Ma- rine and Petroleum Geology, Elsevier, 2017, 86, pp.17-37. 10.1016/j.marpetgeo.2017.05.006. insu- 01519685 HAL Id: insu-01519685 https://hal-insu.archives-ouvertes.fr/insu-01519685 Submitted on 9 May 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Deformation and sedimentary evolution of the Lake Albert Rift (Uganda, East African Rift System) Brendan Simon, François Guillocheau, Cécile Robin, Olivier Dauteuil, Thierry Nalpas, Martin Pickford, Brigitte Senut, Philippe Lays, Philippe Bourges, Martine Bez PII: S0264-8172(17)30166-6 DOI: 10.1016/j.marpetgeo.2017.05.006 Reference: JMPG 2898 To appear in: Marine and Petroleum Geology Received Date: 19 November 2016 Revised Date: 29 March 2017 Accepted Date: 1 May 2017 Please cite this article as: Simon, B., Guillocheau, Franç., Robin, Cé., Dauteuil, O., Nalpas, T., Pickford, M., Senut, B., Lays, P., Bourges, P., Bez, M., Deformation and sedimentary evolution of the Lake Albert Rift (Uganda, East African Rift System), Marine and Petroleum Geology (2017), doi: 10.1016/ j.marpetgeo.2017.05.006. -
In the Name of Conservation: Eviction of the Batwa from Semuliki Forest
The trials of education for Batwa youth In 2015, the Seventh Day Adventist (SDA) Church supported Batwa children to attend school at the Ntandi SDA Integrated Primary School. This was initially for the Batwa community but, because of discrimination IN THE NAME OF CONSERVATION and teasing, the Batwa children dropped out with the exception of Geoffrey Inzito’s brother, who eventually attained Senior Three level of education. Another attempt at education was made by one Pastor in the community but according to respondents, the school had only one class in which old and young alike were taught from 9.00 am to 1.00 pm. There was no reference to the national syllabus and eventually this intervention was abandoned. The eviction of the Batwa from Semuliki Forest, Bundibugyo The missionary congregation of the Evangelising Sisters of Mary through pastoral work on health and education came into contact with the Batwa community in Ntandi. Although they initially received a hostile reception because they did not offer food or hand-outs, the Batwa were persuaded to take up education again. The church then attempted to establish an adult and nursery school in the community. Together with the community the Parish constructed a semi-permanent church which doubled as a classroom, but the distractions in the slum environment hampered class work, including from uncontrolled attention by tourists and researchers. Pupils would also leave class to go to their mothers, to the market, to collect firewood or to harvest cocoa. Adults who were drinking alcohol and abusing drugs were not setting a good example for the children. -
Getting Climate-Smart with the Mountain Gorilla in the Greater Virunga Landscape: a Species and Climate Change Brief for the Vanishing Treasures Programme
A SPECIES AND CLIMATE CHANGE BRIEF FOR THE VANISHING TREASURES PROGRAMME GETTING CLIMATE-SMART WITH THE IN THE GREATER VIRUNGA LANDSCAPE Authors: Milena Beekmann, UNEP / GRASP Pauliina Upla, UNEP / GRASP Johannes Refisch, UNEP / GRASP Reviewers: Edward Wright, Max Planck Institute for Evolutionary Anthropology Martha Robbins, Max Planck Institute for Evolutionary Anthropology Winnie Eckardt, Dian Fossey Gorilla Fund Cover photo: iStock/erwinf Citation: United Nations Environment Programme (2020). Getting Climate-Smart with the Mountain Gorilla in the Greater Virunga Landscape: A Species and Climate Change Brief for the Vanishing Treasures Programme. Nairobi: United Nations Environment Programme Disclaimer The contents of this brief do not necessarily reflect the views or policies of UN Environment Programme or contributory organisations. The designations employed and the presentation of material on any maps in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. GETTING CLIMATE-SMART WITH THE IN THE GREATER VIRUNGA LANDSCAPE The goal of this information brief This brief is one of three in a series that also includes has multiple, and often interacting, impacts on the snow leopard and Royal Bengal tiger, produced the mountain gorilla – be it on its physiology, on under the Vanishing Treasures programme. Its goal the ecosystems on which it depends, or on the is to highlight how climate change is – and will behaviour of humans living in its surroundings – be – impacting the conservation of the mountain with important feedback loops that directly affect gorilla.