Introduction to Geometrical and Physical Geodesy

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Geometrical and Physical Geodesy Preface I was first exposed to geodesy while studying geomatics at Texas A&M University. I was taking a course in geographic information systems (GIS) and, during an exercise, came upon a dialog box with a field whose value indicated the datum to which my data referred. I had no idea what this meant, so I asked another student. I was told, “Who knows? Just accept the defaults.” Unsatisfied, I began to search for the answer to what was seemingly a very simple question. This book is a result of my journey along the fascinating and wonderful trails that question propelled me. I now teach geomatics at the graduate and undergraduate levels, and I find my question as pertinent today as it was when I asked it as a student – probably more so. The field of geomatics has blossomed into a multibillion-dollar-per-year industry being supported by university programs around the world. All geomatics practitioners need to know some geodesy in order to understand their spatial data and to use them properly. In searching for a text with which to teach my own classes, I felt that the other geodesy books were either at too high a level or too low. My goal for this book is to introduce the concepts of geometrical and physical geodesy at a scope and at a level that geomaticians are likely to encounter in their practice. My students study natural resource management in the Department of Natural Resources and the Environment at the University of Connecticut. Natural resource managers need to know how to use a GIS, remote sensing tools, and land surveying tools, so I wrote this book with that audience in mind. As a consequence, this book can be useful to a broad spectrum of readers: from those who are specializing in one field of geomatics to those, like my students, who need to know something about them all. Geodesy sits squarely at the intersection of GIS, remote sensing, and land surveying, so it was appropriate to create a broad-based book. My students receive training on how to solve environmental problems, and some of the problem- solving methods have an engineering flavor. Therefore, this book contains many useful formulæ. In general, geodesy is a mathematically oriented field. Geometry and physics are the foundations of geodesy, and a working, practical knowledge of the subject necessarily requires understanding a fair number of mathematical formulæ. Most of the topics depend only on algebra and trigonometry, but the explanations of gravity and of map projections rely on a little calculus. I have tried to make the mathematics as accessible as I can by providing discussions illustrated by solved examples for almost all of the formulæ in the book. Each chapter includes a Your Turn section at the end, offering the reader an opportunity to exercise their newly acquired skills and knowledge. A good working knowledge of algebra and trigonometry will be needed to solve the problems. This book’s treatment of both geometrical and physical geodesy is somewhat unusual; most geodesy books focus strongly on one topic or the other. However, heights play a central role in many modern mapping projects, and geomaticians need an understanding of them as much as they need an understanding of map projection coordinates. The geometric geodesy portion is heavily laced with mathematical formulæ, but these formulæ are essentially algebraic in nature ix x PREFACE and, therefore, not unduly demanding. However, gravity is the subject of physical geodesy, and the mathematics of gravity begin with differential equations and go deeper from there. In keeping with the level of mathematical accessibility intended for this book, the Your Turn problems in the physical geodesy chapters are more conceptual than computational. The book is divided into three major parts: (I) Basic Concepts and Tools, (II) Geometrical Geodesy, and (III) Physical Geodesy. The introductory discussion of why studying geodesy is rele- vant for geomaticians in general is followed by a chapter on units of measure, which are numerous, important, and surprisingly subtle. Chapter 3 introduces the concept of reductions. Distances, angles, and other quantities of interest can have various forms. Reductions algebraically transform these quantities among their forms. This chapter also introduces the important direct and inverse problems, which form the basis of positioning. Chapter 4 presents geographic coordinates, which are the coordinates of choice in geodesy, and reference ellipsoids, which are the mathematical sur- faces upon which geodetic computations are defined. Chapter 5 answers my question about datums and also presents the major coordinate systems of geometrical geodesy, which, in my view, are the core of geometrical geodesy. Chapter 6 presents many of the various types of distances that arise in various coordinate systems, and chapter 7 explains their various types of angles. Chapter 8 introduces map projections and the grid coordinate systems that are built using them. Chapter 9 is the first physical geodesy chapter, giving an introduction to gravitation, gravity, geopotential, and the geoid. Chapter 10 introduces how height systems are defined and how they are organized into vertical datums. Chapter 11 gives an introduction to how tides affect heights. An explanation of geometry-based concepts usually benefits from illustrations – much more so when the subject is three dimensional. I have included many figures in this book, which hopefully will be both engaging and illuminating. The creation of a work such as this is seldom the product of only one person. I am indebted to many people, including dozens of students who used these materials as course notes, and several reviewers who took the time and effort to help me clarify, organize, and present this material more effectively. I specifically want to thank my wife, Ann, for her love and support and her excellent organizational skills. Tom Meyer May 2010 Part I Basic Concepts and Tools 1 Chapter 1 Introduction to Geodesy According to the Geodetic Glossary (NGS 2009), geodesy can be defined as “The science concerned with determining the size and shape of the Earth” or “The science that locates positions on the Earth and determines the Earth’s gravity field.” It might be hard to see anything too interesting or exciting in these definitions. After all, generally speaking, the Earth is round, a fact known at least since the time of the ancient Greeks. The earliest known definitive work on this was done by Aristarchus of Samos (ca. 310-230 B.C.E.), an astronomer who worked out a geometric method to determine ratios of the distance between the Sun and the Earth with the distance between the Moon and the Earth, a method that required knowing that all three bodies were round (Maor 1998, p. 63). But what is not obvious from the definition of geodesy is that much modern technology is possible only due to geodesy. For example, without modern geodesy, navigation might still be done with ancient methods (e.g., don’t lose sight of the shore) and high-accuracy maps of moderate or larger regions could not exist. Perhaps surprisingly, geodesy plays a central role in a wide variety of cutting-edge sciences, such as geophysics, astronomy, and climatology. The Earth’s warming due to climate change is expected to produce rising sea levels in many places, and sea level rise cannot be observed and monitored without geodesy. The observable change in sea level is due to a combination of a change in the ocean’s mean surface level and any subsidence of the shore. Geodesy is necessary to tease these two apart. Global warming is also generally reducing the size of ice sheets and glaciers as well as dramatically increasing how quickly they move. Space-age positioning methods make it possible to determine not only the location of an ice sheet, but also its velocity, shape, and size. Geodesy is also a key component of geophysics by making it possible to observe tectonic plate motion, for example. Geodesy is usually subdivided into geometrical geodesy, physical geodesy, and satellite geodesy, although additional subdivisions are recognized as well. Geometrical geodesy is concerned with describing locations in terms of geometry. Consequently, coordinate systems are one of the primary products of geometrical geodesy. Physical geodesy is concerned with determining the Earth’s gravity field, which is necessary for establishing heights. Satellite geodesy is concerned with using orbiting satellites to obtain data for geodetic purposes. To understand the role of geodesy, it might be useful to look at how maps are often drawn. A map is an abstract, scaled, two-dimensional image of some region typically on the Earth’s surface, showing the features of interest in their correct relative locations, sizes, and orientations. According to this definition, a globe is not a map because it is not two-dimensional. Neither are directions to the neighborhood gas station drawn on a napkin for a friend. Although entirely adequate for its 3 4 CHAPTER 1. INTRODUCTION TO GEODESY purpose, such a rendering is a sketch, not a map, because, while schematically correct, it is not an accurate rendition of the features. Maps are drawn essentially the same way whether they are drawn on paper or on a computer screen. The process begins with someone determining positions for all the features of interest. A position is (usually) a pair or triplet of numbers, called coordinates. A location is a place in the real world, whose spatial placement is described by a position. A coordinate system specifies how coordinates are assigned to locations. In order to draw, say, a building on a map, we need to determine the positions of its defining points, like its corners. Linear coordinates, such as the familiar x, y, z, are descriptions of offsets from some point of reference, called an origin, each in the direction of its axis.
Recommended publications
  • UCGE Reports Ionosphere Weighted Global Positioning System Carrier
    UCGE Reports Number 20155 Ionosphere Weighted Global Positioning System Carrier Phase Ambiguity Resolution (URL: http://www.geomatics.ucalgary.ca/links/GradTheses.html) Department of Geomatics Engineering By George Chia Liu December 2001 Calgary, Alberta, Canada THE UNIVERSITY OF CALGARY IONOSPHERE WEIGHTED GLOBAL POSITIONING SYSTEM CARRIER PHASE AMBIGUITY RESOLUTION by GEORGE CHIA LIU A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF GEOMATICS ENGINEERING CALGARY, ALBERTA OCTOBER, 2001 c GEORGE CHIA LIU 2001 Abstract Integer Ambiguity constraint is essential in precise GPS positioning. The perfor- mance and reliability of the ambiguity resolution process are being hampered by the current culmination (Y2000) of the eleven-year solar cycle. The traditional approach to mitigate the high ionospheric effect has been either to reduce the inter-station separation or to form ionosphere-free observables. Neither is satisfactory: the first restricts the operating range, and the second no longer possesses the ”integerness” of the ambiguities. A third generalized approach is introduced herein, whereby the zero ionosphere weight constraint, or pseudo-observables, with an appropriate weight is added to the Kalman Filter algorithm. The weight can be tightly fixed yielding the model equivalence of an independent L1/L2 dual-band model. At the other extreme, an infinite floated weight gives the equivalence of an ionosphere-free model, yet perserves the ambiguity integerness. A stochastically tuned, or weighted, model provides a compromise between the two ex- tremes. The reliability of ambiguity estimates relies on many factors, including an accurate functional model, a realistic stochastic model, and a subsequent efficient integer search algorithm.
    [Show full text]
  • Geomatics Guidance Note 3
    Geomatics Guidance Note 3 Contract area description Revision history Version Date Amendments 5.1 December 2014 Revised to improve clarity. Heading changed to ‘Geomatics’. 4 April 2006 References to EPSG updated. 3 April 2002 Revised to conform to ISO19111 terminology. 2 November 1997 1 November 1995 First issued. 1. Introduction Contract Areas and Licence Block Boundaries have often been inadequately described by both licensing authorities and licence operators. Overlaps of and unlicensed slivers between adjacent licences may then occur. This has caused problems between operators and between licence authorities and operators at both the acquisition and the development phases of projects. This Guidance Note sets out a procedure for describing boundaries which, if followed for new contract areas world-wide, will alleviate the problems. This Guidance Note is intended to be useful to three specific groups: 1. Exploration managers and lawyers in hydrocarbon exploration companies who negotiate for licence acreage but who may have limited geodetic awareness 2. Geomatics professionals in hydrocarbon exploration and development companies, for whom the guidelines may serve as a useful summary of accepted best practice 3. Licensing authorities. The guidance is intended to apply to both onshore and offshore areas. This Guidance Note does not attempt to cover every aspect of licence boundary definition. In the interests of producing a concise document that may be as easily understood by the layman as well as the specialist, definitions which are adequate for most licences have been covered. Complex licence boundaries especially those following river features need specialist advice from both the survey and the legal professions and are beyond the scope of this Guidance Note.
    [Show full text]
  • PRINCIPLES and PRACTICES of GEOMATICS BE 3200 COURSE SYLLABUS Fall 2015
    PRINCIPLES AND PRACTICES OF GEOMATICS BE 3200 COURSE SYLLABUS Fall 2015 Meeting times: Lecture class meets promptly at 10:10-11:00 AM Mon/Wed in438 Brackett Hall and lab meets promptly at 12:30-3:20 PM Wed at designated sites Course Basics Geomatics encompass the disciplines of surveying, mapping, remote sensing, and geographic information systems. It’s a relatively new term used to describe the science and technology of dealing with earth measurement data that includes collection, sorting, management, planning and design, storage, and presentation of the data. In this class, geomatics is defined as being an integrated approach to the measurement, analysis, management, storage, and presentation of the descriptions and locations of spatial data. Goal: Designed as a "first course" in the principles of geomeasurement including leveling for earthwork, linear and area measurements (traversing), mapping, and GPS/GIS. Description: Basic surveying measurements and computations for engineering project control, mapping, and construction layout. Leveling, earthwork, area, and topographic measurements using levels, total stations, and GPS. Application of Mapping via GIS. 2 CT2: This course is a CT seminar in which you will not only study the course material but also develop your critical thinking skills. Prerequisite: MTHSC 106: Calculus of One Variable I. Textbook: Kavanagh, B. F. Surveying: Principles and Applications. Prentice Hall. 2010. Lab Notes: Purchase Lab notes at Campus Copy Shop [REQUIRED]. Materials: Textbook, Lab Notes (must be brought to lab), Field Book, 3H/4H Pencil, Small Scale, and Scientific Calculator. Attendance: Regular and punctual attendance at all classes and field work is the responsibility of each student.
    [Show full text]
  • Geodetic Position Computations
    GEODETIC POSITION COMPUTATIONS E. J. KRAKIWSKY D. B. THOMSON February 1974 TECHNICALLECTURE NOTES REPORT NO.NO. 21739 PREFACE In order to make our extensive series of lecture notes more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text. GEODETIC POSITION COMPUTATIONS E.J. Krakiwsky D.B. Thomson Department of Geodesy and Geomatics Engineering University of New Brunswick P.O. Box 4400 Fredericton. N .B. Canada E3B5A3 February 197 4 Latest Reprinting December 1995 PREFACE The purpose of these notes is to give the theory and use of some methods of computing the geodetic positions of points on a reference ellipsoid and on the terrain. Justification for the first three sections o{ these lecture notes, which are concerned with the classical problem of "cCDputation of geodetic positions on the surface of an ellipsoid" is not easy to come by. It can onl.y be stated that the attempt has been to produce a self contained package , cont8.i.ning the complete development of same representative methods that exist in the literature. The last section is an introduction to three dimensional computation methods , and is offered as an alternative to the classical approach. Several problems, and their respective solutions, are presented. The approach t~en herein is to perform complete derivations, thus stqing awrq f'rcm the practice of giving a list of for11111lae to use in the solution of' a problem.
    [Show full text]
  • Determination of GPS Session Duration in Ground Deformation Surveys in Mining Areas
    sustainability Article Determination of GPS Session Duration in Ground Deformation Surveys in Mining Areas Maciej Bazanowski 1, Anna Szostak-Chrzanowski 2,* and Adam Chrzanowski 1 1 Department of Geodesy and Geomatics Engineering, University of New Brunswick, P.O. Box 4400, Fredericton, N.B., E3B 5A3, N.B., Canada; [email protected] (M.B.); [email protected] (A.C.) 2 Faculty of Geoengineering, Mining and Geology, Wrocław University of Science and Technology„ul. Na Grobli 15, 50-421Wrocław, Poland * Correspondence: [email protected] Received: 18 September 2019; Accepted: 25 October 2019; Published: 3 November 2019 Abstract: Extraction of underground minerals causes subsidence of the ground surface due to gravitational forces. The subsidence rate depends on the type of extracted ore, as well as its shape, thickness, and depth. Additionally, the embedding and overburden rock properties influence the time needed for the deformations to reach the surface. Using the results of geodetic deformation monitoring, which supply the information on pattern and magnitude of surface deformation, the performance of the mine may be evaluated. The monitoring can supply information on the actual rock mass behaviour during the operation and in many cases during the years after the mining operations have ceased. Geodetic methods of deformation monitoring supply information on the absolute and relative displacements (changes in position in a selected coordinate system) from which displacement and strain fields for the monitored object may be derived. Thus, geodetic measurements provide global information on absolute and relative displacements over large areas, either at discrete points or continuous in the space domain. The geodetic methods are affected by errors caused by atmospheric refraction and delay of electromagnetic signal.
    [Show full text]
  • Coordinate Systems in Geodesy
    COORDINATE SYSTEMS IN GEODESY E. J. KRAKIWSKY D. E. WELLS May 1971 TECHNICALLECTURE NOTES REPORT NO.NO. 21716 COORDINATE SYSTElVIS IN GEODESY E.J. Krakiwsky D.E. \Vells Department of Geodesy and Geomatics Engineering University of New Brunswick P.O. Box 4400 Fredericton, N .B. Canada E3B 5A3 May 1971 Latest Reprinting January 1998 PREFACE In order to make our extensive series of lecture notes more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text. TABLE OF CONTENTS page LIST OF ILLUSTRATIONS iv LIST OF TABLES . vi l. INTRODUCTION l 1.1 Poles~ Planes and -~es 4 1.2 Universal and Sidereal Time 6 1.3 Coordinate Systems in Geodesy . 7 2. TERRESTRIAL COORDINATE SYSTEMS 9 2.1 Terrestrial Geocentric Systems • . 9 2.1.1 Polar Motion and Irregular Rotation of the Earth • . • • . • • • • . 10 2.1.2 Average and Instantaneous Terrestrial Systems • 12 2.1. 3 Geodetic Systems • • • • • • • • • • . 1 17 2.2 Relationship between Cartesian and Curvilinear Coordinates • • • • • • • . • • 19 2.2.1 Cartesian and Curvilinear Coordinates of a Point on the Reference Ellipsoid • • • • • 19 2.2.2 The Position Vector in Terms of the Geodetic Latitude • • • • • • • • • • • • • • • • • • • 22 2.2.3 Th~ Position Vector in Terms of the Geocentric and Reduced Latitudes . • • • • • • • • • • • 27 2.2.4 Relationships between Geodetic, Geocentric and Reduced Latitudes • . • • • • • • • • • • 28 2.2.5 The Position Vector of a Point Above the Reference Ellipsoid . • • . • • • • • • . .• 28 2.2.6 Transformation from Average Terrestrial Cartesian to Geodetic Coordinates • 31 2.3 Geodetic Datums 33 2.3.1 Datum Position Parameters .
    [Show full text]
  • Geomatics Engineering Students: Corey C
    Geomatics Engineering Students: Corey C. Pippin Advisors: Dr. James K. Crossfield Abstract Project Background Project Area Static GPS observations were used to monitor crustal motion along the San Andreas The San Andreas Fault system is a right-lateral strike slip fault that that extends from Fault near Hollister, California. The points span both sides of the fault. Three 60 the Salton Sea to the San Francisco Bay area. This fault is caused by the boundary of minute GPS observation sessions were conducted, and the relative positions of the Pacific and North American tectonic plates. The Fault has zones that are locked National Geodetic Survey monuments were precisely determined. Those coordinates and that creep. Surface displacement can be monitored to determine accurate were compared to known monument locations (adjusted to NAD83 in 1992) to locations of survey monuments. quantify the relative motion of the fault zone. The distance and direction of the tectonic motion in this region was calculated. With the collected static data, processed using Trimble Geomatics Office software, the study region was observed to have movement of 1.223 feet (37.277 cm) (averaged) during the 22 years between observation periods. This equates to a movement of 0.0554 feet or 1.69 centimeters per year. Near the DeRose Winery, 8.8 miles south of Hollister, California, four National Field Reconnaissance Geodetic Survey (NGS) monuments (Taylor 5, 6, 7, & 8) were set in 1957. They were originally Purposed to monitor movement in the area, and two points lie on either side of the fault zone. The points have coordinates that were adjusted in 1992.
    [Show full text]
  • Style Manual for the Department of Geodesy and Geomatics Engineering
    STYLE MANUAL FOR THE DEPARTMENT OF GEODESY AND GEOMATICS ENGINEERING WENDY WELLS November 2001 TECHNICALLECTURE NOTES REPORT NO.NO. 21754 STYLE MANUAL FOR THE DEPARTMENT OF GEODESY AND GEOMATICS ENGINEERING Wendy Wells Department of Geodesy and Geomatics Engineering University of New Brunswick P.O. Box 4400 Fredericton, N.B. Canada E3B SA3 Fifth Edition November 2001 © Wendy Wells, 2001 PREFACE In order to make our extensive series of lecture notes more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. In this version, images have been converted to searchable text. GEODESY AND GEOMATICS ENGINEERING STYLE MANUAL Lecture Notes No. 54 ABSTRACT Although the 'technological revolution' has pushed the humanities into the background, there still remains a need for people to communicate with each other. Just as a computer language must be correct and precise if the program is to function properly, so must the English language be used as clearly, precisely, and correctly as possible if new ideas, inventions, techniques, methods, and results are to be read and accepted into the universal body of human knowledge. In an endeavour to provide a little help in making undergraduate report and assignment and graduate report, paper, and thesis writing less of an ordeal, this style manual has been compiled with the geomatician specifically in mind. As geodesy and geomatics engineering are not large enough fields to demand their own form and format, those of mathematics, physics, and law, the basic underpinnings of geodesy and geomatics, have been adapted for use here.
    [Show full text]
  • Utilizing Airborne Lidar and UAV Photogrammetry Techniques in Local Geoid Model Determination and Validation
    International Journal of Geo-Information Article Utilizing Airborne LiDAR and UAV Photogrammetry Techniques in Local Geoid Model Determination and Validation Serdar Erol * , Emrah Özögel, Ramazan Alper Kuçak and Bihter Erol Geomatics Engineering Department, Civil Engineering Faculty, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey; [email protected] (E.Ö.); [email protected] (R.A.K.); [email protected] (B.E.) * Correspondence: [email protected]; Tel.: +90-212-285-3826 Received: 24 July 2020; Accepted: 30 August 2020; Published: 2 September 2020 Abstract: This investigation evaluates the performance of digital terrain models (DTMs) generated in different vertical datums by aerial LiDAR and unmanned aerial vehicle (UAV) photogrammetry techniques, for the determination and validation of local geoid models. Many engineering projects require the point heights referring to a physical surface, i.e., geoid, rather than an ellipsoid. When a high-accuracy local geoid model is available in the study area, the physical heights are practically obtained with the transformation of global navigation satellite system (GNSS) ellipsoidal heights of the points. Besides the commonly used geodetic methods, this study introduces a novel approach for the determination and validation of the local geoid surface models using photogrammetry. The numeric tests were carried out in the Bergama region, in the west of Turkey. Using direct georeferenced airborne LiDAR and indirect georeferenced UAV photogrammetry-derived point clouds, DTMs were generated in ellipsoidal and geoidal vertical datums, respectively. After this, the local geoid models were calculated as differences between the generated DTMs. Generated local geoid models in the grid and pointwise formats were tested and compared with the regional gravimetric geoid model (TG03) and a high-resolution global geoid model (EIGEN6C4), respectively.
    [Show full text]
  • Uk Offshore Operators Association (Surveying and Positioning
    U.K. OFFSHORE OPERATORS ASSOCIATION (SURVEYING AND POSITIONING COMMITTEE) GUIDANCE NOTES ON THE USE OF CO-ORDINATE SYSTEMS IN DATA MANAGEMENT ON THE UKCS (DECEMBER 1999) Version 1.0c Whilst every effort has been made to ensure the accuracy of the information contained in this publication, neither UKOOA, nor any of its members will assume liability for any use made thereof. Copyright ã 1999 UK Offshore Operators Association Prepared on behalf of the UKOOA Surveying and Positioning Committee by Richard Wylde, The SIMA Consultancy Limited with assistance from: Roger Lott, BP Amoco Exploration Geir Simensen, Shell Expro A Company Limited by Guarantee UKOOA, 30 Buckingham Gate, London, SW1E 6NN Registered No. 1119804 England _____________________________________________________________________________________________________________________Page 2 CONTENTS 1. INTRODUCTION AND BACKGROUND .......................................................................3 1.1 Introduction ..........................................................................................................3 1.2 Background..........................................................................................................3 2. WHAT HAS HAPPENED AND WHY ............................................................................4 2.1 Longitude 6°W (ED50) - the Thunderer Line .........................................................4 3. GUIDANCE FOR DATA USERS ..................................................................................6 3.1 How will we map the
    [Show full text]
  • Making the Geoid Respectable Again
    NATURE VOL. 332 24 MARCH 1988 -NEWS AND VIEWS 301 Making the geoid respectable again With the recognition that surface measurements of gravity cannot be extrapolated backwards into the Earth's interior, the concept of the geoid became unfashionable. But its fortunes may be on the turn. EvERYBODY knows, of course, that the of mean sea level would indeed be an when there are ample measurements of geoid is that surface of equal gravitational ellipsoid of rotation. One of the practical gravity on which to base inferences. potential which coincides with mean sea­ I difficulties with which geodesists are con­ Hipkin gives the example of a ploughed level. Most of us also have it clearly in fronted is that the measurements of sea field, the furrows of which would yield mind that the geoid is an ellipsoid with level at tidal stations must be corrected for small but still measurable periodic varia­ rotational symmetry about its shorter such sources of variation as ocean cur­ tions of gravitational potential just above polar axis, which allows for the flattening rents, departures of seawater density from the surface which, if projected downwards of the Earth by rotation. But that must the means, not to mention other seasonal in a simple-minded fashion, would imply plainly be a fairy story, possibly applicable effects, but in principle there is a wealth of variations of the height of the equipoten­ to the oceanic surfaces of the Earth, but places scattered around the world at which tial surface of as much as 1 km just a few unlikely to make very much sense else­ the ellipsoidal parts of the geoid might be metres below the surface.
    [Show full text]
  • Article Is Part of the Spe- Senschaft, Kunst Und Technik, 7, 397–424, 1913
    IUGG: from different spheres to a common globe Hist. Geo Space Sci., 10, 151–161, 2019 https://doi.org/10.5194/hgss-10-151-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. The International Association of Geodesy: from an ideal sphere to an irregular body subjected to global change Hermann Drewes1 and József Ádám2 1Technische Universität München, Munich 80333, Germany 2Budapest University of Technology and Economics, Budapest, P.O. Box 91, 1521, Hungary Correspondence: Hermann Drewes ([email protected]) Received: 11 November 2018 – Revised: 21 December 2018 – Accepted: 4 January 2019 – Published: 16 April 2019 Abstract. The history of geodesy can be traced back to Thales of Miletus ( ∼ 600 BC), who developed the concept of geometry, i.e. the measurement of the Earth. Eratosthenes (276–195 BC) recognized the Earth as a sphere and determined its radius. In the 18th century, Isaac Newton postulated an ellipsoidal figure due to the Earth’s rotation, and the French Academy of Sciences organized two expeditions to Lapland and the Viceroyalty of Peru to determine the different curvatures of the Earth at the pole and the Equator. The Prussian General Johann Jacob Baeyer (1794–1885) initiated the international arc measurement to observe the irregular figure of the Earth given by an equipotential surface of the gravity field. This led to the foundation of the International Geodetic Association, which was transferred in 1919 to the Section of Geodesy of the International Union of Geodesy and Geophysics. This paper presents the activities from 1919 to 2019, characterized by a continuous broadening from geometric to gravimetric observations, from exclusive solid Earth parameters to atmospheric and hydrospheric effects, and from static to dynamic models.
    [Show full text]