A Single-Chip CMOS Bluetooth V2.1 Radio Soc William W

Total Page:16

File Type:pdf, Size:1020Kb

A Single-Chip CMOS Bluetooth V2.1 Radio Soc William W 2896 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 12, DECEMBER 2008 A Single-Chip CMOS Bluetooth v2.1 Radio SoC William W. Si, Member, IEEE, David Weber, Member, IEEE, Shahram Abdollahi-Alibeik, MeeLan Lee, Richard Chang, Hakan Dogan, Senior Member, IEEE, Haitao Gan, Yashar Rajavi, Susan Luschas, Soner Ozgur, Paul Husted, and Masoud Zargari, Senior Member, IEEE Abstract—A single-chip Bluetooth v2.1-compliant CMOS radio SoC that supports Enhanced Data Rates is implemented in stan- dard 0.13 m CMOS technology. All functions of a Bluetooth radio are integrated in the SoC, including RF, analog and digital parts. The RF transceiver features a polar transmitter, a two-point mod- ulated fractional-N synthesizer, a 500 kHz IF receiver with first order low-pass analog filtering, and a ADC with 74 dB dy- namic range. The total SoC die area is 9.2 mmP with only 3.0 mmP for analog and RF circuits. The basic-rate radio power consump- tion is below 30 mA for both receive and transmit. Index Terms—Bluetooth, polar modulation, polar transmitter, RF receiver, RF transceiver, RF transmitter, system-on-a-chip, two point phase modulation, SoC. Fig. 1. SoC block diagram. I. INTRODUCTION is chosen to minimize overall die area as well as power con- LUETOOTH radio technology has now been adopted in a sumption for both the basic rate and EDR [9]. wide array of applications including audio headsets, cel- B The single-chip Bluetooth SoC block diagram is shown in lular telephones, portable computers, and automotive applica- Fig. 1. All functions of a Bluetooth radio are implemented in tions. Nearly 2 billion Bluetooth products are on the market the SoC, including the RF transceiver, modem, link controller, today [1]. This commercial success has led to continuing im- CPU, RAM, ROM, and a number of other peripheral compo- provements in the Bluetooth standard with higher data trans- nents. The SoC also integrates many auxiliary analog circuits, mission capacity, the latest of which is Bluetooth v2.1 [2].1 A such as linear low-dropout voltage regulators, a phase-locked Bluetooth v2.1 radio is a frequency-hopping system that oper- loop, crystal oscillators, a bandgap, biasing circuits, a low power ates in the 2.4 GHz unlicensed ISM band with 79 subdivided oscillator (LPO) and a thermometer. Only a few components channels of 1 MHz each. Besides the legacy 1 Mbps rate based are left off-chip, notably the crystal and the antenna. All cali- on GFSK modulation, Bluetooth v2.1 includes two higher data bration and support circuitry required for operation is self-con- rates. These two Enhanced Data Rates (EDR) use -DQPSK tained within the SoC. and 8-PSK for 2 Mbps and 3 Mbps links, respectively. The organization of this paper is as follows. Section II de- Numerous fully integrated Bluetooth transceivers and SoCs scribes the circuit implementation of the polar transmitter along have been reported, including several designs that are EDR- with the frequency synthesizer. The 500 kHz IF receiver de- compliant [3]–[8], [12], [13]. Since Bluetooth is primarily used sign is detailed in Section III. Section IV presents measurement for short range communication, the driving force in the market results. is to reduce both power consumption and cost. An integrated, low-cost, CMOS Bluetooth radio SoC will support the contin- II. POLAR TRANSMITTER uing growth of this market. In this paper, a Bluetooth v2.1 com- pliant SoC that integrates all functions of a Bluetooth radio is Fig. 2 shows the architecture of the polar transmitter. A polar presented. The transceiver is comprised of a two-point modu- architecture is chosen for the transmitter primarily because it lated fractional-N synthesizer, a polar transmitter, and a 500 kHz can provide very low power consumption when operating in the IF receiver with minimal analog filtering. The radio architecture legacy GFSK mode as well as requiring less analog area than a traditional quadrature transmit architecture. Transmit mixers are not needed, which saves power and area, and improves lin- Manuscript received April 07, 2008; revised July 21, 2008. Current version earity. In a polar transmitter, the transmit signal is decomposed published December 10, 2008. into amplitude and phase components [10], [18] by the digital The authors are with Atheros Communications, Inc., Santa Clara, CA 95054 modem. The phase modulation is performed in the synthesizer. USA (e-mail: [email protected]; [email protected]). Digital Object Identifier 10.1109/JSSC.2008.2005741 The phase signal is split into high frequency (HF) and low fre- quency (LF) data paths to directly modulate a fractional-N syn- 1Bluetooth v2.1+EDR (Enhanced Data Rate) was officially adopted in August thesizer and create an RF phase modulated signal. The phase 2007. The Bluetooth SIG is exploring the integration of Bluetooth with IEEE 802.11 and ultra wideband. This ‘Alternate MAC/PHY’ proposal is expected to modulated signal is fed directly to an RF power amplifier (PA). be published in mid 2009. For the legacy 1 Mbps GFSK rate with a constant envelope 0018-9200/$25.00 © 2008 IEEE SI et al.: SINGLE-CHIP CMOS BLUETOOTH V2.1 RADIO SoC 2897 Fig. 2. Polar transmitter block diagram. Fig. 4. Description of two-point phase modulation concept. using frequency modulation (FM) in the frequency synthesizer by modulating the feedback division ratio and VCO control voltage. The desired PM data of an 8-PSK signal is converted to FM data by computing its derivative in the digital domain. During a zero-crossing symbol transition, the phase makes a 180 degree change instantaneously as shown in Fig. 3. This step function in the PM data is an impulse function in the FM data, which cannot be perfectly reproduced in a practical polar transmitter due to bandwidth limitations. Simulation analysis determines that a bandwidth of about 12 MHz in the FM path and a maximum frequency deviation of MHz is Fig. 3. 8-DPSK signal polar decomposition. needed in order to meet the EVM and spectrum mask require- ments for 8-PSK modulation at the RF output. As the VCO runs at twice the RF frequency, the maximum frequency deviation RF signal, amplitude modulation is not needed and an efficient at the VCO is MHz. constant-envelope PA is used. For the enhanced rates with a non-constant envelope, amplitude modulation is applied at the A. Two-Point Modulation PA stage using a digital-to-analog converter (DAC). The DAC To address the requirement of 12 MHz bandwidth and uses 9 bits to meet the 26 dB dynamic range requirement for MHz maximum frequency deviation for the FM path, AM, with the additional dynamic range used for power control. a two-point modulation scheme is used in the synthesizer loop The bandwidth of the AM data is about 3 MHz. The PA output [[12]–[16], [19], [20]]. The concept of two-point modulation power is detected using an on-chip peak detector for closed loop is illustrated in Fig. 4. The goal of two-point modulation is to power control. allow the FM path bandwidth to be much wider than the synthe- The inclusion of enhanced data rates (EDR) to the Bluetooth sizer loop bandwidth. In a sigma-delta fractional-N synthesizer, standard makes the choice of polar modulation significantly the most convenient way to modulate the VCO frequency is to more challenging than a design that only supports the legacy apply the modulation signal at the sigma-delta multi-modulus rate. For the basic 1 Mbps rate with no amplitude modulation, divider input. However, the input frequency signal is low pass the total bandwidth of the phase component is approximately filtered by the synthesizer loop bandwidth in order to suppress equal to the 1 MHz channel bandwidth. A conventional sigma-delta quantization noise and reference spurs, thereby fractional-N synthesizer can meet the desired modulation band- constraining the synthesizer loop bandwidth to a value that is width for the basic rate with digital bandwidth enhancement typically a few hundred kHz. This bandwidth is too narrow techniques [11]. However, implementing a polar transmitter for Bluetooth phase modulation, even for the legacy 1 Mbps to support the 3 Mbps rate with 8-PSK modulation poses rate. Various schemes of widening modulation bandwidth have significant challenges for both amplitude and phase modula- been studied [11]–[16]. The two-point modulation approach tion paths. Fig. 3 illustrates the polar decomposition for an has the advantage that the modulation bandwidth is relatively 8-PSK modulated signal. An ideal 8-PSK constellation requires insensitive to PLL loop bandwidth, as well as to process and symbol transitions that include zero crossings. That is, the temperature variations. amplitude of the RF signal will decrease to zero as the symbol A block diagram of the synthesizer with a two-point mod- transition crosses the center of the constellation. Practical polar ulation capability is shown in Fig. 5. The phase signal is de- transmitters have difficulty representing zero amplitude, be- composed into HF and LF paths digitally. Both paths are 11-bit cause of the finite dynamic range of the AM path. System-level wide. The dynamic range of the HF and LF FM paths is deter- simulations show that the Bluetooth spectral mask requirement mined such that quantization noise will not impact the EVM or can be met provided that the AM path has a dynamic range transmit spectral performance. The 11-bit LF data is applied di- of at least 26 dB. A zero crossing is equally challenging for rectly to the divider, which modulates the VCO phase with the phase modulation (PM) path.
Recommended publications
  • Use Style: Paper Title
    AICT 2018 : The Fourteenth Advanced International Conference on Telecommunications Proposal of Power Saving Techniques for Wireless Terminals Using CAZAC-OFDM Scheme Takanobu Onoda, Ryota Ishioka and Masahiro Muraguchi Department of Electrical Engineering, Tokyo University of Science 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-0051, Japan E-mail: [email protected], [email protected], [email protected] Abstract— A major drawback of Orthogonal Frequency spectral efficiency, and additional power consumption of Division Multiplexing (OFDM) signals is extremely high DSPs. Peak-to-Average Power Ratio (PAPR). Signals with high On the other approach to overcome the problem, some PAPR lead to a lowering of the energy efficiency of the circuit topology for high-efficiency OFDM power amplifier Power Amplifiers (PAs) and the shortened operation time design have been proposed [2]. Here, a polar modulation PA, causes a serious problem in battery-powered wireless or an envelope tracking PA, is the most promising one. In the terminals. In this paper, we propose a new power saving polar modulation, OFDM signal is separated into phase technique for wireless terminals. It is the combination of modulation (PM) component and amplitude modulation a polar modulation technique and Constant Amplitude (AM) one. The PM component is input to the PA as the Zero Auto-Correlation (CAZAC) equalizing technique. quadrature signal with constant amplitude. On the other, the Proposed the polar modulation technique for the PA AM component is used as envelope tracking data, which employs a current control by changing the common-gate supplies to the PA as drain DC biasing from adaptive output stage bias in a cascade amplifier circuit.
    [Show full text]
  • Design and Implementation of a Broadband RF-DAC Transmitter for Wireless Communications
    Design and Implementation of a Broadband RF-DAC Transmitter for Wireless Communications Von der Fakultät für Elektrotechnik und Informationstechnik der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation vorgelegt von Diplom-Ingenieur Niklas Zimmermann aus Münster Berichter: Universitätsprofessor Dr.-Ing. Stefan Heinen Universitätsprofessor Dr.-Ing. Gerd Ascheid Tag der mündlichen Prüfung: 1. Juli 2011 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar. ISBN 978-3-8439-0042-3 D 82 (Diss. RWTH Aachen University, 2011) © Verlag Dr. Hut, München 2011 Sternstr. 18, 80538 München Tel.: 089/66060798 www.dr.hut-verlag.de Die Informationen in diesem Buch wurden mit großer Sorgfalt erarbeitet. Dennoch können Fehler nicht vollständig ausgeschlossen werden. Verlag, Autoren und ggf. Übersetzer übernehmen keine juristische Verantwortung oder irgendeine Haftung für eventuell verbliebene fehlerhafte Angaben und deren Folgen. Alle Rechte, auch die des auszugsweisen Nachdrucks, der Vervielfältigung und Verbreitung in besonderen Verfahren wie fotomechanischer Nachdruck, Fotokopie, Mikrokopie, elektronische Datenaufzeichnung einschließlich Speicherung und Übertragung auf weitere Datenträger sowie Übersetzung in andere Sprachen, behält sich der Autor vor. 1. Auflage 2011 To the memory of my father, Gebhard Zimmermann Acknowledgment First of all, I want to thank Prof. Dr.-Ing. Stefan Heinen. This thesis would not have been possible without him, as he gave me the opportunity to work on this exciting topic and shared his rich experience in the field of RF and analog circuit and system design with me.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO CMOS RF Power Amplifier Design Approaches for Wireless Communications a Dissertation Submitt
    UNIVERSITY OF CALIFORNIA, SAN DIEGO CMOS RF Power Amplifier Design Approaches for Wireless Communications A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Electrical Engineering (Electronic Circuits and Systems) by Sataporn Pornpromlikit Committee in charge: Professor Peter M. Asbeck, Chair Professor Prabhakar R. Bandaru Professor Andrew C. Kummel Professor Lawrence E. Larson Professor Paul K.L. Yu 2010 Copyright Sataporn Pornpromlikit, 2010 All rights reserved. The dissertation of Sataporn Pornpromlikit is approved, and it is acceptable in quality and form for publication on micro- film and electronically: Chair University of California, San Diego 2010 iii DEDICATION To my family. iv EPIGRAPH ”Education is what remains after one has forgotten what one has learned in school.” — Albert Einstein v TABLE OF CONTENTS Signature Page................................... iii Dedication...................................... iv Epigraph.......................................v Table of Contents.................................. vi List of Figures.................................... viii List of Tables.................................... xi Acknowledgements................................. xii Vita......................................... xiv Abstract of the Dissertation............................. xv Chapter 1 Introduction.............................1 1.1 CMOS Technology and Scaling...............2 1.2 Toward Fully-Integrated CMOS Transceivers........4 1.3 Power Amplifier Design...................5
    [Show full text]
  • Pulse-Width Modulated RF Transmitters
    Linköping Studies in Science and Technology Thesis No 1822 Pulse-Width Modulated RF Transmitters Muhammad Fahim Ul Haque Division of Computer Engineering Department of Electrical Engineering Linköping University SE–581 83 Linköping, Sweden Linköping 2017 Linköping Studies in Science and Technology Thesis No 1822 Muhammad Fahim Ul Haque [email protected] www.da.isy.liu.se Division of Computer Engineering Department of Electrical Engineering Linköping University SE–581 83 Linköping, Sweden Copyright © 2017 Muhammad Fahim Ul Haque, unless otherwise noted. All rights reserved. ISBN 978-91-7685-598-0 ISSN 0345-7524 IEEE holds the copyright for Papers B, E, and F. Printed by LiU-Tryck, Linköping, Sweden 2017 To my mother, father, and uncle (mamoo), Abstract The market for wireless portable devices has grown significantly over the recent years. Wireless devices with ever-increased functionality require high rate data transmission and reduced costs. High data rate is achieved through communi- cation standards such as LTE and WLAN, which generate signals with high peak-to-average-power ratio (PAPR), hence requiring a power amplifier (PA) that can handle a large dynamic range signal. To keep the costs low, modern CMOS processes allow the integration of the digital, analog and radio functions on to a single chip. However, the design of PAs with large dynamic range and high efficiency is challenging due to the low voltage headroom. To prolong the battery life, the PAs have to be power-efficient as they consume a sizable percentage of the total power. For LTE and WLAN, traditional transmitters operate the PA at back-off power, below their peak efficiency, whereas pulse-width modulation (PWM) transmitters use the PA at their peak power, resulting in a higher efficiency.
    [Show full text]
  • Pseudo-Polar Modulation for Radio Transmitters Pseudopolare Modulation Für Funksender Modulation Pseudopolaire Pour Emetteurs Radio
    (19) TZZ_66_ __T (11) EP 1 661 241 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: H03C 5/00 (2006.01) 05.12.2012 Bulletin 2012/49 (86) International application number: (21) Application number: 04778052.3 PCT/US2004/022345 (22) Date of filing: 13.07.2004 (87) International publication number: WO 2005/020430 (03.03.2005 Gazette 2005/09) (54) PSEUDO-POLAR MODULATION FOR RADIO TRANSMITTERS PSEUDOPOLARE MODULATION FÜR FUNKSENDER MODULATION PSEUDOPOLAIRE POUR EMETTEURS RADIO (84) Designated Contracting States: (72) Inventor: DENT, Paul, W. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Pittsboro, NC 27312 (US) HU IE IT LI LU MC NL PL PT RO SE SI SK TR (74) Representative: Lundqvist, Alida Maria Therése et (30) Priority: 11.08.2003 US 639164 al BRANN AB (43) Date of publication of application: P.O. Box 12246 31.05.2006 Bulletin 2006/22 102 26 Stockholm (SE) (60) Divisional application: (56) References cited: 10179396.6 / 2 278 703 EP-A- 1 035 701 GB-A- 2 363 535 US-A- 5 420 536 US-B1- 6 194 963 (73) Proprietor: Telefonaktiebolaget L M Ericsson (Publ) 12625 Stockholm (SE) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid.
    [Show full text]
  • Digital Polar Transmitter for Multi-Band OFDM Ultra-Wideband
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ScholarBank@NUS DIGITAL POLAR TRANSMITTER FOR MULTI-BAND OFDM ULTRA-WIDEBAND LOKE WING FAI A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF ENGINEERING DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2008 ABSTRACT Multi-Band Orthogonal Frequency Division Modulation (MB-OFDM) Ultra- Wideband (UWB) suffers from a large peak-to-average ratio (PAR). Systems with large PAR require the linear power amplifier (PA) to back off from its maximum output power to ensure that the peak of the power is within the linear range of operation, hence, resulting in poor efficiency. Although the problem of low power efficiency and high PAR may be solved by polar modulation, the performance of polar transmitter is often degraded by non-ideal implementations. This thesis studies the requirements for the envelope and phase signals in polar transmitter for UWB at system level. Results show that the bandwidth of the phase in the polar transmitter needs to be several times the bandwidth of in-phase (I) and quadrature phase (Q) in order to pass the Error Vector Magnitude (EVM) requirement in ECMA standard. On the other hand, the bandwidth of the amplitude does not need to have a bandwidth as large as the bandwidth of the phase – it needs to be only slightly larger than the bandwidth of I/Q. To take advantage of the advancement of deep-submicron semiconductor technology which favors more digital circuitries, a new digital polar transmitter (DPT) for MB- OFDM UWB is proposed.
    [Show full text]
  • A 2.4 Ghz Phase Modulator for a Wlan Ofdm Polar Transmitter in 0.18 Um Cmos
    A 2.4 GHZ PHASE MODULATOR FOR A WLAN OFDM POLAR TRANSMITTER IN 0.18 UM CMOS A Dissertation by SHOKOUFEH ARBABI Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, Kamran Entesari Committee Members, Sunil Khatri Samuel Palermo Ben Zoghi Head of Department, Chanan Singh December 2014 Major Subject: Electrical Engineering Copyright 2014 Shokoufeh Arbabi ABSTRACT This research focuses on the design and implementation of a digital active phase modulator path of a polar transmitter in the case of orthogonal frequency division multiplex WLAN application. The phase modulation path of the polar transmit- ter provides a constant envelope phase modulated signal to the Power amplifier (PA) , operating in nonlinear high efficient switching mode. The core design of the phase modulator is based on linear vector-sum phase shifting topology to differential quadrature input signals. The active phase shifter consists of a DAC that generates binary weighted currents for I and Q branches and differential signed adder that vector-sums the generated quadrature currents to generate the phase at the output.6 bits control the phase shifter, creating 64 states with the resolution of 5:625 ◦ for the whole 360 ◦. The linear (binary weighted) vector-sum technique generates a reduc- tion in the resultant amplitude that should be taken into consideration in case of nonlinear PA in polar transmission. On the other hand, the digital phase informa- tion is applied as the control bits to the phase shifter that determine the weightings and the signs of the I and Q vectors.
    [Show full text]
  • Class E Amplifiers and Their Modulation Behaviour
    Class E Amplifiers and their Modulation Behaviour David Paul Kimber A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY Electronic, Electrical and Computer Engineering School of Engineering The University of Birmingham December 2005 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT The Class E power amplifier has very high drain efficiency under quasi-static conditions, and is a good candidate for Envelope Elimination and Restoration (EER) or other polar techniques. Unfortunately it has an unusual carrier frequency response, for which no analytic expression was known; this may have limited commercial use of the circuit. Two new steady state analyses are presented, which give the carrier frequency response in simple form, together with expressions for component values. Good agreement with measured data and existing numerical solutions is seen. Previous attempts at characterising the amplitude modulation (AM) behaviour of this circuit have assumed that it can be modelled as a first order low pass filter. It is shown that Class E AM can be modelled as an equivalent circuit, which behaves as a second order low pass filter.
    [Show full text]
  • Energy Efficient Wireless Transmitters: Polar and Direct-Digital Modulation Architectures
    Energy Efficient Wireless Transmitters: Polar and Direct-Digital Modulation Architectures Jason Thaine Stauth Seth R. Sanders Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2009-22 http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-22.html February 4, 2009 Copyright 2009, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Energy Efficient Wireless Transmitters: Polar and Direct-Digital Modulation Architectures by Jason Thaine Stauth B.A. (Colby College) 1999 B.E. (Dartmouth College) 2000 M.S. (University of California, Berkeley) 2006 A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, BERKELEY Committee in Charge Professor Seth R. Sanders, Chair Professor Ali M. Niknejad Professor Paul K. Wright Fall 2008 The dissertation of Jason Thaine Stauth is approved: Chair Date Date Date University of California, Berkeley Fall 2008 JV`$7``1H1VJ 1`VCV`:JI1 V`7QC:`:JR1`VH R1$1 :CQR%C: 1QJ `H.1 VH %`V Q]7`1$. 7 :QJ.:1JV :% . 1 G `:H JV`$7``1H1VJ 1`VCV`:JI1 V`7QC:`:JR 1`VH R 1$1 :C"QR%C: 1QJ #`H.1 VH %`V 7 :QJ.:1JV :% .
    [Show full text]
  • A Fully-Integrated All-Digital Outphasing Transmitter for Wireless
    A Fully-Integrated All-Digital Outphasing Transmitter for Wireless Communications A Dissertation Presented to The Academic Faculty by Kwan-Woo Kim In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Electrical and Computer Engineering Georgia Institute of Technology December 2009 Copyright 2009 by Kwan-Woo Kim A Fully-Integrated All-Digital Outphasing Transmitter for Wireless Communications Approved by: Dr. Joy Laskar, Advisor Dr. Emmanouil M. Tentzeris School of Electrical and Computer School of Electrical & Computer Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Chang-Ho Lee Dr. David E. Schimmel School of Electrical & Computer School of Electrical & Computer Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Ravi V. Bellamkonda Department of Biomedical Engineering Date Approved: Nov. 06, 2009 Georgia Institute of Technology ACKNOWLEDGEMENTS First, I would like to appreciate the enthusiastic supervision of my research advisor, Professor Joy Laskar. He has always supported my research with great motivation and provided an excellent research environment. Without his guidance and support, this research would not be completed. I am also grateful to my committee members, Professor Emmanouil M. Tentzeris, Professor Chang-Ho Lee, Professor David E. Schimmel, and Professor Ravi V. Bellamkonda for their time in reviewing my thesis. I would like to specially thank Dr. Kyutae Lim for his helpful guidance, deep discussion through the research work. I also would like to thank Dr. Chang-Ho Lee again for his generous support for my research. I am greatly indebted my colleague members in Microwave Application Group (MAG) for making good environment as a team supporting each other.
    [Show full text]
  • AD9914 (Rev. E)
    3.5 GSPS Direct Digital Synthesizer with 12-Bit DAC Data Sheet AD9914 FEATURES FUNCTIONAL BLOCK DIAGRAM 3.5 GSPS internal clock speed AD9914 HIGH SPEED PARALLEL Integrated 12-bit DAC MODULATION Frequency tuning resolution to 190 pHz PORT 16-bit phase tuning resolution 12-bit amplitude scaling Programmable modulus Automatic linear and nonlinear frequency sweeping LINEAR SWEEP 3.5GSPS DDS CORE 12-BIT DAC capability BLOCK 32-bit parallel datapath interface 8 frequency/phase offset profiles Phase noise: −128 dBc/Hz (1 kHz offset at 1396 MHz) Wideband SFDR < −50 dBc Serial or parallel input/output control REF CLK 1.8 V/3.3 V power supplies MULTIPLIER TIMING AND CONTROL Software and hardware controlled power-down 88-lead LFCSP package PLL REF CLK multiplier SERIAL OR PARALLEL Phase modulation capability DATA PORT Amplitude modulation capability 10836-001 APPLICATIONS Figure 1. Agile LO frequency synthesis Programmable clock generator FM chirp source for radar and scanning systems Test and measurement equipment Acousto-optic device drivers Polar modulator Fast frequency hopping Rev. E Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Tel: 781.329.4700 ©2012–2016 Analog Devices, Inc.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,826,554 B2 Haque Et Al
    US007826554B2 (12) United States Patent (10) Patent No.: US 7,826,554 B2 Haque et al. (45) Date of Patent: Nov. 2, 2010 (54) DIGITAL TRANSMITTER 6,560,296 B1 5/2003 Glaset al. 6,587,010 B2 * 7/2003 Wagh et al. ................. 332,105 (75) Inventors: Tanbir Haque, Jackson Heights, NY 6,801,784 B1 10, 2004 Rozenblit et al. ... 455,522 (US); Leonid Kazakevich, Plainview, 7,092,269 B1* 8/2006 Westberg .................... 363 132 NY (US) 7,158,494 B2 1/2007 Sander et al. 2004/0081252 A1 4/2004 Hsu 2004/0203472 A1* 10, 2004 Chien .......................... 455.68 (73) Assignee: estigital Technology Corporation, 2005/0123029 A1* 6/2005 Vorenkamp et al. ......... 375.222 Wilmington, DE (US) 2005/0135282 A1* 6/2005 Miyoshi et al. ............. 370,278 (*) Notice: Subject to any disclaimer, the term of this 2007/0030.19657. A1A 6'572/2007 Jenkins"... et al. ........... 3427357.1 455,522 patent is extended or adjusted under 35 2009/0034660 A1* 2/2009 May et al. ................... 375/340 U.S.C. 154(b) by 665 days. 2009/0275290 A1* 11/2009 Hosokawa ............... 455/67.13 (21) Appl. No.: 11/685,003 * cited by examiner 1-1. Primary Examiner David C Payne (22) Filed: Mar 12, 2007 Assistant Examiner—Leon-Viet Q Nguyen (65) Prior Publication Data (74) Attorney, Agent, or Firm Volpe and Koenig PC US 2007/0211821 A1 Sep. 13, 2007 (57) ABSTRACT Related U.S. Application Data In a digital Cartesian modulation transmitter, an encodergen erates 1-bit logic signals from in-phase and quadrature sig (60) Provisional application No.
    [Show full text]