Herpetology, Fourth Edition Pough • Andrews • Crump • Savitzky • Wells • Brandley

Total Page:16

File Type:pdf, Size:1020Kb

Herpetology, Fourth Edition Pough • Andrews • Crump • Savitzky • Wells • Brandley Herpetology, Fourth Edition Pough • Andrews • Crump • Savitzky • Wells • Brandley Literature Cited Abdala V, Manzano AS, Nieto L, Diogo R. 2009. Comparative myology of Leiosauridae (Squamata) and its bearing on their phylogenetic relationships. Belgian Journal of Zoology 139: 109–123. [4] Abts MA. 1987. Environment and variation in life history traits of the chuckwalla. Ecological Monographs 57: 215–232. [16] Adalsteinsson SA, Branch WR, Trape S, Vitt LJ, Hedges SB. 2009. Molecular phylogeny, classification, and biogeography of snakes of the family Leptotyphlopidae (Reptilia, Squamata). Zootaxa 2244: 1–50. [4] Adams MJ. 1993. Summer nests of the tailed frog (Ascaphus truei) from the Oregon coast range. Northwestern Naturalist 74: 15–18. [3] Ade CM, Boone MD, Puglis HJ. 2010. Effects of an insecticide and potential predators on green frogs and northern cricket frogs. Journal of Herpetology 44: 591–600. [17] Adkins-Regan E, Reeve HK. 2014. Sexual dimorphism in body size and the origin of sex- determination systems. American Naturalist 183: 519–536. [9] Aerts P, Van Damme R, D’Août K, Van Hooydonck B. 2003. Bipedalism in lizards: Whole-body modelling reveals a possible spandrel. Philosophical Transactions of the Royal Society London B 358: 1525–1533. [10] Afacan NJ, Yeung ATY, Pena OM, Hancock REW. 2012. Therapeutic potential of host defense peptides in antibiotic-resistant infections. Current Pharmaceutical Design 18: 807–819. [1] Agarwal I, Dutta-Roy A, Bauer AM, Giri VB. 2012. Rediscovery of Geckoella jeyporensis (Squamata: Gekkonidae), with notes on morphology, coloration and habitat. Hamadryad 36: 17–24 [17] Agassiz L. 1857. Contributions to the Natural History of the United States of America, Vol. 1, pp. 282–284. Little, Brown and Co., Boston. www.geology.19thcenturyscience.org/books/1857-Agassiz-NatHist/Vols-I- II/htm/doc.html [7] Aguilar C, Pacheco V. 2005. Contribución de la morfología bucofaríngea larval a la filogenia de Batrachophrynus y Telmatobius. Estudios sobre las ranas andinas de los géneros Telmatobius y Batrachophrynus (Anura: Leptodactylidae). Monografías de Herpetología 7: 219–238. [3] Aguilar C. Valencia N. 2009. Relaciones filogenéticas entre telmatobiinidos (Anura, Ceratophryidae, Telmatobiinae) de los Andes centrales basado en la morfología de los estados larval y adultos. Revista Peruana de Biología 16: 43–50. [3] Agundey I. 1997. Predator of the naked mole rat Heterocephalus glaber. East Africa Natural History Society Bulletin 27: 10. [4] © 2016 Sinauer Associates, Inc. 1 Akani GC, Luiselli L. 2001. Ecological studies on a population of the water snake Grayia smythii in a rainforest swamp of the Niger Delta, Nigeria. Contributions to Zoology 70: 139–146. [4] Akcali CK, Pfenning DW. 2014. Rapid evolution of mimicry following local model extinction. Biology Letters 10: 20140304. doi: 10.1098/rsbl.2014.0304. [15] Alberch P. 1981. Convergence and parallelism in foot morphology in the Neotropical salamander genus Bolitoglossa I. Function. Evolution 35: 84–100. [10] Alberch P, Alberch J. 1981. Heterochronic mechanisms of morphological diversification and evolutionary change in the Neotropical salamander Bolitoglossa occidentalis (Amphibia: Plethodontidae). Journal of Morphology 167: 249–264. [10] Albert EM, Zardoya R, García-París M. 2007. Phylogeographical and speciation patterns in subterranean worm lizards of the genus Blanus (Amphisbaenia: Blanidae). Molecular Ecology 16: 1519–1531. [4] Alberts AC. 1993. Chemical and behavioral studies of femoral gland secretions in iguanid lizards. Brain Behavior and Evolution 41: 255–260. [13] Alberts AC, 1989. Ultraviolet sensitivity in desert iguanas: Implications for pheromone detection. Animal Behaviour 38: 129–137. [13] Alberts AC, Rostal DC, Lance VA. 1994. Studies on the chemistry and social significance of chin gland secretions of the desert tortoise, Gopherus agassizii. Herpetological Monographs 8: 116–124. [13] Albino AM. 1996. The South American fossil Squamata (Reptilia: Lepidosauria). Münchner Geowissenschaftliche Abhandlungen A (Geologie und Paläontologie) 30: 185–202. [4] Alcala AC, Brown WC. 1982. Reproductive biology of some species of Philautus (Rhacophoridae) and other Philippine anurans. Kalikasan, The Philippine Journal of Biology 11: 203–226. [3] Aldridge, RD, Duvall D. 2002. Evolution of the mating season in the pit vipers of North America. Herpetological Monographs 16: 1–25. [9] Alfaro ME, Arnold SJ 2001. Molecular systematics and evolution of Regina and the thamnophiine snakes. Molecular Phylogenetics and Evolution 21: 408-423. [4] Alfaro ME, Karns DR, Voris HK, Brock CD, Stuart BL. 2008. Phylogeny, evolutionary history, and biogeography of Oriental-Australian rear-fanged water snakes (Colubroidea: Homalopsidae) inferred from mitochondrial and nuclear DNA sequences. Molecular Phylogenetics and Evolution 46: 576–593. [4] Alföldi J, Di Palma F, Grabherr M, Williams C, Kong L, Mauceli E, Lindblad-Toh K. 2011. The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 477: 587–591. [4] Alford RA. 1999. Ecology. In McDiarmid RW, Altig R (eds.). Tadpoles: The Biology of Anuran Larvae, pp. 240–278. University of Chicago Press, Chicago IL. [8, 16] Alibardi L. 1998. Presence of acid phosphatase in the epidermis of the regenerating tail of the lizard (Podarcis muralis) and its possible role in the process of shedding and keratinization. Journal of Zoology 246: 379–390. [4] Alibardi L. 2005. Proliferation in the epidermis of chelonians and growth of the horny scutes. Journal of Morphology 265: 52–69. [4] © 2016 Sinauer Associates, Inc. 2 Alibardi L, Minelli D. 2015. Sites of cell proliferation during scutemorphogenesis in turtle and alligator are different from those of lepidosaurian scales. Acta Zoologica, DOI 10.1111/azo.12114. [4] Allentoft ME, O’Brien J. 2010. Global amphibian declines, loss of genetic diversity and fitness: A review. Diversity 2: 47–71. [1] Altherr S, Goyenechea A, Schubert D. 2011. Canapés to Extinction: The International Trade in Frogs’ Legs and its Ecological Impact. A report by Pro Wildlife, Defenders of Wildlife, and Animal Welfare Institute, Munich (Germany) and Washington DC (USA). [17] Altig R, McDiarmid RW. 2007. Morphological diversity and evolution of egg and clutch structure in amphibians. Herpetological Monographs 27: 1–32. [8] Amarasinghe AT, Hallerman J, Sidik I, Campbell PD, Supriatna J, Ineich I. 2015. Two new species of the genus Cylindrophis Wagler, 1828 (Squamata: Cylindrophiidae) from Southeast Asia. Amphibian and Reptile Conservation 9: 34–51. [4] Amaro RC, Pavan D, Rodrigues MT. 2009. On the generic identity of Odontophrynus moratoi Jim Caramaschi 1980 (Anura, Cycloramphidae). Zootaxa 2071: 1–61. [3] Amat, F, Wollenberg KC, Vences M. 2013. Correlates of eye colour and pattern in mantellid frogs. Salamandra 49: 7–17. [3] Amemiya F, Nakano M, Goris RC, Kadota T, Atobe Y, Funakoshi K, Hiniya K, et al. 1999. Microvasculature of crotaline snake pit organs: Possible function as a heat exchange mechanism. The Anatomical Record 254: 107–115. [4] Amer SA, Kumazawa Y. 2005. Mitochondrial DNA sequences of the Afro-Arabian spiny-tailed lizards (genus Uromastyx; family Agamidae): Phylogenetic analyses and evolution of gene arrangements. Biological Journal of the Linnean Society 85: 247–260. [5] American Pet Products Association. 2013. www.americanpetproducts.org/press_industrytrends.asp. [17] Amiel JJ, Lindström, Shine R. 2013. Egg incubation effects generate positive correlations between size, speed and learning ability in young lizards. Animal Cognition 17: 337–347 doi: 10.1007/s10071-013-0665–4. [15] Amiel JJ, Shine R. 2012. Hotter nests produce smarter young lizards. Biology Letters 8: 372–374. [9, 15] Amorim JDCG de, Travnik I, De Sousa BM. 2015. Simplified three-dimensional model provides anatomical insights in lizards’ caudal autotomy as printed illustration. Anais da Academia Brasileira de Ciências 87: 63–70. [4] Ancona S, Drummond H, Zaldívar-Rae J. 2010. Male whiptail lizards adjust energetically costly mate guarding to male-male competition and female reproductive value. Animal Behaviour 79: 75–82. [14] Anderson CV, Deban SM. 2012. Thermal effects on motor control and in vitro muscle dynamics of the ballistic tongue apparatus in chameleons. Journal of Experimental Biology 215: 4345–4357. [11] Anderson CV, Larghi NP, Deban SM. 2014. Thermal effects on the performance, motor control and muscle dynamics of ballistic feeding in the salamander Eurycea guttolineata. Journal of Experimental Biology 217: 3146–3158. [11] Anderson JS. 2001. The phylogenetic trunk: maximal inclusion of taxa with missing data in an analysis of the Lepospondyli (Vertebrata, Tetrapoda). Systematic Biology 50: 170–193. [2] © 2016 Sinauer Associates, Inc. 3 Anderson JS. 2008. Focal review: The origin(s) of modern amphibians. Evolutionary Biology 35: 231–247. [2] Anderson JS, Reisz RR, Scott D, Fröbisch NB, Sumida SS. 2008. A stem batrachian from the Early Permian of Texas and the origin of frogs and salamanders. Nature 453: 515–518. [2] Anderson RA. 1993. An analysis of foraging in the lizard, Cnemidophorus tigris. In Wright JW, Vitt LJ (eds.). Biology of Whiptail Lizards (Genus Cnemidophorus), pp. 83–116. Oklahoma Museum of Natural History, Norman, OK. [12] Andersson M. 1994. Sexual Selection. Princeton University Press, Princeton, NJ. [14] Andrade DV, Cruz-Neto AP, Abe AS, Wang T. 2005. Specific dynamic action in ectothermic vertebrates: A review of the determinants of postprandial metabolic response
Recommended publications
  • El Grado De Protección De Los Anfibios Patagónicos De Argentina
    DiciembreEcología Austral de 2007 17:269-279. Diciembre PROTECCIÓN 2007 DE ANFIBIOS PATAGÓNICOS 269 Asociación Argentina de Ecología El grado de protección de los anfibios patagónicos de Argentina * CARMEN ÚBEDA & DORA GRIGERA Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, Bariloche, Río Negro, Argentina. RESUMEN. En este trabajo se evalúa si las áreas protegidas de la Patagonia brindan una protección adecuada a los anfibios de esta región. Se analizó la distribución y la categoría de conservación de 31 taxa de anuros en función de la ubicación de las áreas protegidas, particularmente del sistema nacional. Seis taxa no se registraron en unidad de protección alguna, siendo la mayoría de ellos típicos de estepa. Todos los anfibios de bosque se encuentran al menos en un área protegida. Cinco de los taxa que se consideran amenazados, y uno insuficientemente conocido, no están comprendidos en ninguna unidad de protección. Otros anfibios amenazados, incluyendo microendemismos y un género monotípico, están en áreas que por falta de implementación o control no garantizan su conservación. La contigüidad entre varios Parques Nacionales argentinos y chilenos a lo largo de los Andes patagónicos contribuye a la protección de los anfibios de bosque, mientras que esta situación favorece a una sola de las especies esteparias. Se concluye que las razones históricas que influyeron en la ubicación de las áreas protegidas, afectaron positivamente a la batracofauna de los bosques, quedando fuera de las áreas nacionales la mayoría de los taxa endémicos de estepa, cuya protección en áreas no pertenecientes al sistema nacional es deficiente o nula. [Palabras clave: anuros, conservación, áreas protegidas, declinación de anfibios, amenazas a la biodiversidad, Patagonia] ABSTRACT.
    [Show full text]
  • Studies on African Agama III. Resurrection of Agama Agama Turuensis Loveridge, 1932 (Squamata: Agamidae) from Synonymy and Elevation to Species Rank
    Th e status of Agama agama turuensis SALAMANDRA 44 1 35-42 Rheinbach, 20 February 2008 ISSN 0036-3375 Studies on African Agama III. Resurrection of Agama agama turuensis Loveridge, 1932 (Squamata: Agamidae) from synonymy and elevation to species rank Philipp Wagner, Patrick Krause & Wolfgang Böhme Abstract. New material of Agama agama Linnaeus, 758 from Mount Hanang, Tanzania is indistingu- ishable from the type material of Agama agama turuensis Loveridge, 932, a taxon which is so far con- sidered to be a synonym of Agama lionotus elgonis Lönnberg, 922. Our comparative morphological study demonstrates turuensis is most similar to Agama mwanzae Loveridge, 923 and Agama kaimosae Loveridge, 935, and distinct from both A. agama and A. lionotus Boulenger, 896. Agama turuensis can likewise neither be assigned to A. mwanzae nor A. kaimosae but has to be rather considered as a dis- tinct species. Key words. Squamata, Agamidae, Agama turuensis, new status, Africa, Tanzania, Mount Hanang, taxo- nomy. Introduction and subdivided the genus Agama into the fol- lowing six genera: Agama, Stellio, Trapelus, Th e genus Agama is endemic to Africa and Pseudotrapelus, Brachysaura and Xenagama. its species are very widespread in the savan- Later, Joger (99) identifi ed both Laudakia nah regions of Africa. Currently, 34 species and Phrynocephalus as sister taxa of Agama. are recognized but the genus in general, and At present the genus can be divided into especially the Agama agama species complex three diff erent species groups: the Agama and the clade including the East African are agama group which includes the West Af- in need of a thorough taxonomic revision.
    [Show full text]
  • Fauna of Australia 2A
    FAUNA of AUSTRALIA 9. FAMILY MICROHYLIDAE Thomas C. Burton 1 9. FAMILY MICROHYLIDAE Pl 1.3. Cophixalus ornatus (Microhylidae): usually found in leaf litter, this tiny frog is endemic to the wet tropics of northern Queensland. [H. Cogger] 2 9. FAMILY MICROHYLIDAE DEFINITION AND GENERAL DESCRIPTION The Microhylidae is a family of firmisternal frogs, which have broad sacral diapophyses, one or more transverse folds on the surface of the roof of the mouth, and a unique slip to the abdominal musculature, the m. rectus abdominis pars anteroflecta (Burton 1980). All but one of the Australian microhylids are small (snout to vent length less than 35 mm), and all have procoelous vertebrae, are toothless and smooth-bodied, with transverse grooves on the tips of their variously expanded digits. The terminal phalanges of fingers and toes of all Australian microhylids are T-shaped or Y-shaped (Pl. 1.3) with transverse grooves. The Microhylidae consists of eight subfamilies, of which two, the Asterophryinae and Genyophryninae, occur in the Australopapuan region. Only the Genyophryninae occurs in Australia, represented by Cophixalus (11 species) and Sphenophryne (five species). Two newly discovered species of Cophixalus await description (Tyler 1989a). As both genera are also represented in New Guinea, information available from New Guinean species is included in this chapter to remedy deficiencies in knowledge of the Australian fauna. HISTORY OF DISCOVERY The Australian microhylids generally are small, cryptic and tropical, and so it was not until 100 years after European settlement that the first species, Cophixalus ornatus, was collected, in 1888 (Fry 1912). As the microhylids are much more prominent and diverse in New Guinea than in Australia, Australian specimens have been referred to New Guinean species from the time of the early descriptions by Fry (1915), whilst revisions by Parker (1934) and Loveridge (1935) minimised the extent of endemism in Australia.
    [Show full text]
  • Conservation Status of Amphibians of Argentina: an Update and Evaluation of National Assessments
    Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 11(1) [General Section]: 36–44 (e135). Conservation status of Amphibians of Argentina: An update and evaluation of national assessments 1,3Marcos Vaira, 1Laura C. Pereyra, 1Mauricio S. Akmentins, and 2Jon Bielby 1Instituto de Ecorregiones Andinas (INECOA), CONICET, Universidad Nacional de Jujuy, Av. Bolivia 1711 (4600), San Salvador de Jujuy, ARGENTINA 2Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UNITED KINGDOM Abstract.—We present a review on the conservation status of the 177 species and subspecies of amphibians of Argentina and compare the first national assessment, conducted in 2000, with the most recent one, from 2012, to determine changes in conservation status over time. We also evaluate the degree of taxonomic and geographic non-randomness in extinction risk among these taxa. The present study shows an improvement in the knowledge of amphibian diversity in Argentina, but also increasing evidence of population declines and species absences. Twenty-two species showed a genuine increase in threat status between national assessments, and habitat loss and/or degradation, chytrid fungus infection, and introduction of invasive species have been reported as the main threats. Randomization tests showed families Telmatobiidae and Batrachylidae to be over-threatened and Hylidae and Leptodactylidae to be significantly under-threatened. Also, four ecoregions were shown to be significantly over-threatened (Patagonian Steepe, Patagonian Woodlands, Puna, and Yungas Forests). This evaluation help to identify groups of species that face similar suites and intensities of threat as a result of their overlapping geographical distributions and shared biological susceptibility as a result of their evolutionary history.
    [Show full text]
  • Ecology and Demography of the Critically Endangered Kandian Torrent Toad Adenomus Kandianus: a Long-Lost Endemic Species of Sri Lanka
    Ecology and demography of the Critically Endangered Kandian torrent toad Adenomus kandianus: a long-lost endemic species of Sri Lanka S URANJAN K ARUNARATHNA,SUJAN H ENKANATHTHEGEDARA,DINESH G ABADAGE M ADHAVA B OTEJUE,MAJINTHA M ADAWALA and T HILINA D. SURASINGHE Abstract The tropical island nation of Sri Lanka is a bio- Keywords Adenomus kandianus, Amphibia, Bufonidae, diversity hotspot with a high diversity and endemism of am- conservation, Critically Endangered, montane streams, phibians. The endemic, stream-dwelling Kandian torrent Sri Lanka, tropical rainforests toad Adenomus kandianus is Critically Endangered and was considered to be extinct until its rediscovery in . The species is now known from two localities in tropical Introduction montane forests. We conducted a -year study using tran- sect surveys and opportunistic excursions to assess habitat he South Asian tropical island of Sri Lanka is rich in associations, demographics and abundance of A. kandianus Tamphibian diversity (Meegaskumbura et al., ). in and around Pidurutalagala Conservation Forest. We re- Of the country’s described amphibian species corded a mean of . post-metamorphs per year, with a (c. %) are endemic and . % are restricted to rainforests density of , individual per m , with occurrence within (Surasinghe, ; Wickramasinghe et al., ). Sri Lanka’s a narrow extent (c. km ) of the stream channel. amphibians are threatened by deforestation, environmental Behaviour and microhabitat selection varied depending on pollution and road traffic (Pethiyagoda et al., ; sex and stage of maturity. The species preferred moderately Karunarathna et al., ). These anthropogenic stressors have sized montane streams with rocky substrates and woody contributed to the extinction of amphibian species, and de- debris, colder temperatures, and closed-canopy, intact ri- clining populations of nearly half of the extant species (MOE, parian forests.
    [Show full text]
  • Bibliography and Scientific Name Index to Amphibians
    lb BIBLIOGRAPHY AND SCIENTIFIC NAME INDEX TO AMPHIBIANS AND REPTILES IN THE PUBLICATIONS OF THE BIOLOGICAL SOCIETY OF WASHINGTON BULLETIN 1-8, 1918-1988 AND PROCEEDINGS 1-100, 1882-1987 fi pp ERNEST A. LINER Houma, Louisiana SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE NO. 92 1992 SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE The SHIS series publishes and distributes translations, bibliographies, indices, and similar items judged useful to individuals interested in the biology of amphibians and reptiles, but unlikely to be published in the normal technical journals. Single copies are distributed free to interested individuals. Libraries, herpetological associations, and research laboratories are invited to exchange their publications with the Division of Amphibians and Reptiles. We wish to encourage individuals to share their bibliographies, translations, etc. with other herpetologists through the SHIS series. If you have such items please contact George Zug for instructions on preparation and submission. Contributors receive 50 free copies. Please address all requests for copies and inquiries to George Zug, Division of Amphibians and Reptiles, National Museum of Natural History, Smithsonian Institution, Washington DC 20560 USA. Please include a self-addressed mailing label with requests. INTRODUCTION The present alphabetical listing by author (s) covers all papers bearing on herpetology that have appeared in Volume 1-100, 1882-1987, of the Proceedings of the Biological Society of Washington and the four numbers of the Bulletin series concerning reference to amphibians and reptiles. From Volume 1 through 82 (in part) , the articles were issued as separates with only the volume number, page numbers and year printed on each. Articles in Volume 82 (in part) through 89 were issued with volume number, article number, page numbers and year.
    [Show full text]
  • Vernacular Name AMPHIUMA, ONE-TOED (Aka: Congo Eel, Congo Snake, Ditch Eel, Fish Eel and Lamprey Eel)
    1/6 Vernacular Name AMPHIUMA, ONE-TOED (aka: Congo Eel, Congo Snake, Ditch Eel, Fish Eel and Lamprey Eel) GEOGRAPHIC RANGE Eastern Gulf coast. HABITAT Wetlands: slow moving or stagnant freshwater rivers/streams/creeks and bogs, marshes, swamps, fens and peat lands. CONSERVATION STATUS IUCN: Near Threatened (2016). Population Trend: Decreasing. Because of the limited extent of its occurrence and because of the declining extent and quality of its habitat, this species is close to qualifying for Vulnerable. COOL FACTS Amphiumas are commonly known as "Congo eels," a misnomer. First of all, amphiumas are amphibians, rather than fish (which eels are). This notwithstanding, amphiumas bear resemblance to the elongate fishes. It is easy to overlook the diminutive legs, and the lack of any external gills adds to the similarity between the amphiumas and eels. Amphiumas are adapted for digging and tunneling. They seem to spend most of the time in muddy burrows and are rarely observed in the wild. They never fully metamorphose and retain larval characteristics in varying degrees into adulthood: one pair of the larval gill slits is retained and never disappears, no eyelids, no tongue and the presence of 4 gill arches with a single respiratory opening between the 3 rd--4th arches. Amphiumas have two pairs of limbs, and the three species, all of which occur in the S.E. U.S, differ in regard to the number of toes at the ends of these limbs: one, two or three. These amphiumas possess tiny, single-toed limbs, one pair just behind the small gill opening at each side of the neck and another pair just ahead of the longitudinal anal slit .
    [Show full text]
  • The Most Frog-Diverse Place in Middle America, with Notes on The
    Offcial journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 13(2) [Special Section]: 304–322 (e215). The most frog-diverse place in Middle America, with notes on the conservation status of eight threatened species of amphibians 1,2,*José Andrés Salazar-Zúñiga, 1,2,3Wagner Chaves-Acuña, 2Gerardo Chaves, 1Alejandro Acuña, 1,2Juan Ignacio Abarca-Odio, 1,4Javier Lobon-Rovira, 1,2Edwin Gómez-Méndez, 1,2Ana Cecilia Gutiérrez-Vannucchi, and 2Federico Bolaños 1Veragua Foundation for Rainforest Research, Limón, COSTA RICA 2Escuela de Biología, Universidad de Costa Rica, San Pedro, 11501-2060 San José, COSTA RICA 3División Herpetología, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’-CONICET, C1405DJR, Buenos Aires, ARGENTINA 4CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas 7, 4485-661 Vairão, Vila do Conde, PORTUGAL Abstract.—Regarding amphibians, Costa Rica exhibits the greatest species richness per unit area in Middle America, with a total of 215 species reported to date. However, this number is likely an underestimate due to the presence of many unexplored areas that are diffcult to access. Between 2012 and 2017, a monitoring survey of amphibians was conducted in the Central Caribbean of Costa Rica, on the northern edge of the Matama mountains in the Talamanca mountain range, to study the distribution patterns and natural history of species across this region, particularly those considered as endangered by the International Union for Conservation of Nature. The results show the highest amphibian species richness among Middle America lowland evergreen forests, with a notable anuran representation of 64 species.
    [Show full text]
  • THE ORIGIN and EVOLUTION of SNAKE EYES Dissertation
    CONQUERING THE COLD SHUDDER: THE ORIGIN AND EVOLUTION OF SNAKE EYES Dissertation Presented in Partial Fulfillment for the Requirements for the Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Christopher L. Caprette, B.S., M.S. **** The Ohio State University 2005 Dissertation Committee: Thomas E. Hetherington, Advisor Approved by Jerry F. Downhower David L. Stetson Advisor The graduate program in Evolution, John W. Wenzel Ecology, and Organismal Biology ABSTRACT I investigated the ecological origin and diversity of snakes by examining one complex structure, the eye. First, using light and transmission electron microscopy, I contrasted the anatomy of the eyes of diurnal northern pine snakes and nocturnal brown treesnakes. While brown treesnakes have eyes of similar size for their snout-vent length as northern pine snakes, their lenses are an average of 27% larger (Mann-Whitney U test, p = 0.042). Based upon the differences in the size and position of the lens relative to the retina in these two species, I estimate that the image projected will be smaller and brighter for brown treesnakes. Northern pine snakes have a simplex, all-cone retina, in keeping with a primarily diurnal animal, while brown treesnake retinas have mostly rods with a few, scattered cones. I found microdroplets in the cone ellipsoids of northern pine snakes. In pine snakes, these droplets act as light guides. I also found microdroplets in brown treesnake rods, although these were less densely distributed and their function is unknown. Based upon the density of photoreceptors and neural layers in their retinas, and the predicted image size, brown treesnakes probably have the same visual acuity under nocturnal conditions that northern pine snakes experience under diurnal conditions.
    [Show full text]
  • About the Book the Format Acknowledgments
    About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization.
    [Show full text]
  • Download Download
    HAMADRYAD Vol. 27. No. 2. August, 2003 Date of issue: 31 August, 2003 ISSN 0972-205X CONTENTS T. -M. LEONG,L.L.GRISMER &MUMPUNI. Preliminary checklists of the herpetofauna of the Anambas and Natuna Islands (South China Sea) ..................................................165–174 T.-M. LEONG & C-F. LIM. The tadpole of Rana miopus Boulenger, 1918 from Peninsular Malaysia ...............175–178 N. D. RATHNAYAKE,N.D.HERATH,K.K.HEWAMATHES &S.JAYALATH. The thermal behaviour, diurnal activity pattern and body temperature of Varanus salvator in central Sri Lanka .........................179–184 B. TRIPATHY,B.PANDAV &R.C.PANIGRAHY. Hatching success and orientation in Lepidochelys olivacea (Eschscholtz, 1829) at Rushikulya Rookery, Orissa, India ......................................185–192 L. QUYET &T.ZIEGLER. First record of the Chinese crocodile lizard from outside of China: report on a population of Shinisaurus crocodilurus Ahl, 1930 from north-eastern Vietnam ..................193–199 O. S. G. PAUWELS,V.MAMONEKENE,P.DUMONT,W.R.BRANCH,M.BURGER &S.LAVOUÉ. Diet records for Crocodylus cataphractus (Reptilia: Crocodylidae) at Lake Divangui, Ogooué-Maritime Province, south-western Gabon......................................................200–204 A. M. BAUER. On the status of the name Oligodon taeniolatus (Jerdon, 1853) and its long-ignored senior synonym and secondary homonym, Oligodon taeniolatus (Daudin, 1803) ........................205–213 W. P. MCCORD,O.S.G.PAUWELS,R.BOUR,F.CHÉROT,J.IVERSON,P.C.H.PRITCHARD,K.THIRAKHUPT, W. KITIMASAK &T.BUNDHITWONGRUT. Chitra burmanica sensu Jaruthanin, 2002 (Testudines: Trionychidae): an unavailable name ............................................................214–216 V. GIRI,A.M.BAUER &N.CHATURVEDI. Notes on the distribution, natural history and variation of Hemidactylus giganteus Stoliczka, 1871 ................................................217–221 V. WALLACH.
    [Show full text]
  • A Taxonomic Framework for Typhlopid Snakes from the Caribbean and Other Regions (Reptilia, Squamata)
    caribbean herpetology article A taxonomic framework for typhlopid snakes from the Caribbean and other regions (Reptilia, Squamata) S. Blair Hedges1,*, Angela B. Marion1, Kelly M. Lipp1,2, Julie Marin3,4, and Nicolas Vidal3 1Department of Biology, Pennsylvania State University, University Park, PA 16802-5301, USA. 2Current address: School of Dentistry, University of North Carolina, Chapel Hill, NC 27599-7450, USA. 3Département Systématique et Evolution, UMR 7138, C.P. 26, Muséum National d’Histoire Naturelle, 57 rue Cuvier, F-75231 Paris cedex 05, France. 4Current address: Department of Biology, Pennsylvania State University, University Park, PA 16802-5301 USA. *Corresponding author ([email protected]) Article registration: http://zoobank.org/urn:lsid:zoobank.org:pub:47191405-862B-4FB6-8A28-29AB7E25FBDD Edited by: Robert W. Henderson. Date of publication: 17 January 2014. Citation: Hedges SB, Marion AB, Lipp KM, Marin J, Vidal N. 2014. A taxonomic framework for typhlopid snakes from the Caribbean and other regions (Reptilia, Squamata). Caribbean Herpetology 49:1–61. Abstract The evolutionary history and taxonomy of worm-like snakes (scolecophidians) continues to be refined as new molec- ular data are gathered and analyzed. Here we present additional evidence on the phylogeny of these snakes, from morphological data and 489 new DNA sequences, and propose a new taxonomic framework for the family Typhlopi- dae. Of 257 named species of typhlopid snakes, 92 are now placed in molecular phylogenies along with 60 addition- al species yet to be described. Afrotyphlopinae subfam. nov. is distributed almost exclusively in sub-Saharan Africa and contains three genera: Afrotyphlops, Letheobia, and Rhinotyphlops. Asiatyphlopinae subfam. nov. is distributed in Asia, Australasia, and islands of the western and southern Pacific, and includes ten genera:Acutotyphlops, Anilios, Asiatyphlops gen.
    [Show full text]