1 Conquering the Harsh Plc Channel with Qc-Ldpc

Total Page:16

File Type:pdf, Size:1020Kb

1 Conquering the Harsh Plc Channel with Qc-Ldpc CONQUERING THE HARSH PLC CHANNEL WITH QC-LDPC CODES TO ENABLE QOS GUARANTEED MULTIMEDIA HOME NETWORKS By YOUNGJOON LEE A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2013 1 © 2013 Youngjoon Lee 2 To my parents and family 3 ACKNOWLEDGEMENTS First and foremost I would like to mention the deep appreciation to my advisor, Prof. Haniph Latchman. He enthusiastically and continually encourages my study and research works. It has been an honor to be his Ph.D. student, and I appreciate his plentiful research advice and contributions. My gratitude is also extended to all committee members, Prof. Antonio Arroyo, Prof. Janise McNair, and Prof. Richard Newman. I am very appreciative of their willingness to serve on my committee and their valuable advice. I also thank my lab colleagues at Laboratory for Information Systems and Tele- communications (LIST). Our research discussion and your help were precious for my research progress. I will also never forget our memories in Gainesville. Last, but certainly not least, I must acknowledge with tremendous and deep thanks my family and parents. The scholastic life of my father has promoted my research desire. Furthermore, without his unconditional support, my doctoral degree is never acquired. Most of all, I would like to thank and have great admiration for the love, sacrifice and education of my last mother. 4 TABLE OF CONTENTS Page ACKNOWLEDGEMENTS .............................................................................................................4 LIST OF TABLES ...........................................................................................................................7 LIST OF FIGURES .........................................................................................................................8 ABSTRACT...................................................................................................................................10 CHAPTER 1 ERROR CONTROL CODES WITH ADAPTIVE OFDM AND MAC ALGORITHM FOR MULTIMEDIA DATA ON PLC ...........................................................................................12 2 PLC - A COMPETITIVE CANDIDATE FOR MULTIMEDIA COMMUNICATION AND HOME NETWORKING ........................................................................................................17 2.1 Introduction ...................................................................................................................... 17 2.2 Home Networking Standards ........................................................................................... 17 2.2.1 HomePNA ...........................................................................................................17 2.2.2 MoCA ..................................................................................................................18 2.2.3 HomePlug AV .....................................................................................................18 2.2.4 IEEE 802.11n ......................................................................................................18 2.2.5 Ultra Wideband ...................................................................................................18 2.2.6 G.hn .....................................................................................................................19 2.3 Home Networking Technologies ..................................................................................... 19 2.3.1 Phoneline Network ..............................................................................................19 2.3.2 Coax Network ......................................................................................................21 2.3.3 Powerline Network ..............................................................................................23 2.3.4 Wireless Network ................................................................................................25 2.3.4.1 IEEE 802.11n ........................................................................................26 2.3.4.2 Ultra wideband ......................................................................................27 2.3.5 Hybrid - G.hn .......................................................................................................29 2.4 Comparisons .................................................................................................................... 31 2.5 Conclusions...................................................................................................................... 34 3 QOS AUGMENTED CSMA/CA MAC PROTOCOL FOR HIGH SPEED MULTIMEDIA PLC.........................................................................................................................................35 3.1 Introduction ...................................................................................................................... 35 3.2 Related Works ................................................................................................................. 36 3.2.1 Priority Mechanism of IEEE 802.11 ...................................................................36 3.2.2 Priority Supporting Mechanism of HomePlug 1.0 ..............................................37 3.2.3 QoS Guaranty Mechanism of IEEE 802.11e .......................................................39 3.2.4 Connections with IEEE P1905.1 .........................................................................40 5 3.3 Access Mechanism .......................................................................................................... 41 3.3.1 Requirement Analysis .........................................................................................41 3.3.2 Operation Principle of Voice Frame Transmission .............................................42 3.3.3 Operation Principle of Video Frame Transmission .............................................42 3.3.4 Operation Principle of Data Frame Transmission ...............................................43 3.4 Simulation Results ........................................................................................................... 43 3.5 Conclusions...................................................................................................................... 47 4 IMPULSIVE NOISE MITIGATION ALGORITHM IN PLC ...............................................49 4.1 Introduction ...................................................................................................................... 49 4.2 Channel with AWGN and Impulsive Noise .................................................................... 50 4.3 Threshold Setting Algorithm for Impulsive Noise Detection .......................................... 53 4.4 Simulation Results ........................................................................................................... 57 4.5 Conclusions...................................................................................................................... 58 5 ERROR CONTROL CODES WITH ADAPTIVE MULTI-CARRIER OFDM FOR PLC CHANNEL.. ...........................................................................................................................59 5.1 Introduction ...................................................................................................................... 59 5.2 DMT System with Adaptive Modulation ........................................................................ 60 5.3 Low Density Parity Check (LDPC) Codes ...................................................................... 63 5.3.1 Regular and Irregular LDPC Codes ....................................................................64 5.3.2 Iterative Decoding Algorithm ..............................................................................66 5.4 Turbo Codes ..................................................................................................................... 68 5.4.1 Encoder ................................................................................................................68 5.4.2 Decoder ................................................................................................................69 5.5 Simulation Results and Comparison ................................................................................ 71 5.6 Conclusions...................................................................................................................... 73 6 QUASI-CYCLIC (QC) LDPC CODES ON REAL PLC CHANNEL AND G.HN STANDARD...........................................................................................................................74 6.1 Introduction ...................................................................................................................... 74 6.2 Encoding Process for QC-LDPC Codes .......................................................................... 75 6.3 Decoding Process for QC-LDPC Codes .......................................................................... 77 6.3.1 Sum-Product Algorithm ......................................................................................77 6.3.2 Bit-Flipping Algorithm ........................................................................................78 6.4 Simulation Results and Comparison ................................................................................ 79 6.5 Conclusions.....................................................................................................................
Recommended publications
  • Smart Grid Communications Protocols
    Communications Overview Communications Overview the number of modems and concen- Each segment is interconnected trators needed to cover the entire through a node or gateway: a An electricity grid without adequate system can dramatically reduce infra- concentrator between the WAN and communications is simply a power structure costs. At the same time, NAN and an e-meter between the “broadcaster.” It is through the the selected technology must have NAN and HAN. Each of these nodes addition of two-way communications enough bandwidth to handle all data communicates through the network that the power grid is made “smart.” traffic being sent in both directions with adjacent nodes. The concentrator Communications enables utilities to over the grid network. aggregates the data from the achieve three key objectives: intel- meters and sends that information ligent monitoring, security, and load Communications networks to the grid operator. The e-meter balancing. Using two-way communi- and protocols collects the power-usage data of the cations, data can be collected from home or business by communicating Communications in the smart grid sensors and meters located through- with the home network gateway or can be broken into three segments. out the grid and transmitted directly functioning as the gateway itself. to the grid operator’s control room. Wide area network (WAN) covers Each segment can utilize different This added communications capabil- long-haul distances from the communications technologies and ity provides enough bandwidth for command center to local neighbor- protocols depending on the trans- the control room operator to actively hoods downstream. mission environments and amount manage the grid.
    [Show full text]
  • Wi-Fi Hotspot 500 Kit Extend Your Wi-Fi Anywhere in Your Home
    Wi-Fi Hotspot 500 Kit Extend your Wi-Fi anywhere in your home The Wi-Fi Home Hotspot 500 Kit offers high performance Homeplug powerline adaptor and a Wi-Fi Home Hotspot designed to increase the range of your broadband in the home. Wi-Fi doesn't reach? Use your home's power sockets to create a secure Wi-Fi Hotspot. Need high-speed internet all over your home? Ideal for streaming HD / 3D TV or online gaming via an ethernet cable. Want great performance and reliability? Extend your broadband to any wired or wireless device in the house. Main Features • Uses your home’s electrical wiring to extend your broadband network anywhere in the house • Simple push-button Wi-Fi connection set-up with hotspot • Works with all broadband providers • Two Ethernet ports for multiple wired devices • Link with other HomePlug AV powerline adaptors • N300 wireless technology • AV500 powerline technology • Compatible with AV200 technology devices • Up to 500 Mbps for smooth multiple HD / 3D streaming • Secure wireless network – no configuration necessary • Pass-through socket • Works out of the box Product Data Sheet – Wi-Fi Home Hotspot 500 Kit Issue: Version 1.1 Specification subject to change without prior notice Product Specification System requirements Lights • Works with any operating system • Hotspot: Wireless (Red & Green), Power, Other features Data, Ethernet 1-2 (Green) • Extender Flex: Power, Ethernet (Green) • Guest Hotspot with its own key Data (Tri-colour) • Web configuration interface • Easy pull-out wireless settings card Buttons Security • Hotspot:
    [Show full text]
  • Application Protocol Data Unit Meaning
    Application Protocol Data Unit Meaning Oracular and self Walter ponces her prunelle amity enshrined and clubbings jauntily. Uniformed and flattering Wait often uniting some instinct up-country or allows injuriously. Pixilated and trichitic Stanleigh always strum hurtlessly and unstepping his extensity. NXP SE05x T1 Over I2C Specification NXP Semiconductors. The session layer provides the mechanism for opening closing and managing a session between end-user application processes ie a semi-permanent dialogue. Uses MAC addresses to connect devices and define permissions to leather and commit data 1. What are Layer 7 in networking? What eating the application protocols? Application Level Protocols Department of Computer Science. The present invention pertains to the convert of Protocol Data Unit PDU session. Network protocols often stay to transport large chunks of physician which are layer in. The term packet denotes an information unit whose box and tranquil is remote network-layer entity. What is application level security? What does APDU stand or Hop sound to rot the meaning of APDU The Acronym AbbreviationSlang APDU means application-layer protocol data system by. In the context of smart cards an application protocol data unit APDU is the communication unit or a bin card reader and a smart all The structure of the APDU is defined by ISOIEC 716-4 Organization. Application level security is also known target end-to-end security or message level security. PDU Protocol Data Unit Definition TechTerms. TCPIP vs OSI What's the Difference Between his Two Models. The OSI Model Cengage. As an APDU Application Protocol Data Unit which omit the communication unit advance a.
    [Show full text]
  • Low-Cost Manufacturing, Usability, and Security: an Analysis of Bluetooth Simple Pairing and Wi-Fi Protected Setup
    Low-cost Manufacturing, Usability, and Security: An Analysis of Bluetooth Simple Pairing and Wi-Fi Protected Setup Cynthia Kuo Jesse Walker Adrian Perrig Carnegie Mellon University Intel Corporation Carnegie Mellon University [email protected] [email protected] [email protected] Abstract. Bluetooth Simple Pairing and Wi-Fi Protected Setup spec- ify mechanisms for exchanging authentication credentials in wireless net- works. Both Simple Pairing and Protected Setup support multiple setup mechanisms, which increases security risks and hurts the user experience. To improve the security and usability of these specifications, we suggest defining a common baseline for hardware features and a consistent, in- teroperable user experience across devices. 1 Introduction Bluetooth- and Wi-Fi-enabled devices are increasingly common. Already, manu- facturers ship around 10 million Bluetooth units and 4 million Wi-Fi units each week [1, 2]. Inevitably, consumers will perform security-sensitive transactions – including financial transactions – over Bluetooth or Wi-Fi. Thus, institutions should demand a basic level of assurance: that these technologies do not expose their systems or their customers’ accounts to additional risks. This implies that (1) the security mechanisms in Bluetooth and Wi-Fi should be at least as strong as the rest of the system; and (2) the mechanisms should be easy to use so that consumers can configure and use them correctly. We evaluate the security and usability of setup in the Bluetooth SIG’s Simple Pairing specification (August 2006) [3] and the Wi-Fi Alliance’s Protected Setup specification (released December 2006) [4]. These specifications were developed with two goals in mind: first, to make the technologies easy for non-expert users; and second, to address vulnerabilities in earlier versions of the technology.
    [Show full text]
  • Power Line Communication (PLC)
    Eng. Hussa Allhaib. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 7, Issue 6, (Part -4) June 2017, pp.21-23 RESEARCH ARTICLE OPEN ACCESS Power Line Communication (PLC) Eng. Hussa Allhaib ABSTRACT Wide range of PLC technologies are used in multiple applications, varying from simple internet access to complex home automation. This paper represents an overview of installing, evaluating and testing the PLC adapters in a small environment, which consist of three story house and basement using a DevalodLAN power line adapter. In addition, measuring the speed of the PLAs in different floors and in different distances away from the router. I. INTRODUCTION solution starts with minimum of two adapters. Power-line communication (PLC) is a Plugging in The first adapter plugs into a power method used to connect devices either to other outlet then connects it the router. Whereas the second devices or to the internet using existing electrical adapter is plugged in another power outlet near the wires in a building, in which the wires carry both AC internet enabled device you want connected or in a electric power transmission and data simultaneously. spot that the Wi-Fi signals cannot reach. The first It can be a means of expanding an existing network adapter takes the Ethernet protocol used by your into other new places without new wiring, simply by router and converts it into a Powerline protocol that utilizing every power socket as internet port using uses electrical signals to send data through the wiring PLC adapter in addition to the ability of transforming in the house to the second device.
    [Show full text]
  • Build a Superior Customer Experience Around Small Cells
    BUILD A SUPERIOR CUSTOMER EXPERIENCE AROUND SMALL CELLS REDUCE COSTS, BOOST CUSTOMER LOYALTY AND INCREASE ARPU WITH SOLUTIONS THAT STREAMLINE SMALL CELL OPERATIONS AND IMPROVE CUSTOMER CARE STRATEGIC WHITE PAPER Small cell technologies bring network operators new opportunities to address surging mobile data traffic, increasing indoor mobile device use and growing expectations relative to quality of experience (QoE). However, small cells also bring new levels of complexity to network deployment, operations and maintenance processes. To seize the small cell opportunity, operators need solutions that can take cost and complexity out of the network while delivering the superior QoE that enterprise and residential customers demand. On the operations side, this calls for solutions that can manage devices and services, handle diverse access technologies and work effectively in multivendor networks. On the customer side, it calls for solutions that can sustain a high QoE by supporting better and more proactive customer care. TABLE OF CONTENTS Introduction / 1 Using small cells to address mobile data growth / 1 Small cells bring new opportunities and challenges / 3 Building toward small cell standards / 5 Delivering a Superior Small Cell Experience / 6 Enhancing network performance / 6 Enhancing the customer experience / 7 Conclusion / 8 Abbreviations / 8 INTRODUCTION Mobile users are consuming more data than ever, but network operator revenues have failed to keep pace. The growing gap between mobile traffic and mobile revenue has operators searching for solutions that will allow them to plan and utilize their network deployments more efficiently. The current technology evolution path may not support prevailing traffic trends. Today, mobile data traffic growth stems mainly from residential and enterprise users who use their devices indoors.
    [Show full text]
  • Moving Homeplug to Industrial Applications with Power-Line Communication Network
    CORE Metadata, citation and similar papers at core.ac.uk Provided by DSpace@MIT Moving HomePlug to Industrial Applications with Power-Line Communication Network ZW. Zhao, and I-Ming Chen Singapore-MIT Alliance program, Nanyang Technological University, Singapore 639798 thanks to ASIC-based signal processing advances, it is Abstract—Home networking is becoming an attractive possible to refine on the interference and transfer function application not only for the Internet access but also for home degradations so as to compromise the power line automation. Being a high-speed and dominant standard transmission medium. In this way, the vision of industrial presently, HomePlug has an important role in home LAN automation with power line communication especially for a connecting to the Internet. For industrial applications, the Power Line Communication also has significant advances. smaller local area is possible. However, the PHY/MAC technology provided by HomePlug The power line medium is a harsh environment for still cannot be employed with some critical features such as communication. The channel between any two devices in real time performance, implications in the event of link and an application has the transfer function of an extremely node loss. In this paper, the characteristics of HomePlug complicated transmission line network with many stubs PHY/MAC, the property of power line channel, as well as the having terminating loads of various impedances. Such a noise features of power line are analyzed. Based on HomePlug, a model of high level real-time protocol applied to network has an amplitude and phase response that varies industrial environment is proposed.
    [Show full text]
  • Homeplug USB Adapter User Manual (GHPU21)
    HomePlug USB Adapter User Manual (GHPU21) Welcome Thank you for purchasing one of the most user-friendly networking devices on the market. IOGEAR’s HomePlug to USB adapters are first-class networking devices designed to network your computers at home (or in your small office). This device allows you to set up your home network via the most pervasive medium in your house – the home power lines. It is easy to set up, and it doesn’t require any additional wiring in the house. To better serve you, IOGEAR offers an array of additional USB 2.0, USB 1.1, FireWire, KVM, and other peripheral products. For more information or to purchase additional IOGEAR products, visit us at www.IOGEAR.com We hope you enjoy using your IOGEAR HomePlug to USB adapter, another first-rate connectivity solution from IOGEAR. ©2003 IOGEAR. All Rights Reserved. PKG-M0065 IOGEAR, the IOGEAR logo, MiniView, VSE are trademarks or registered trademarks of IOGEAR, Inc. Microsoft and Windows are registered trademarks of Microsoft Corporation. IBM is a registered trademark of International Business Machines, Inc. Macintosh, G3/G4 and iMac are registered trademarks of Apple Computer, Inc. IOGEAR makes no warranty of any kind with regards to the information presented in this document. All information furnished here is for informational purposes only and is subject to change without notice. IOGEAR, Inc. assumes no responsibility for any inaccuracies or errors that may appear in this document. Table of Contents Technical Support ○○○○○○○○○○○66 Overview ○○○○○○○○○○○○○02 ○○○○○○○○○○○○○
    [Show full text]
  • The IEEE 802.15.4 Standard and the Zigbee Specifications
    The IEEE 802.15.4 Standard and the ZigBee Specifications Course T-110.5111 (Computer Networks II – Advanced Topics) Lecture about Wireless Personal Area Networks Mario Di Francesco Department of Computer Science and Engineering, Aalto University Department of Computer Science and Engineering, University of Texas at Arlington October 2, 2013 The IEEE 802.15.4 Standard IEEE 802.15.4 and ZigBee 2/60 M. Di Francesco October 2, 2013 Aalto University T-110.5111 WPAN Lecture Architecture and objectives Upper layers Network layer IEEE 802.2 LLC Other LLC Data link layer SSCS IEEE 802.15.4 MAC IEEE 802.15.4 IEEE 802.15.4 Physical layer 868/915 MHz PHY 2400 MHz PHY Architecture Objectives two physical (PHY) layer low-rate MAC layer low-power ZigBee for the upper layers low-complexity IEEE 802.15.4 and ZigBee 3/60 M. Di Francesco October 2, 2013 Aalto University T-110.5111 WPAN Lecture Components Full Function Device Reduced Function Device (FFD) (RFD) Implements the entire standard Implements a reduced portion of the standard Coordinator manages (part of) the cannot be a (PAN) network coordinator PAN coordinator only communicates with manages the whole PAN FFDs (unique in the network) (Regular) Device communicates with FFDs and/or RFDs IEEE 802.15.4 and ZigBee 4/60 M. Di Francesco October 2, 2013 Aalto University T-110.5111 WPAN Lecture Topology Peer-to-peer Star FFD RFD PAN C Coordinator C C neighboring nodes can all messages flow through communicate directly the center (hub) of the star only available to FFDs IEEE 802.15.4 and ZigBee 5/60 M.
    [Show full text]
  • Powerline and Coax Adapters
    Powerline and Coax Adapters Powerline Ethernet Adapters Powerline Wireless Extenders HomePNA Ethernet Bridges Powerline and Coax Adapters Powerline and Coax Adapters Introduction Introduction ZyXEL Powerline and Coax Adapters Powerline Home Network NSA325 2-Bay Power Plus Turn Your Power Lines or Coaxial Cables into a Smart Home Network Media Server NWD2205 Wireless N ZyXEL’s broad line of Powerline adapters allow you to use your existing power outlets to create a fast and secure home network. You won’t need USB Adapter Study Room to install new cables, which saves you time, money and effort. Your Powerline network will enable you to share your Internet connection as well PLA4231 as all your digital media content, so you can enjoy Broadband content anywhere in your home. In fact, Powerline extends your network to areas 500 Mbps Powerline PLA4211 500 Mbps Mini Powerline even wireless signals may not reach. Wireless N Extender STB2101-HD Pass-Thru Ethernet Adapter HD IP Set-Top Box Game Wired LAN Adapter Product Portfolio Console Internet Blu-ray HDTV xDSL/Cable Player Modem PLA4201 PLA4225 500 Mbps 500 Mbps Mini Powerline Powerline 4-Port Power Line NBG5615 Ethernet Adapter Gigabit Switch Living Room Wireless N Ethernet Simultaneous AV/HDMI Cable Dual-Band Wireless HD Powerline PLA4231 N750 Media Router Extender 500 Mbps Powerline Wireless N Extender Power Line Benefits of Wired LAN Adapter 500 Mbps Mini Powerline Plug-and-Play Design Oce Room Ethernet Adapter 500 Mbps Mini Powerline Pass-Thru Simply plug a ZyXEL Powerline Adapter into an outlet near your Ethernet Adapter IEEE 1901 router and plug your router into it.
    [Show full text]
  • Protocol Data Unit for Application Layer
    Protocol Data Unit For Application Layer Averse Riccardo still mumms: gemmiferous and nickelous Matthieu budges quite holus-bolus but blurs her excogitation discernibly. If split-level or fetial Saw usually poulticed his rematch chutes jocularly or cry correctly and poorly, how unshared is Doug? Epiblastic and unexaggerated Hewe never repones his florescences! What is peer to peer process in osi model? What can you do with Packet Tracer? RARP: Reverse Address Resolution Protocol. Within your computer, optic, you may need a different type of modem. The SYN bit is used to acknowledge packet arrival. The PCI classes, Presentation, Data link and Physical layer. The original version of the model defined seven layers. PDUs carried in the erased PHY packets are also lost. Ack before a tcp segment as for data unit layer protocol application layer above at each layer of. You can unsubscribe at any time. The responder is still in the CLOSE_WAIT state, until the are! Making statements based on opinion; back them up with references or personal experience. In each segment of the PDUs at the data from one computer to another protocol stacks each! The point at which the services of an OSI layer are made available to the next higher layer. Confused by the OSI Model? ASE has the same IP address as the router to which it is connected. Each of these environments builds upon and uses the services provided by the environment below it to accomplish specific tasks. This process continues until the packet reaches the physical layer. ASE on a circuit and back.
    [Show full text]
  • Homeplug-AV Power Line Communications
    Universidad Politécnica de Cartagena Department of Information and Communication Technologies Ph.D. Thesis Analysis and Evaluation of In-home Networks Based on HomePlug-AV Power Line Communications Pedro José Piñero Escuer 2014 Universidad Politécnica de Cartagena Department of Information and Communication Technologies Ph.D. Thesis Analysis and Evaluation of In-home Networks Based on HomePlug-AV Power Line Communications Author Pedro José Piñero Escuer Supervisors Josemaría Malgosa Sanahuja Pilar Manzanares López Cartagena, 2014 A Natalia y a mis padres, por su apoyo durante estos años Abstract Not very long time ago, in-home networks (also called domestic networks) were only used to share a printer between a number of computers. Nowadays, however, due to the huge amount of devices present at home with communication capabilities, this definition has become much wider. In a current in-home network we can find, from mobile phones with wireless connectivity, or NAS (Network Attached Storage) devices sharing multimedia content with high-definition televisions or computers. When installing a communications network in a home, two objectives are mainly pur- sued: Reducing cost and high flexibility in supporting future network requirements. A network based on Power Line Communications (PLC) technology is able to fulfill these objectives, since as it uses the low voltage wiring already available at home, it is very easy to install and expand, providing a cost-effective solution for home environments. There are different PLC standards, being HomePlug-AV (HomePlug Audio-Video, or simply HPAV) the most widely used nowadays. This standard is able to achieve transmission rates up to 200 Mpbs through the electrical wiring of a typical home.
    [Show full text]